

Adobe Flash Video File Format Specification
Version 10.1

© 2010 Adobe Systems Incorporated and its licensors. All rights reserved.
Adobe Flash Video File Format Specification Version 10.1
This user guide is protected under copyright law, furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated
assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content
contained in this guide.
This guide contains links to third-party websites that are not under the control of Adobe Systems Incorporated, and
Adobe Systems Incorporated is not responsible for the content on any linked site. If you access a third-party
website mentioned in this guide, then you do so at your own risk. Adobe Systems Incorporated provides these links
only as a convenience, and the inclusion of the link does not imply that Adobe Systems Incorporated endorses or
accepts any responsibility for the content on those third-party sites. No right, license, or interest is granted in any
third party technology referenced in this guide.
 This user guide is licensed for use under the terms of the Creative Commons Attribution Non-Commercial 3.0
License. This License allows users to copy, distribute, and transmit the user guide for noncommercial purposes
only so long as (1) proper attribution to Adobe is given as the owner of the user guide; and (2) any reuse or
distribution of the user guide contains a notice that use of the user guide is governed by these terms. The best way to
provide notice is to include the following link. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/
Adobe, ActionScript, Flash, Flash Media Server, XMP, and Flash Player, are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States and/or other countries.
All other trademarks are the property of their respective owners.
Updated Information/Additional Third Party Code Information available at http://www.adobe.com/go/thirdparty.
Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.
Notice to U.S. Government End Users: The Software and Documentation are “Commercial Items,” as that term is
defined at 48 C.F.R. §2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software
Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with
48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer
Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users (a)
only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms
and conditions herein. Unpublished-rights reserved under the copyright laws of the United States. Adobe agrees to
comply with all applicable equal opportunity laws including, if appropriate, the provisions of Executive Order
11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38 USC 4212),
and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through
60-60, 60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall
be incorporated by reference.

Published August 2010

Edit 47 2010-09-03

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.adobe.com/go/thirdparty

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 iii
 Contents

Contents
Introduction---1
The F4V Video File Format -- 1
New in the F4V Video File Format --- 1
The FLV Video File Format -- 1
1 The F4V File Format---2
1.1 Overview--- 2
1.2 Simple data types --- 2
1.3 F4V box format--- 3
1.4 F4V Box Hierarchy --- 4
1.5 Sample Description Box Hierarchy -- 6
1.6 Handling Unsupported Boxes --- 6
1.7 Ordering of Boxes --- 7
1.8 Supported Media Types --- 7
1.8.1 Supported audio types -- 7
1.8.2 Supported video types -- 8
1.8.3 Supported data types-- 8
2 F4V Box Definitions ---9
2.1 File Type box --- 9
2.2 Progressive Download Information box-- 9
2.3 Movie box --- 10
2.4 Movie Header box--- 10
2.5 Track box -- 11
2.5.1 Track Header box --- 12
2.5.2 Edit box -- 13
2.5.2.1 Edit List box--- 13
2.6 Media box --- 14
2.6.1 Media Header box -- 14
2.6.2 Handler Reference box -- 15
2.7 Media Information box --- 16
2.7.1 Video Media Header box-- 16
2.7.2 Sound Media Header box -- 17
2.7.3 Hint Media Header box-- 17
2.7.4 Null Media Header box -- 18
2.7.5 Data Information box--- 18
2.7.5.1 Data Reference box--- 18
2.7.6 Sample Table box --- 19
2.7.6.1 Decoding Time to Sample box--- 19
2.7.6.2 Composition Time to Sample box --- 20
2.7.6.3 Sample to Chunk box-- 21
2.7.6.4 Sample Size box --- 21
2.7.6.5 Chunk Offset box --- 22
2.7.6.6 Sync Sample box-- 22
2.7.6.7 Independent and Disposable Samples box --- 23
2.8 Sample Description Box Structure --- 24
2.8.1 Sample Description box --- 24
2.8.2 VisualSampleEntry box -- 24
2.8.3 AudioSampleEntry box -- 25
2.8.4 MetaDataSampleEntry box --- 26
2.8.5 SampleEntry box -- 26
2.8.6 HintSampleEntry box -- 27
2.8.7 Sample Descriptions for HTTP Streaming with Fragments -------------------------------- 27

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 iv
 Contents

2.8.7.1 Adobe Mux Hint Sample Entry box -- 27
2.8.7.2 Adobe Mux Hint Process box -- 28
2.8.7.3 Adobe Mux Time Offset box --- 29
2.8.8 Sample Descriptions for Protected Contents-- 29
2.8.8.1 Encrypted Video box--- 29
2.8.8.2 Encrypted Audio box -- 29
2.8.8.3 Encrypted Data box -- 29
2.8.8.4 Protection Scheme Information box -- 30
2.8.8.5 Original Format box -- 30
2.8.8.6 Scheme Type box --- 31
2.8.8.7 Scheme Information box -- 31
2.8.8.8 Boxes for Adobe's Protection Scheme -- 32
2.8.8.8.1 Adobe DRM Key Management System box -- 32
2.8.8.8.2 Adobe DRM Header box -- 32
2.8.8.8.3 Standard Encryption Params box--- 33
2.8.8.8.4 Encryption Information box -- 33
2.8.8.8.5 Key Information box-- 33
2.8.8.8.6 Flash Access Params box -- 34
2.8.8.8.7 Adobe DRM Access Unit Format box --- 34
2.9 Movie Extends box-- 35
2.9.1 Movie Extends Header box --- 35
2.9.2 Track Extends box -- 36
2.10 User Data box--- 37
2.11 F4V Boxes for HTTP Streaming-- 37
2.11.1 Fragment Random Access box --- 37
2.11.2 Bootstrap Info box --- 39
2.11.2.1 Segment Run Table box --- 41
2.11.2.2 Fragment Run Table box -- 43
2.12 Movie Fragment box -- 44
2.12.1 Movie Fragment Header box --- 45
2.12.2 Track Fragment box--- 45
2.12.2.1 Track Fragment Header box-- 45
2.12.2.2 Track Fragment Run box -- 47
2.13 Media Data box -- 48
2.13.1 Hint Track Samples for HTTP Streaming-- 48
2.13.1.1 AdobeMuxHintSample -- 48
2.13.1.2 AdobeMuxPacket --- 48
2.13.1.3 AdobeMuxHintConstructor--- 50
2.13.1.4 AdobeMuxHintImmediateConstructor--- 50
2.13.1.5 AdobeMuxHintSampleConstructor--- 50
2.14 Meta box --- 51
2.15 Free Space boxes -- 51
2.16 Movie Fragment Random Access box--- 51
2.16.1 Track Fragment Random Access box --- 52
2.16.2 Movie Fragment Random Access Offset box-- 53
3 F4V Metadata --- 54
3.1 Tag box -- 54
3.2 XMP Metadata box-- 54
3.3 ilst box-- 55
3.4 Text Track Metadata -- 55
3.4.1 Style box--- 56
3.4.2 Highlight box -- 56
3.4.3 Highlight Color box--- 57
3.4.4 Karaoke box -- 57
3.4.5 Scroll Delay box -- 57

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 v
 Contents

3.4.6 Drop Shadow Offset box -- 58
3.4.7 Drop Shadow Alpha box -- 58
3.4.8 Hypertext box-- 58
3.4.9 Text Box box-- 58
3.4.10 Blinking box -- 59
3.4.11 Text Wrap box -- 59
Annex A. Embedding Cue Points-- 60
A.1 Overview -- 60
A.2 The AMF Sample Format -- 60
A.3 The AMF Data Track Structure --- 60
A.3.1 Decoding The Data Track --- 60
A.4 Progressive Download --- 61
A.5 Multiple Data Tracks-- 61
Annex B. Flash Player Metadata--- 62
B.1 Stream Properties -- 62
B.2 Image Metadata --- 62
Annex C. HTTP Streaming: File Structure -- 63
C.1 Overview -- 63
C.2 HTTP Streaming Segment -- 63
C.3 HTTP Streaming Fragment --- 63
C.4 URL Construction -- 64
C.5 Adobe Multiplexed Hint Track Format --- 64
Annex D. F4V Encryption -- 65
D.1 Overview-- 65
D.2 The Encryption Process -- 65
D.3 Encryption of Samples --- 66
D.3.1 Access Unit Header--- 66
D.3.2 Padding Of Encrypted Samples -- 67
Annex E. The FLV File Format -- 68
E.1 Overview--- 68
E.2 The FLV header -- 68
E.3 The FLV File Body-- 68
E.4 FLV Tag Definition -- 69
E.4.1 FLV Tag -- 69
E.4.2 Audio Tags-- 70
E.4.2.1 AUDIODATA -- 70
E.4.2.2 AACAUDIODATA -- 71
E.4.3 Video Tags -- 72
E.4.3.1 VIDEODATA -- 72
E.4.3.2 AVCVIDEOPACKET -- 73
E.4.4 Data Tags --- 74
E.4.4.1 SCRIPTDATA -- 74
E.4.4.2 SCRIPTDATAVALUE --- 74
E.4.4.3 SCRIPTDATADATE--- 75
E.4.4.4 SCRIPTDATAECMAARRAY --- 75
E.4.4.5 SCRIPTDATALONGSTRING -- 76
E.4.4.6 SCRIPTDATAOBJECT-- 76
E.4.4.7 SCRIPTDATAOBJECTEND-- 76
E.4.4.8 SCRIPTDATAOBJECTPROPERTY -- 76
E.4.4.9 SCRIPTDATASTRICTARRAY -- 77
E.4.4.10 SCRIPTDATASTRING--- 77
E.5 onMetaData -- 78

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 vi
 Contents

E.6 XMP Metadata in FLV -- 78
Annex F. FLV Encryption --- 79
F.1 Overview--- 79
F.2 Header Information --- 79
F.2.1 AdditionalHeader object -- 79
F.2.2 Encryption Header object --- 79
F.2.3 Standard Encoding Parameters object--- 80
F.2.4 AES-CBC Encryption Parameters object -- 80
F.2.5 Key Information object --- 80
F.2.6 FlashAccessv2 object --- 81
F.3 Encryption of Contents--- 81
F.3.1 Encryption Tag Header -- 81
F.3.2 Filter Parameters--- 82
F.3.3 Encrypted Body-- 82
F.3.3.1 Padding --- 82
F.4 Encryption and Metadata --- 83

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 1
 Introduction

Introduction
Flash® is the de facto standard for dynamic media on the Web, supporting a number of media formats, including
two core container formats for delivering synchronized audio and video streams:

- F4V, for H.264/AAC–based content, and
- FLV, for other supported codecs such as Sorensen Spark and On2 VP6.

This document provides the technical format information for the F4V and FLV video file formats supported by
Adobe® products.
Adobe seriously considers all feedback to the specification of the video file format. E-mail any unclear or
potentially erroneous information within the specification to Adobe at flashformat@adobe.com. All such email
submissions shall be subject to the Submitted Materials guidelines in the Terms of Use at
www.adobe.com/misc/copyright.html.

The F4V Video File Format
The open specification of the F4V video file format builds on the standard IEC 14496-12 (MPEG-4 Part 12) ISO
base media file format. It has a flexible structure and defines specific supported codecs and extensions. The F4V
video file format thus simplifies the implementation of dynamic media software, facilitating interoperability across
tools, services, and clients.
Starting with Flash Player 9 Update 3 (9,0,115,0), Flash Player can play F4V files.
For details on the F4V video file format, see Section 1. The F4V File Format
For the use of metadata in F4V files, see Section 3. F4V Metadata.

New in the F4V Video File Format
The release of Flash Player 10,1,53,64 added support of the following features and boxes in the Flash F4V video file
format. Boxes in italic are defined by Adobe Systems.

New Features Cue points, Encryption, Hinting, HTTP streaming

abst adaf adkm aeib afra afrt ahdr akey amhp amto aprm aps
asig asrt dinf dref edit elst enca encr encv flxs frma hdlr
hmdh mehd mfhd mfra mfro moof mvex nmhd rtmp schi schm sdtp

New Boxes

sinf smhd tfhd tfra traf trex trun url vmhd

The FLV Video File Format
An FLV file encodes synchronized audio and video streams. The audio and video data within FLV files are encoded
in the same way as audio and video within SWF files.
This document describes FLV version 1. See Annex E. The FLV File Format

mailto:flashformat@adobe.com
http://www.adobe.com/misc/copyright.html

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 2
 The F4V Format

1 The F4V File Format
1.1 Overview
Flash Player 9 Update 3 (9,0,115,0) and higher can play F4V files. The F4V format is based on the
ISO/IEC 14496-12:2008 ISO base media file format.
A large part of what distinguishes the F4V format from the ISO base media file format involves the metadata
formats that F4V can store. This chapter discusses all aspects of the F4V format except metadata, which is covered
in Section 3 F4V Metadata.

1.2 Simple data types
This following data types are used in F4V files.
Type Definition

0x… Hexadecimal value …

4CC Four-character ASCII code, such as 'moov', encoded as UI32

SI8 Signed 8-bit integer

SI8.8 Signed 16-bit fixed point number having 8 fractional bits

SI16 Signed 16-bit integer

SI16.16 Signed 32-bit fixed point number having 16 fractional bits

SI24 Signed 24-bit integer

SI32 Signed 32-bit integer

SI64 Signed 64-bit integer

STRING Sequence of Unicode 8-bit characters (UTF-8), terminated with 0x00 (unless otherwise specified)

UI8 Unsigned 8-bit integer

UI16 Unsigned 16-bit integer

UI16.16 Unsigned 32-bit fixed point number having 16 fractional bits

UI24 Unsigned 24-bit integer

UI32 Unsigned 32-bit integer

UI64 Unsigned 64-bit integer

UIn Bit field with unsigned n-bit integer, where n is in the range 1 to 31, excluding 8, 16, 24

xxx [] Array of type xxx. Number of elements to be inferred, for example from box size.

xxx [n] Array of n elements of type xxx

Multi-byte integers shall be stored in big-endian byte order, in contrast with SWF, which uses little-endian byte
order. For example, as a UI16 in SWF file format, the byte sequence that represents the number 300 (0x12C) is 0x2C
0x01; as a UI16 in F4V file format, the byte sequence that represents the number 300 is 0x01 0x2C.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 3
 The F4V Format

1.3 F4V box format
The fundamental building block of an F4V file is a box that has the following BOX format:
F4V box

Field Type Comment

Header BOXHEADER A consistent header that all boxes have

Payload UI8 [] A number of bytes, the length of which is defined by the BOXHEADER

Each box structure begins with a BOXHEADER structure:

BOXHEADER

Field Type Comment

TotalSize UI32 The total size of the box in bytes, including this header. 0 indicates
that the box extends until the end of the file.

BoxType UI32 The type of the box, usually as 4CC

ExtendedSize IF TotalSize == 1
 UI64

The total 64-bit length of the box in bytes, including this header

Many boxes are well under 4 gigabytes in length and can store their size in the TotalSize field. The format also
supports very large boxes by setting the 32-bit TotalSize field to 1 and storing a 64-bit size in ExtendedSize.
Each box is identified with a 32-bit type. For most boxes, this 32-bit type doubles as a human-readable four-
character ASCII code or 4CC, such as 'moov' (0x6D6F6F76) and 'mdat' (0x6D646174).
The box payload immediately follows the box header. The size of the payload in bytes is equal to the total size of the
box minus either 8 bytes or 16 bytes, depending on the size of the header.
For more information, see section 4.2 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 4
 The F4V Format

1.4 F4V Box Hierarchy
Table 1 shows boxes that the Flash Player recognizes in an F4V file, their nesting, required presence, and
recommended order. The hierarchy within the Sample Description box is shown separately in Table 2.
Boxes in italic are defined by Adobe Systems. The other boxes are specified in ISO/IEC 14496-12:2008.
Some boxes contain additional boxes not listed here. Consult the box definitions for further details.

Table 1. The F4V Box Hierarchy

Box Type Required? Short Description

ftyp Y File type and compatibility

pdin N Progressive download information

afra See HTTP
streaming

Fragment random access for HTTP streaming

abst See HTTP
streaming

Bootstrap info for HTTP streaming

 asrt Y Map fragment to segment

 afrt Y Map time to fragment

moov Y Container for structural metadata

 mvhd Y Movie header, overall declarations

 trak Y Container for an individual track

 tkhd Y Track header, main properties of a track

 edts N Edit list container

 elst N Time-line mapping

 mdia Y Container for media track properties

 mdhd Y Media track properties

 hdlr Y Handler, declares the media type

 minf Y Media information container

 vmhd Video media header

 smhd Sound media header

 hmhd Hint media header

 nmhd

Y, one of these
according to
media type

Null media header

 dinf Y Data information container

 dref Y Data reference

 url Y URL reference

 stbl Y Container for sample properties

 stsd Y Sample descriptions (codec types etc.)

 stts Y Map decoding time to sample

 ctts N Map composition time to sample

 stsc Y Map sample to chunk

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 5
 The F4V Format

 stsz N Sample sizes

 stco
co64

Y, one of
stco or co64

Chunk offsets

 stss N Sync sample table

 sdtp N Independent and disposable samples

 mvex N Movie extends

 mehd N Movie extends header

 trex Y Track extends defaults

 auth N Author metadata tag

 titl N Title metadata tag

 dscp N Description metadata tag

 cprt N Copyright metadata tag

 udta N User data

uuid N XMP Metadata

moof N Movie fragment

 mfhd Y Movie fragment header

 traf N Track fragment

 tfhd Y Track fragment header

 trun N Track fragment run

mdat Y for other
than HTTP
streaming

Media data container

meta N Container for metadata boxes

 ilst N Metadata tags

free N Free space

skip N Free space

mfra N Movie fragment random access

 tfra N Track fragment random access

 mfro Y Movie fragment random access offset

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 6
 The F4V Format

1.5 Sample Description Box Hierarchy
Table 2 shows the hierarchy within the Sample Description box.

Table 2. The box hierarchy in the Sample Description box

Box Name Required? Short Description

stsd Y Sample descriptions

 Mediatype-specific
sample entry boxes

 Y for
other than
encryption

Sample description for this track

 rtmp Y for HTTP
streaming

Adobe Mux Hint Sample Entry

 amhp Y Adobe Mux Hint Process

 amto N Adobe Mux Time Offset

 encv
enca
encr

 Y for
encryption

Sample descriptions entry for encrypted
tracks

 sinf Y Protection Scheme Information

 frma Y Original Format

 schm Y Scheme Type

 schi Y Scheme Information

 adkm Y Adobe's DRM Key Management System

 ahdr Y Adobe DRM Header

 aprm Y Standard Encryption Params

 aeib Y Encryption Information

 akey Y Key Information

 aps N FMRMS v1.x Params

 flxs N Flash Access v 2.0 Params

 asig N Adobe Signature

 adaf Y Adobe DRM Access Unit Format

1.6 Handling Unsupported Boxes
The ISO specification ISO/IEC 14496-12:2008 and the Apple QuickTime specification define additional box types,
not included in this specification. These box types are not part of the F4V file format, and F4V players need not
support them. The F4V player shall disregard unsupported boxes and their contents and continue playing the file.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 7
 The F4V Format

1.7 Ordering of Boxes
For best player performance, the required top-level boxes in an F4V file should be in the following order:

1. File Type (ftyp),
2. Movie (moov),
3. Media Data (mdat).

The ftyp box shall be before the moov and mdat boxes, and any other "significant" variable-size boxes.
The ftyp box should be the first box in the file, or as early as possible in the file.
While the Flash Player can play both orderings of the moov and mdat boxes, the moov box should always be before
the mdat box, as this provides for faster startup and progressive streaming.
Many F4V file creation tools place boxes in suboptimal order for playing, in which case, a post-processing step
should be applied to place the boxes in the recommended order.
For required boxes and box order for HTTP streaming support, see Annex C. HTTP Streaming: File Structure.

1.8 Supported Media Types
The following tables describe the media types that can be encapsulated inside an F4V file.

1.8.1 Supported audio types
Media type Comments

MP3 A media type of .mp3 (0x2E6D7033) indicates that the track contains MP3 audio data. The
dot character, hex 0x2E, is included to make a complete four-character code.

AAC A media type of mp4a (0x6D703461) indicates that the track is encoded with AAC audio.
Flash Player supports the following AAC profiles, denoted by their object types:
- 1 = main profile
- 2 = low complexity, a.k.a. LC
- 5 = high efficiency/scale band replication, a.k.a. HE/SBR
When the audio codec is AAC, an esds box occurs inside the stsd box of a sample table.
This box contains initialization data that an AAC decoder requires to decode the stream.
See ISO/IEC 14496-3 for more information about the structure of this box.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 8
 The F4V Format

1.8.2 Supported video types
Media type Comments

GIF A media type of gif (0x67696620) denotes a still frame of video data compressed using the
CompuServe GIF format. The space character, hex 0x20, is included to make a complete
four-character code.

PNG A media type of png (0x706E6720) denotes a still frame of video data compressed using
the standard PNG format. The space character, hex 0x20, is included to make a complete
four-character code.

JPEG A media type of jpeg (0x6A706567) denotes a still frame of video data compressed using
the standard JPEG format.

H.264 A media type of H264 (0x48323634), h264 (0x68323634), or avc1 (0x61766331) indicates
that the track is encoded with H.264 video. Flash Player supports the following H.264 video
profiles:
- 0 = supported for older media that neglects to set profile
- 66 = baseline
- 77 = extended
- 88 = main
- 100 = YUV 4:2:0, 8 bits/sample, a.k.a. “High”
- 110 = YUV 4:2:0, 10 bits/sample, a.k.a. “High 10”
- 122 = YUV 4:2:2, 10 bits/sample, a.k.a. “High 4:2:2”
- 144 = YUV 4:4:4, 12 bits/sample, a.k.a. “High 4:4:4”
When the video codec is H.264, an avcC box occurs inside the stsd box of a sample table.
This box contains initialization data that an H.264 decoder requires to decode the stream.
Bytes 1 and 3 after the BOXHEADER contain the profile and level, respectively, for the AVC
data. For more information about the remainder of the avcC box, see section 5.3.4.1 of
ISO/IEC 14496-15.

VP6 The following media types indicate that the track is encoded with On2 VP6 video.
- VP6F (0x56503646)
- VP6A (0x56503641)
- VP60 (0x56503630)
- VP61 (0x56503631)
- VP62 (0x56503632)

1.8.3 Supported data types
Media type Comments

Text A media type of either text (0x74657874) or tx3g (0x74783367) indicates that the track
contains textual data that is made available via ActionScript.

AMF0 A media type of amf0 (0x616D6630) indicates that the track contains data corresponding to
the original version of the ActionScript Message Format (AMF).

AMF3 A media type of amf3 (0x616D6633) indicates that the track contains data corresponding to
the ActionScript Message Format (AMF) version 3.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 9
 F4V Box Definitions

2 F4V Box Definitions
This section defines the boxes supported by the F4V file format.

2.1 File Type box
Box type: 'ftyp'
Container: File
Mandatory: Yes
Quantity: One
The F4V format is based on the ISO MPEG4 format, which in turn is based on the Apple QuickTime container
format. The subsets of the format support different features. The File Type (ftyp) box helps identify the features that
a program needs to support to play a particular file.
The ftyp box should be placed as early as possible, and shall be before any variable length box.
Flash Player does not enforce any restrictions with respect to ftyp boxes. If the file contains data that Flash Player
can decode, Flash Player tries to play it.
ftyp box

Field Type Comments

Header BOXHEADER BoxType = 'ftyp' (0x66747970)

MajorBrand UI32 The primary brand identifier. For an F4V file, MajorBrand is 'f4v'
(0x66347620).

MinorVersion UI32 MinorVersion is informative only. It shall not be used to determine
the conformance of a file to a standard. It may allow for more precise
identification of the major brand for inspection, debugging, or
improved decoding.

CompatibleBrands UI32 [] Arbitrary number of compatible brands, until the end of the box

For more information, see section 4.3 of ISO/IEC 14496-12:2008.

2.2 Progressive Download Information box
Box type: 'pdin'
Container: File
Mandatory: No
Quantity: One
The Progressive Download Information (pdin) box defines information about progressive download. The payload
of a pdin box provides hints about how much data to download before a player can safely begin playback.
The pdin box should be placed as early as possible in the file, after the File Type (ftyp) box, for maximum utility.
pdin box

Field Type Comment

Header BOXHEADER BoxType = 'pdin' (0x7064696E)

Version UI8 Expected to be 0

Flags UI24 Reserved. Set to 0

RateDelay RATEDELAY [] Arbitrary number of RATEDELAY records, until the end of the box

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 10
 F4V Box Definitions

Each RATEDELAY record has the following layout:
RATEDELAY

Field Type Comment

Rate UI32 The rate (in bytes/second) to be considered for this record

InitialDelay UI32 The number of milliseconds to delay before beginning playback at this rate

For more information, see section 8.1.3 of ISO/IEC 14496-12:2008.

2.3 Movie box
Box type: 'moov'
Container: File
Mandatory: Yes
Quantity: One
The Movie (moov) box is effectively the “header” of an F4V file. The moov box itself contains one or more other
boxes, which in turn contain other boxes, which define the structure of the F4V data.
moov box

Field Type Comment

Header BOXHEADER BoxType = 'moov' (0x6D6F6F76)

Boxes BOX [] Arbitrary number of boxes that define the file structure

For more information, see section 8.2.1 of ISO/IEC 14496-12:2008.

2.4 Movie Header box
Box type: 'mvhd'
Container: Movie box ('moov')
Mandatory: Yes
Quantity: One
The Movie Header (mvhd) box defines playback information that applies to the entire F4V file. The mvhd box
should be placed first in its container.
mvhd box

Field Type Comment

Header BOXHEADER BoxType = 'mvhd' (0x6D766864)

Version UI8 Either 0 or 1

Flags UI24 Reserved. Set to 0

CreationTime IF Version == 0
 UI32
IF Version == 1
 UI64

The creation time of the F4V file, expressed as seconds elapsed since
midnight, January 1, 1904 (UTC)

ModificationTime IF Version == 0
 UI32
IF Version == 1
 UI64

The last modification time of the F4V file, expressed as seconds elapsed
since midnight, January 1, 1904 (UTC)

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 11
 F4V Box Definitions

TimeScale UI32 The time coordinate system for the entire F4V file, in number of time
units per second. For example, 100 indicates the time units are 1/100
second each.

Duration IF Version == 0
 UI32
IF Version == 1
 UI64

The total length of the F4V file presentation, in TimeScale units. This is
also the duration of the longest track in the file.

Rate SI16.16 The preferred rate of playback, expressed as a fixed point 16.16
number (commonly 0x00010000 = 1.0, or normal playback rate)

Volume SI8.8 The master volume of the file, expressed as a fixed point 8.8 number
(commonly 0x0100 = 1.0, or full volume)

Reserved UI16 Reserved. Set to 0

Reserved UI32 [2] Reserved. Set to 0

Matrix SI32 [9] Transformation matrix for the F4V file, shall be
{0x00010000, 0, 0,
 0, 0x00010000, 0,
 0, 0, 0x40000000}

Reserved UI32 [6] Reserved. Set to 0

NextTrackID UI32 The ID of the next track to be added to the presentation. This value
shall not be 0 but may be all 1’s to indicate an undefined state

For more information, see section 8.2.2 of ISO/IEC 14496-12:2008.

2.5 Track box
Box type: 'trak'
Container: Movie box ('moov')
Mandatory: Yes
Quantity: One or more
Each Track (trak) box corresponds to an individual media track within the F4V file and contains boxes that further
define the properties of the media track.
trak box

Field Type Comment

Header BOXHEADER BoxType = 'trak' (0x7472616B)

Boxes BOX [] Arbitrary number of boxes that define the media track

For more information, see section 8.3.1 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 12
 F4V Box Definitions

2.5.1 Track Header box
Box type: 'tkhd'
Container: Track box ('trak')
Mandatory: Yes
Quantity: One
The Track Header (tkhd) box describes the main properties of a track. The tkhd box should be placed first in its
container.
tkhd box

Field Type Comment

Header BOXHEADER BoxType = 'tkhd' (0x746B6864)

Version UI8 Either 0 or 1

Flags UI24 Bit 0 = the track is enabled
Bit 1 = the track is part of the presentation
Bit 2 = the track should be considered when previewing the F4V file

CreationTime IF Version == 0
 UI32
IF Version == 1
 UI64

The creation time of the track, expressed as seconds elapsed since
midnight, January 1, 1904 (UTC)

ModificationTime IF Version == 0
 UI32
IF Version == 1
 UI64

The last modification time of the track, expressed as seconds elapsed
since midnight, January 1, 1904 (UTC)

TrackID UI32 The track’s unique identifier

Reserved UI32 Reserved. Set to 0

Duration IF Version == 0
 UI32
IF Version == 1
 UI64

The duration of the track, in TimeScale units defined in the Movie
Header box, section 2.4.

Reserved UI32 [2] Reserved. Set to 0

Layer SI16 The position of the front to back ordering of tracks, expected to be 0 for
F4V files

AlternateGroup SI16 0

Volume SI8.8 0x0100 (fixed point 8.8 number representing 1.0) for audio track,
otherwise 0

Reserved UI16 Reserved. Set to 0

TransformMatrix SI32[9] A matrix of fixed point values defining a perspective transform, which
shall be
{0x00010000, 0, 0
 0, 0x00010000, 0
 0, 0, 0x40000000}

Width UI16.16 Width expressed as a fixed point 16.16 number

Height UI16.16 Height expressed as a fixed point 16.16 number

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 13
 F4V Box Definitions

For more information, see section 8.3.2 of ISO/IEC 14496-12:2008.

2.5.2 Edit box
Box type: 'edts'
Container: Track box ('trak')
Mandatory: No
Quantity: One
The Edit (edts) box maps the presentation timeline to the media timeline, as it is stored in F4V file. The edts box is a
container for the edit lists.
If the file does not contain an edts box, there is an implicit one-to-one mapping of these timelines.
The edts box should precede the Media (mdia) box.

edit box

Field Type Comment

Header BOXHEADER BoxType = 'edts' (0x65647473)

Edit list box BOX An explicit time-line map

For more information, see section 8.6.5 of ISO/IEC 14496-12:2008.

2.5.2.1 Edit List box
Box type: 'elst'
Container: Edit box ('edts')
Mandatory: No
Quantity: One
The Edit List (elst) box contains an explicit time line map in the form of edit list entries. Each entry in the elst box
defines a part of the presentation timeline through one of the following means:

- By mapping a part of the media timeline
- By indicating an empty time (that is, a gap)
- By defining a dwell (that is, the location at which a single point of time is held for a period)

An empty edit in an edit list box indicates a gap. To specify a starting offset for a track, insert an empty edit at the
beginning of the track.
An empty edit shall not be the last edit in a track. If the duration specified in the movie header box is different from
the track's actual duration, an implicit empty edit is placed at the end of the track.
The media should have a key frame immediately after the gap. Alternately, Flash Player can use the data in the Sync
Sample box to find a key frame after a gap.
elst box

Field Type Comment

Header BOXHEADER BoxType = 'elst' (0x656C7374)

Version UI8 Either 0 or 1

Flags UI24 Reserved. Set to 0

EntryCount UI32 Number of entries in the edit list entry table

EditListEntryTable ELSTRECORD [EntryCount] An array of ELSTRECORD structures

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 14
 F4V Box Definitions

Each ELSTRECORD has the following format:
ELSTRECORD

Field Type Comment

SegmentDuration IF Version == 0
 UI32
IF Version == 1
 UI64

Duration of this edit segment, in TimeScale units defined in the
Movie Header (moov) box

MediaTime IF Version == 0
 SI32
IF Version == 1
 SI64

Starting time within the media of this edit segment as
composition time, in TimeScale units defined in the mdhd? box. A
value of -1 specifies an empty edit.

MediaRateInteger SI16 Relative rate at which to play the media of this edit segment. The
default value is 1. A value of 0 specifies dwell editing.

MediaRateFraction SI16 Reserved. Set to 0

For more information, see section 8.6.6 of ISO/IEC 14496-12:2008.

2.6 Media box
Box type: 'mdia'
Container: Track box ('trak')
Mandatory: Yes
Quantity: One
The Media (mdia) box contains boxes that define media track properties.
mdia box

Field Type Comment

Header BOXHEADER BoxType = 'mdia' (0x6D646961)

Boxes BOX [] Arbitrary number of boxes that define media track properties

For more information, see section 8.4 of ISO/IEC 14496-12:2008.

2.6.1 Media Header box
Box type: 'mdhd'
Container: Media box ('mdia')
Mandatory: Yes
Quantity: One
The Media Header (mdhd) box describes properties about a media track. The mdhd box should be placed first in its
container.
mdhd box

Field Type Comment

Header BOXHEADER BoxType = 'mdhd' (0x6D646864)

Version UI8 Either 0 or 1

Flags UI24 Reserved. Set to 0

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 15
 F4V Box Definitions

CreationTime IF Version == 0
 UI32
IF Version == 1
 UI64

The creation time of the box, expressed as seconds elapsed since
midnight, January 1, 1904 (UTC)

ModificationTime IF Version == 0
 UI32
IF Version == 1
 UI64

The last modification time of the box, expressed as seconds elapsed
since midnight, January 1, 1904 (UTC)

TimeScale UI32 The time coordinate system for this track, in number of time units per
second

Duration IF Version == 0
 UI32
IF Version == 1
 UI64

The total duration of this track, in TimeScale units

Pad UI1 Padding, set to 0

Language UI5 [3] 3-character code specifying language (see ISO 639-2/T), each
character interpreted as 0x60 + (5 bit) code to yield an ASCII character

Reserved UI16 Reserved. Set to 0

For more information, see section 8.4.2 of ISO/IEC 14496-12:2008.

2.6.2 Handler Reference box
Box type: 'hdlr'
Container: Media box ('mdia')
Mandatory: Yes
Quantity: One
A Handler Reference (hdlr) box declares the nature of the media data inside the track. The hdlr box should precede
the Media Information (minf) box.

hdlr box

Field Type Comment

Header BOXHEADER BoxType = 'hdlr' (0x68646C72)

Version UI8 Expected to be 0

Flags UI24 Reserved. Set to 0.

Predefined UI32 Set to 0.

HandlerType UI32 An integer containing the following 4CC values:
'vide' = Video track
'soun' = Audio track
'data' = Data track
'hint' = Hint track
Other track types are ignored.

Reserved UI32 [3] Set to 0.

Name String Null terminated UTF-8 string that names the track type, used for
debugging purposes.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 16
 F4V Box Definitions

For more information, see section 8.4.3 of ISO/IEC 14496-12:2008.

2.7 Media Information box
Box type: 'minf'
Container: Media box ('mdia')
Mandatory: Yes
Quantity: One
The Media Information (minf) box contains boxes that define the track’s media information.
The minf box contains one Media Header box, the type of which corresponds to the track's HandlerType.

minf box

Field Type Comment

Header BOXHEADER BoxType = 'minf' (0x6D696E66)

Boxes BOX [] Arbitrary number of boxes that define the track’s media information

For more information, see section 8.4.4 of ISO/IEC 14496-12:2008.

2.7.1 Video Media Header box
Box type: 'vmhd'
Container: Media Information box ('minf')
Mandatory: Yes for a video track, otherwise no.
Quantity: One for a video track, otherwise zero.
The Video Media Header (vmhd) box contains general information for video media, independent of the coding
used. The vmhd box should be placed first in its container.

vmhd box

Field Type Comment

Header BOXHEADER BoxType = 'vmhd' (0x766D6864)

Version UI8 Expected to be 0

Flags UI24 Set to 1.

GraphicsMode UI16 Composition mode for video track. The default value is 0, which
means copy over the existing image.

OpColor UI16 [3] Set of 3 RGB color values to be used by graphics modes.
Default values: (0, 0, 0)

For more information, see section 8.4.5.2 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 17
 F4V Box Definitions

2.7.2 Sound Media Header box
Box type: 'smhd'
Container: Media Information box ('minf')
Mandatory: Yes for an audio track, otherwise no.
Quantity: One for an audio track, otherwise zero.
The Sound Media Header box contains general information for audio media, independent of the coding used. The
smhd box should be placed first in its container.
smhd

Field Type Comment

Header BOXHEADER BoxType = 'smhd' (0x736D6864)

Version UI8 Expected to be 0.

Flags UI24 Set to 0.

Balance SI8.8 A fixed point 8.8 number. Maps mono audio tracks to the stereo
space, as follows:
-1.0 = full left
 0.0 = center
 1.0 = full right

Reserved UI16 Set to 0.

For more information, see section 8.4.5.3 of ISO/IEC 14496-12:2008.

2.7.3 Hint Media Header box
Box type: 'hmhd'
Container: Media Information box ('minf')
Mandatory: Yes for a hint track, otherwise no.
Quantity: One for a hint track, otherwise zero.
The Hint Media Header (hmhd) box contains the general information for hint tracks, independent of the protocol
used. The hmhd box should be placed first in its container.
hmhd box

Field Type Comment

Header BOXHEADER BoxType = 'hmhd' (0x686D6864)

Version UI8 Expected to be 0.

Flags UI24 Set to 0.

MaxPDUSize UI16 Size (in bytes) of the largest PDU in hint stream.

AvgPDUSize UI16 Average size (in bytes) of a PDU in entire presentation

MaxBitRate UI32 Maximum rate (in bits per second) over an interval of 1 second.

AvgBitRate UI32 Average rate (in bits per second) over entire presentation.

Reserved UI32 Set to 0.

For more information, see section 8.4.5.4 of ISO/IEC 14496-12.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 18
 F4V Box Definitions

2.7.4 Null Media Header box
Box type: 'nmhd'
Container: Media Information box ('minf')
Mandatory: Yes for metadata track, otherwise no.
Quantity: Zero for video, audio, and hint tracks, otherwise, one.
The Null Media Header (nmhd) box contains the general information for tracks other than video and audio. The
nmhd box should be placed first in its container.
nmhd box

Field Type Comment

Header BOXHEADER BoxType = 'nmhd' (0x6E6D6864)

Version UI8 Expected to be 0.

Flags UI24 Reserved. Set to 0

For more information, see section 8.4.5.5 of ISO/IEC 14496-12.

2.7.5 Data Information box
Box type: 'dinf'
Container: Media Information box ('minf')
Mandatory: Yes
Quantity: One
The Data Information (dinf) box contains a Data Reference (dref) box, which declares the location of the media data
in a track. The dinf box should precede the Sample Table (stbl) box.
dinf box

Field Type Comments

Header BOXHEADER BoxType = 'dinf' (0x64696E66)

Data Reference box BOX Table of data references, used to locate media data.

For more information, see section 8.7.1 of ISO/IEC 14496-12.

2.7.5.1 Data Reference box
Box type: 'dref'
Container: Data Information box ('dinf')
Mandatory: Yes
Quantity: One
A Data Reference (dref) box contains a table of data references, normally URLs, which declare the location of the
media data used within the presentation. The data is in the same file as this box. The data reference index in the
Sample Description (stsd) box ties entries in this table to the samples in the track. A track may be split over several
sources in this way. If the data is in the same file as this box, then no string, not even an empty one, shall be supplied
in the entry field.
The DataEntryBox within the dref box shall be a DataEntryUrlBox.
dref box

Field Type Comment

Header BOXHEADER BoxType = 'dref' (0x64726566)

Version UI8 Expected to be 0.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 19
 F4V Box Definitions

Flags UI24 Reserved. Set to 0

EntryCount UI32 Number of entries.

DataEntry DataEntryBox
[EntryCount]

An array of data entry boxes. While ISO 14496-12 permits several
box types, the only box type allowed here for F4V is
DataEntryURLBox (url).

For more information, see section 8.7.2 of ISO/IEC 14496-12.
The DataEntryBox within the dref box is a DataEntryUrlBox (url) defined as follows.
url box

Field Type Comment

Header BOXHEADER BoxType = 'url ' (0x75726C20)

Version UI8 Expected to be 0

Flags UI24 Set to 1. 1 indicates the media data is in the same file as the Movie
box containing this box.

2.7.6 Sample Table box
Box type: 'stbl'
Container: Media Information box ('minf')
Mandatory: Yes
Quantity: One
The Sample Table (stbl) box contains boxes that define properties about the samples that make up a track.
The boxes within the stbl box should be in the following order: Sample Description (stsd), Decoding Time to
Sample (stts), Sample to Chunk (stsc), Sample Size (stsz), Chunk Offset (stco or co64).
The Sample Description (stsd) box and its contained boxes are specified in section 2.8 Sample Description Box
Structure.
stbl box

Field Type Comment

Header BOXHEADER BoxType = 'stbl' (0x7374626C)

Boxes BOX [] Arbitrary number of boxes that define properties about the track’s
constituent samples.

For more information, see section 8.5 of ISO/IEC 14496-12:2008.

2.7.6.1 Decoding Time to Sample box
Box type: 'stts'
Container: Sample Table box ('stbl')
Mandatory: Yes
Quantity: One
The Decoding Time to Sample (stts) box defines the time-to-sample mapping for a sample table.

stts box

Field Type Comment

Header BOXHEADER BoxType = 'stts' (0x73747473)

Version UI8 Expected to be 0

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 20
 F4V Box Definitions

Flags UI24 Reserved. Set to 0

Count UI32 The number of STTSRECORD entries

Entries STTSRECORD [Count] An array of STTSRECORD structures

Each STTSRECORD has the following format:

STTSRECORD

Field Type Comment

SampleCount UI32 The number of consecutive samples that this STTSRECORD
applies to

SampleDelta UI32 Sample duration in TimeScale units defined in the mdhd box

For more information, see section 8.6.1.2 of ISO/IEC 14496-12:2008.

2.7.6.2 Composition Time to Sample box
Box type: 'ctts'
Container: Sample Table box ('stbl')
Mandatory: No
Quantity: One
The Composition Time to Sample (ctts) box defines the composition time to sample mapping for a sample table.
ctts box

Field Type Comment

Header BOXHEADER BoxType = 'ctts' (0x63747473)

Version UI8 Expected to be 0

Flags UI24 Reserved. Set to 0

Count UI32 The number of CTTSRECORD entries

Entries CTTSRECORD [Count] An array of CTTSRECORD structures

Each CTTSRECORD has the following structure:
CTTSRECORD

Field Type Comment

SampleCount UI32 The number of consecutive samples that this CTTSRECORD
applies to

SampleOffset UI32 For each sample specified by the SampleCount field, this
field contains a positive integer that specifies the composition
offset from the decoding time in TimeScale units defined in
the mdhd box

Samples are not always composed (presented to the user) at the time of decoding. The ctts box contains offsets from
the decoding time to the time when samples are to be presented to the user.
For more information, see section 8.6.1.3 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 21
 F4V Box Definitions

2.7.6.3 Sample to Chunk box
Box type: 'stsc'
Container: Sample Table box ('stbl')
Mandatory: Yes
Quantity: One
The Sample To Chunk (stsc) box defines the sample-to-chunk mapping in the sample table of a media track.
stsc box

Field Type Comment

Header BOXHEADER BoxType = 'stsc' (0x73747363)

Version UI8 Expected to be 0

Flags UI24 Reserved. Set to 0

Count UI32 The number of STSCRECORD entries

Entries STSCRECORD [Count] An array of STSCRECORD structures

Each STSCRECORD has the following format:
STSCRECORD

Field Type Comment

FirstChunk UI32 The first chunk that this record applies to

SamplesPerChunk UI32 The number of consecutive samples that this record applies to

SampleDescIndex UI32 The sample description that describes this sequence of chunks

For more information, see section 8.7.4 of ISO/IEC 14496-12:2008.

2.7.6.4 Sample Size box
Box type: 'stsz'
Container: Sample Table box ('stbl')
Mandatory: No
Quantity: One
The Sample Size (stsz) box specifies the size of each sample in a sample table.

stsz box

Field Type Comment

Header BOXHEADER BoxType = 'stsz' (0x7374737A)

Version UI8 Expected to be 0

Flags UI24 Reserved. Set to 0

ConstantSize UI32 If all samples have the same size, this field is set with that
constant size, otherwise it is 0

SizeCount UI32 The number of samples in the track

SizeTable IF ConstantSize == 0
 UI32 [SizeCount]

A table of sample sizes. If ConstantSize is not 0, this table is
empty

For more information, see section 8.7.3.2 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 22
 F4V Box Definitions

2.7.6.5 Chunk Offset box
Box type: 'stco' or 'co64'
Container: Sample Table box ('stbl')
Mandatory: Yes
Quantity: One
Each Sample Table box shall contain one Chunk Offset box of either the stco or the co64 type. The stco and co64
boxes define chunk offsets for each chunk in a sample table.
stco and co64 boxes

Field Type Comment

Header BOXHEADER BoxType = 'stco' (0x7374636F) or 'co64' (0x636F3634)

Version UI8 Expected to be 0

Flags UI24 Reserved. Set to 0

OffsetCount UI32 The number of offsets in the Offsets table

Offsets IF BoxType == 'stco’
 UI32 [OffsetCount]
ELSE IF BoxType == 'co64’
 UI64 [OffsetCount]

A table of absolute chunk offsets within the file

For more information, see section 8.7.5 of ISO/IEC 14496-12:2008.

2.7.6.6 Sync Sample box
Box type: 'stss'
Container: Sample Table box ('stbl')
Mandatory: No
Quantity: One
The Sync Sample (stss) box specifies which samples within a sample table are sync samples. Sync samples are
samples that are safe to seek to. If the track is a video track, sync samples are the keyframes or intraframes that do
not rely on any data from any other frames.
If the Sample Table (stbl) box does not contain an stss box, all samples in the track shall be treated as sync samples.
stss box

Field Type Comment

Header BOXHEADER BoxType = 'stss' (0x73747373)

Version UI8 Expected to be 0

Flags UI24 Reserved. Set to 0

SyncCount UI32 The number of entries in SyncTable

SyncTable UI32 [SyncCount] A table of sample numbers that are also sync samples, sorted in
ascending order of sample numbers

For more information, see section 8.6.2 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 23
 F4V Box Definitions

2.7.6.7 Independent and Disposable Samples box
Box type: 'sdtp'
Container: Sample Table box ('stbl') or Track Fragment 'traf'
Mandatory: No
Quantity: One in each of the stbl and traf boxes
An stbl or traf box may each contain one Independent and Disposable Samples (sdtp) box. The sdtp box helps in
implementing features such as fast-forward and random access. The sdtp box states whether a sample is an I-
picture, and provides information about frame dependencies and redundant coding that are present in a sample. The
number of entries in the table is the same as the value of SampleCount in the Sample Size box.
sdtp box

Field Type Comment

Header BOXHEADER BoxType = 'sdtp' (0x73647470)

Version UI8 Expected to be 0

Flags UI24 Reserved. Set to 0

SampleDependency SAMPLEDEPENDENCY [] Dependency information for each sample, to the end of
the box

Each SAMPLEDEPENDENCY record has the following structure:

SAMPLEDEPENDENCY

Field Type Comment

Reserved UI2 Reserved. Set to 0.

SampleDependsOn UI2 0 = the sample dependency is unknown
1 = this sample does depend on others (not an I picture)
2 = this sample does not depend on others (I picture)
3 = reserved

SampleIsDependedOn UI2 0 = the dependency of other samples on this sample is unknown
1 = other samples may depend on this one (not disposable)
2 = no other sample depends on this one (disposable)
3 = reserved

SampleHasRedundancy UI2 0 = it is unknown whether there is redundant coding in this sample
1 = there is redundant coding in this sample
2 = there is no redundant coding in this sample
3 = reserved

When redundant coding is present, the value of 'SampleDependsOn' corresponds only to the primary coding. The
parameter 'SampleIsDependedOn' is independent of the presence of redundant coding.
For more information, see section 8.6.4 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 24
 F4V Box Definitions

2.8 Sample Description Box Structure
2.8.1 Sample Description box
Box type: 'stsd'
Container: Sample Table box ('stbl')
Mandatory: Yes
Quantity: One
The Sample Description (stsd) box defines the sample description for a sample table. The stsd box can contain
multiple descriptions for a track, one for each media type contained in the track. The sample description table gives
detailed information about the coding type used, and any initialization information needed for that coding.
Table 2 shows the hierarchy within the Sample Description box.
For more information, see section 8.5.2 of ISO/IEC 14496-12.
stsd box

Field Type Comment

Header BOXHEADER BoxType = 'stsd' (0x73747364)

Version UI8 Expected to be 0

Flags UI24 Reserved. Set to 0

Count UI32 Number of entries, one for each media type contained in the
track

Descriptions DESCRIPTIONRECORD
[Count]

An array of boxes, one for each media type contained in the
track

Each DESCRIPTIONRECORD shall be one of the following boxes:

- VisualSampleEntry, for HandlerType == 'vide' [video track],
- AudioSampleEntry, for HandlerType == 'soun' [audio track],
- MetaDataSampleEntry, for HandlerType == 'meta' [timed metadata track],
- SampleEntry, for HandlerType == 'data' [data track],
- HintSampleEntry, for HandlerType == 'hint' [hint track], or
- AdobeMuxHintSampleEntry, for HandlerType == 'hint' [Adobe Multiplexed Hint Track]

2.8.2 VisualSampleEntry box
Box type: one of the video media types specified in Section 1.8.2 Supported video types
Container: Sample Table box ('stsd')
Mandatory: Yes for video tracks
Quantity: One for each video track
The VisualSampleEntry box contains detailed information about the video coding type used, and any initialization
information needed for that coding. For more information, see section 8.5.2 of ISO/IEC 14496-12:2008.

VisualSampleEntry box

Field Type Comment

Header BOXHEADER BoxType is one of the video media types specified in 1.8.2

Reserved UI8 [6] Set to 0

DataReferenceIndex UI16 Index of the data reference to use to retrieve data associated with

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 25
 F4V Box Definitions

samples that use this sample description. Data references are stored
in Data Reference (dref) boxes.

Predefined UI16 Set to 0

Reserved UI16 Set to 0

Predefined UI32 [3] Set to 0

Width UI16 Max visual width (in pixels) from codec

Height UI16 Max visual height (in pixels) from codec

HorizResolution UI16.16 Resolution of the image pixels/inch, default value 0x00480000 (72
dpi)

VertResolution UI16.16 Resolution of the image pixels/inch, default value 0x00480000 (72
dpi)

Reserved UI32 Set to 0

FrameCount UI16 How many frames are stored in each sample, default value 1 (one
frame per sample)

CompressorName UI8 [32] Name of the compressor (for informative purpose only). First byte is
set to the number of bytes of displayable data that follows first byte.

Depth UI16 Bit depths. Default value 0x0018 (colors w/o alpha)

Predefined SI16 Set to -1

Boxes BOX [] Additional boxes as specified for the media type, or encryption

2.8.3 AudioSampleEntry box
Box type: one of the audio media types specified in Section 1.8.1 Supported audio types
Container: Sample Table box ('stsd')
Mandatory: Yes for audio tracks
Quantity: One for each audio track
The AudioSampleEntry box contains detailed information about the audio coding type used, and any initialization
information needed for that coding. For more information, see section 8.5.2 of ISO/IEC 14496-12:2008.
AudioSampleEntry box

Field Type Comment

Header BOXHEADER BoxType is one of the audio media types specified in 1.8.1

Reserved UI8 [6] Set to 0

DataReferenceIndex UI16 Index of the data reference to use to retrieve data associated with
samples that use this sample description. Data references are stored
in DataReference (dref) boxes.

Reserved UI32 [2] Set to 0

ChannelCount UI16 Number of channels. Default value is 2.
1 = Mono
2 = Stereo

SampleSize UI16 Size of sample. Default value is 16

Predefined UI16 Set to 0

Reserved UI16 Set to 0

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 26
 F4V Box Definitions

SampleRate UI16.16 Sampling rate, fixed point 16.16 number

Boxes BOX [] Additional boxes as specified for the media type, or encryption

2.8.4 MetaDataSampleEntry box
Box type: depends on protocol used
Container: Sample Table box ('stsd')
Mandatory: Yes for metadata tracks
Quantity: One for each metadata track
The MetaDataSampleEntry box contains detailed information about the metadata coding type used, and any
initialization information needed for that coding. For more information, see section 8.5.2 of ISO/IEC 14496-
12:2008.
MetaDataSampleEntry box

Field Type Comment

Header BOXHEADER BoxType depends on protocol used

Reserved UI8 [6] Set to 0

DataReferenceIndex UI16 Index of the data reference to use to retrieve data associated with
samples that use this sample description. Data references are stored
in DataReference (dref) boxes.

Data UI8 [] Additional contents as specified in ISO/IEC 14496-12:2008

2.8.5 SampleEntry box
Box type: one of the data media types specified in Section1.8.3 Supported data types
Container: Sample Table box ('stsd')
Mandatory: Yes for data tracks
Quantity: One for each data track
The SampleEntry box contains detailed information about the coding type used, and any initialization information
needed for that coding. For more information, see section 8.5.2 of ISO/IEC 14496-12:2008.
SampleEntry box

Field Type Comment

Header BOXHEADER BoxType is one of the data media types specified in Supported data
types.

Reserved UI8 [6] Set to 0.

DataReferenceIndex UI16 Index of the data reference to use to retrieve data associated with
samples that use this sample description. Data references are stored
in Data Reference (dref) boxes.

Boxes BOX [] Additional boxes as specified for the media type, or encryption

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 27
 F4V Box Definitions

2.8.6 HintSampleEntry box
Box type: 'hint'
Container: Sample Table box ('stsd')
Mandatory: Yes for hint tracks
Quantity: One for each hint track
The HintSampleEntry (hint) box contains appropriate declarative data for the streaming protocol being used, and
the format of the hint track. For more information, see section 8.5.2 of ISO/IEC 14496-12:2008.
hint box

Field Type Comment

Header BOXHEADER In general, the BoxType depends on the protocol used. In an F4V
file, only the 'hint' box type is allowed.

Reserved UI8 [6] Set to 0

DataReferenceIndex UI16 Index of the data reference to use to retrieve data associated with
samples that use this sample description. Data references are stored
in Data Reference (dref) boxes.

Data UI8 [] Arbitrary number of bytes until end of box

2.8.7 Sample Descriptions for HTTP Streaming with Fragments

2.8.7.1 Adobe Mux Hint Sample Entry box
Box type: 'rtmp'
Container: Sample Table box ('stsd')
Mandatory: Yes for HTTP streaming support with F4V fragments
Quantity: One for the hint track for HTTP streaming support with F4V fragments
The Adobe Mux Hint Sample Entry (rtmp) box describes the hint track used in HTTP streaming with F4V
fragments. See Annex C. HTTP Streaming: File Structure. A hint track contains AdobeMuxHintSamples.
rtmp box

Field Type Comment

Header BOXHEADER BoxType = 'rtmp' (0x72746D70)

Reserved UI8 [6] Set to 0

DataReferenceIndex UI16 Index of the data reference to use to retrieve data associated
with samples that use this sample description. Data references
are stored in Data Reference (dref) boxes.

HintTrackVersion UI16 The version of the hint track definition being used. Set to 1.

HighestCompatibleVersion UI16 Specifies compatibility with older versions.

MaxPacketSize UI16 The largest Adobe Multiplexed Hint track sample packet size, in
bytes.

AdditionalData BOX [] One Adobe Mux Hint Process box and zero or one Adobe Mux
Time Offset boxes

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 28
 F4V Box Definitions

2.8.7.2 Adobe Mux Hint Process box
Box type: 'amhp'
Container: Adobe Mux Hint Sample Entry ('rtmp')
Mandatory: Yes
Quantity: One
The Adobe Mux Hint Process (amhp) box contains descriptions of the hint modes used in this track.
amhp box

Field Type Comment

Header BOXHEADER BoxType = 'amhp' (0x616D6870))

Version UI8 Either 0 or 1

Flags UI24 Reserved. Set to 0

ModeCount UI8 The number of mode configurations supported in this box.
This value is also the number of modes supported in the
corresponding hint track.

ENTRIES MuxHintProcessEntry
[ModeCount]

An array of MuxHintProcessEntry

Each MuxHintProcessEntry has the following format:

MuxHintProcessEntry

Field Type Comment

HintTrackMode UI8 The mode (sample or immediate) that the entry corresponds to. For more
information about the modes, see Annex C.5 Adobe Multiplexed Hint
Track Format.

TrailerLengthField UI1 1 indicates the presence of the TrailerLength field in the
AdobeMuxHintSample for this mode. If 0, then TrailerDefaultSize is used.

LengthField UI1 1 indicates the presence of the hint sample Length field in the
AdobeMuxHintSample for this mode.
LengthField shall be 1 for mode == 2.

ModeField UI1 1 indicates the presence of the Mode field in the AdobeMuxHintSample
for this mode. When multiple modes are used, ModeField shall be 1.

ConstructorCountField UI1 1 indicates the presence of the ConstructorCount field in the
AdobeMuxHintSample for this mode. If 0, there is one constructor

PacketCountField UI1 1 indicates the presence of the PacketCount field in the
AdobeMuxHintSample for this mode.

Reserved UI3 Set to 0

TrailerDefaultSize UI8 The default size of trailer data, in bytes, after the hint sample payload.
Used when the TrailerLengthField is not present.

For the FLV compatible mode, TrailerLengthField, LengthField, ModeField, ConstructorCountField, and
PacketCountField shall be 0. In this case, the Immediate noDuplication hinting mode is used.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 29
 F4V Box Definitions

2.8.7.3 Adobe Mux Time Offset box
Box type: 'amto'
Container: Adobe Mux Hint Sample Entry ('rtmp')
Mandatory: No
Quantity: One
The Adobe Mux Time Offset (amto) box stores the timestamp of the first hint sample in this file.
amto box

Field Type Comment

Header BOXHEADER BoxType = 'amto' (0x616D746F)

TimeOffset UI32 The timestamp of the first hint sample in the file. This
timestamp is the offset that is added to the presentation time
of each sample derived from the cumulative sample durations.

2.8.8 Sample Descriptions for Protected Contents

2.8.8.1 Encrypted Video box
Box type: 'encv'
Container: Sample Table box ('stsd')
Mandatory: Yes for encrypted video tracks
Quantity: One for each encrypted video track
The Encrypted Video (encv) box shall be the original VisualSampleEntry with a 'sinf' box appended, as described in
Annex D.2. For more information, see section 8.12 of ISO/IEC 14496-12:2008.

2.8.8.2 Encrypted Audio box
Box type: 'enca'
Container: Sample Table box ('stsd')
Mandatory: Yes for encrypted audio tracks
Quantity: One for each encrypted audio track
The Encrypted Audio (enca) box shall be the original AudioSampleEntry with a 'sinf' box appended, as described in
Annex D.2. For more information, see section 8.12 of ISO/IEC 14496-12:2008.

2.8.8.3 Encrypted Data box
Box type: 'encr'
Container: Sample Table box ('stsd')
Mandatory: Yes for encrypted data tracks
Quantity: One for each encrypted data track
The Encrypted Data (encr) box shall be the original SampleEntry with a 'sinf' box appended, as described in Annex
D.2. For more information, see section 8.12 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 30
 F4V Box Definitions

2.8.8.4 Protection Scheme Information box
Box type: 'sinf'
Container: 'encv' or 'enca' Sample Description Entry for the protected track in 'stsd' box
Mandatory: Yes
Quantity: One
The Protection Scheme Information (sinf) box is a container box with all the information required both to
understand the encryption transform applied and its parameters, and to find other information such as the kind and
location of the key management system. It also documents the original (unencrypted) format of the media. It shall be
appended to any sample entry that has a four-character code ('encv', 'enca', or 'encr') indicating a protected stream.

sinf box

Field Type Comment

Header BOXHEADER BoxType = 'sinf'

OriginalFormatBox OriginalFormatBox The format of the original sample

SchemeTypeBox SchemeTypeBox The DRM type. Required. (This is optional
in ISO 14496-12)

SchemeInformationBox SchemeInformationBox DRM details. Required. (This is optional in
ISO 14496-12)

For more information, see section 8.12.1 of ISO/IEC 14496-12:2008.

2.8.8.5 Original Format box
Box type: 'frma'
Container: Protection Scheme Information box ('sinf')
Mandatory: Yes
Quantity: One
The Original Format (frma) box specifies the format of the original sample, e.g. "mp4v" if the stream contains
protected MPEG-4 visual material.

frma box

Field Type Comment

Header BOXHEADER BoxType = 'frma'

UnencryptedDataFormat UI32 The four-character-code of the original un-transformed
sample entry

For more information, see section 8.12.2 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 31
 F4V Box Definitions

2.8.8.6 Scheme Type box
Box type: 'schm'
Container: Protection Scheme Information box ('sinf')
Mandatory: Yes
Quantity: One
The Scheme Type (schm) box specifies the DRM system used to manage keys and decryption of the content. As the
media file format may support other key management systems other then Adobe's DRM, the key management
system in use shall be indicated by a four-character code (4CC) in the SchemeType field.
schm box
Field Type Comment
Header BOXHEADER BoxType = 'schm'
Version UI8 Shall be 1
Flags UI24 Shall be 0 or 1
SchemeType UI32 The scheme type. Shall be 'adkm', indicating that the content is protected

using Adobe's DRM system
SchemeVersion UI32 Shall be 1
SchemeUri IF Flags == 1

 STRING
Browser URI

For more information, see section 8.12.5 of ISO/IEC 14496-12:2008.

2.8.8.7 Scheme Information box
Box type: 'schi'
Container: Protection Scheme Information box ('sinf')
Mandatory: Yes
Quantity: One
The Scheme Information (schi) box is a container box carrying DRM key/rights management system specific
information. For Adobe's DRM, this box shall include one Adobe DRM Key Management System box. There may
be other boxes present. For interoperability with other DRMs, the Adobe DRM Key Management System box may
be located anywhere in the Scheme Information box.

schi box

Field Type Comment

Header BOXHEADER BoxType = 'schi'

OtherDRMSpecificData BOX [] (Optional) Boxes containing other DRM specific key
management information

SchemeSpecificData AdobeDRMKMSBox Adobe DRM Key Management System box specifying key
management information

OtherDRMSpecificData BOX [] (Optional) Boxes containing other DRM specific key
management information

For more information, see Section 8.12.6, ISO 14496-12:2008

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 32
 F4V Box Definitions

2.8.8.8 Boxes for Adobe's Protection Scheme
The following boxes are defined by Adobe, and are not documented in ISO 14496-12:2008.

2.8.8.8.1 Adobe DRM Key Management System box
Box type: 'adkm'
Container: Scheme Information box ('schi')
Mandatory: Yes
Quantity: One
The Adobe DRM Key Management System (adkm) box specifies encryption and sample formatting.
adkm box
Field Type Comment
Header BOXHEADER BoxType = 'adkm'
Version UI8 Shall be 1
Flags UI24 Shall be 0
Header AdobeDRMHeaderBox Adobe DRM Header box specifying how to retrieve the key and how

to use it to decrypt the content
AUFormat AdobeDRMAUFormatBox Adobe DRM Access Unit Format box specifying the formatting

prepended to each sample

2.8.8.8.2 Adobe DRM Header box
Box type: 'ahdr'
Container: Adobe DRM Key Management System box ('adkm')
Mandatory: Yes
Quantity: One
The Adobe DRM Header (ahdr) box specifies the version of the encryption format and methods.
ahdr box
Field Type Comment
Header BOXHEADER BoxType = 'ahdr'
Version UI8 Shall be 1 or 2, indicating the version of the

encryption format.
1 = FMRMS v1.x products.
2 = Flash Access 2.0 products.
Contents protected using either version are in
existence, hence applications shall be able to
consume both versions of the content

Flags UI24 Shall be 0
StdEncryptionBox StandardEncryptionParamsBox Standard Encryption Params box containing the

encryption method used to encrypt the samples is of
type 'Standard Encryption'

Signature IF Version == 1
 AdobeSignatureBox

AdobeSignatureBox is not described in this document

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 33
 F4V Box Definitions

2.8.8.8.3 Standard Encryption Params box
Box type: 'aprm'
Container: Adobe DRM Header box ('ahdr')
Mandatory: Yes
Quantity: One
The Standard Encryption Params (aprm) box contains parameters for the encryption method 'Standard'.
aprm box
Field Type Comment
Header BOXHEADER BoxType = 'aprm'
Version UI8 Shall be 1
Flags UI24 Shall be 0
EncInfoBox EncryptionInfoBox Encryption Information box specifying the encryption algorithm

used to encrypt the samples
KeyInfoBox KeyInfoBox Key Information box specifying how to retrieve the key for the

decryption of samples

2.8.8.8.4 Encryption Information box
Box type: 'aeib'
Container: Standard Encryption Params box ('aprm')
Mandatory: Yes
Quantity: One
The Encryption Information (aeib) box specifies the encryption algorithm used to encrypt the samples.
aeib box
Field Type Comment
Header BOXHEADER BoxType = 'aeib'
Version UI8 Shall be 1
Flags UI24 Shall be 0
EncryptionAlgorithm STRING The encryption algorithm. Shall be 'AES-CBC', specifying that the

encryption used is 'AES-CBC' with padding as per RFC 2630
KeyLength UI8 Key length of encryption/decryption algorithm in bytes. Shall be 16 (i.e.

128 bits)

2.8.8.8.5 Key Information box
Box type: 'akey'
Container: Standard Encryption Params box ('aprm')
Mandatory: Yes
Quantity: One
The Key Information (akey) box contains information for retrieving the key for decryption of samples.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 34
 F4V Box Definitions

The details of the entries contained in these boxes, and the mechanism used by the DRM client to retrieve the keys
are outside the scope of this specification.

akey box

Field Type Comment

Header BOXHEADER BoxType = 'akey'

Version UI8 Shall be 1

Flags UI24 Shall be 0

Params IF AdobeDRMHeaderBox.Version == 1
 APSParamsBox
ELSE
 FMRMSv2ParamsBox

APSParamsBox is not described in this
document as it will no longer be produced by
conforming applications

2.8.8.8.6 Flash Access Params box
Box type: 'flxs'
Container: Key Info box ('akey')
Mandatory: Yes, if AdobeDRMHeaderBox.Version == 2, else No
Quantity: One, if AdobeDRMHeaderBox.Version == 2, else Zero
The Flash Access Params (flxs) box contains information for retrieving the key for decryption of samples.

flxs box

Field Type Comment

Header BOXHEADER BoxType = 'flxs'

FmrmsV2Metadata STRING Base64-encoded metadata used by the DRM client to retrieve decryption
key

2.8.8.8.7 Adobe DRM Access Unit Format box
Box type: 'adaf'
Container: Key Info box ('adkm')
Mandatory: Yes
Quantity: One
The Access Unit Format (adaf) box specifies the format of the headers placed on the samples.

adaf box

Field Type Comment

Header BOXHEADER BoxType = 'adaf'

Version UI8 Shall be 0

Flags UI24 Shall be 0

SelectiveEncryption UI1 Indicates use of Selective Encryption. Shall be 1.
 1 = Selective encryption is turned on, i.e. only some samples are
encrypted, not all.
 0 = Selective encryption is turned off, and all samples are encrypted

Reserved UI7 Shall be 0

Reserved UI8 Shall be 0

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 35
 F4V Box Definitions

IVLength UI8 The size of the initialization vector in bytes. This length should be
consistent with the algorithms used. Shall be 16 (128 bits)

2.9 Movie Extends box
Box type: 'mvex'
Container: Movie box ('moov')
Mandatory: No
Quantity: One
If the F4V file contains fragments, then the Movie (moov) box contains one Movie Extends (mvex) box, otherwise
there is no mvex box. For fragments, an F4V file shall contain one and only one mvex box. The mvex box tells
readers that this file might contain Movie Fragment (moof) boxes.

mvex box

Field Type Comment

Header BOXHEADER BoxType = 'mvex' (0x6D766578)

Boxes BOX [] Boxes defining the track defaults values for the fragments

For more information, see section 8.8.1 of ISO/IEC 14496-12:2008.

2.9.1 Movie Extends Header box
Box type: 'mehd'
Container: Movie Extends box ('mvex')
Mandatory: No
Quantity: One
The Movie Extends Header (mehd) box provides the duration of the fragmented movie. If the Movie Extends
(mvex) box does not contain an mehd box, the overall duration is computed by examining all the fragments.

mehd box

Field Type Comment

Header BOXHEADER BoxType = 'mehd' (0x6D766578)

Version UI8 Either 0 or 1

Flags UI24 Reserved. Set to 0

FragmentDuration If Version==0
 UI32
If Version ==1
 UI64

Duration of the longest track in TimeScale units defined in the
mvhd box

For more information, see section 8.8.2 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 36
 F4V Box Definitions

2.9.2 Track Extends box
Box type: 'trex'
Container: Movie Extends box ('mvex')
Mandatory: Yes
Quantity: One for each track in the Movie box
The Track Extends (trex) box defines the default values for the movie fragments.
trex box

Field Type Comment

Header BOXHEADER BoxType = 'trex' (0x74726578)

Version UI8 Expected to be 0

Flags UI24 Reserved. Set to 0

TrackID UI32 Identity of the associated track

DefaultSampleDescriptionIndex UI32 Default SampleDescriptionIndex to be used in track
fragments

DefaultSampleDuration UI32 Default SampleDuration to be used in track fragments

DefaultSampleSize UI32 Default SampleSize to be used in track fragments

DefaultSampleFlags SAMPLEFLAGS Default SampleFlags to be used in track fragments

Each SAMPLEFLAGS record has the following layout:
SAMPLEFLAGS

Field Type Comment

Reserved UI6 Reserved. Set to 0.

SampleDependsOn UI2 0 = the sample dependency is unknown
1 = this sample does depend on others (not an I picture)
2 = this sample does not depend on others (I picture)
3 = reserved

SampleIsDependedOn UI2 0 = the dependency of other samples on this sample is unknown
1 = other samples may depend on this one (not disposable)
2 = no other sample depends on this one (disposable)
3 = reserved

SampleHasRedundancy UI2 0 = it is unknown whether there is redundant coding in this sample
1 = there is redundant coding in this sample
2 = there is no redundant coding in this sample
3 = reserved

SamplePaddingValue UI3 Reserved. Set to 0

SampleIsDifferenceSample UI1 0 = a key or sync sample
1 = a non-key or non-sync sample

SampleDegradationPriority UI16 Reserved. Set to 1.

For more information, see section 8.8.3 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 37
 F4V Box Definitions

2.10 User Data box
Box type: 'udta'
Container: Movie box ('moov') or Track box ('trak')
Mandatory: No
Quantity: One at each movie level or track level
The User Data (udta) box is contained within the Movie (moov) box or Track (trak) box. At most, one udta box may
occur at each movie level or track level. The udta box should be placed last in its containing box.
The udta box declares free-form user information about the containing box and its data (presentation or track).
Flash Player ignores the contents of udta boxes.

udta box

Field Type Comment

Header BOXHEADER BoxType = 'udta' (0x75647461)

UserData BOX [] Arbitrary number of boxes with free-form user data

For more information, see section 8.10.1 of ISO/IEC 14496-12:2008.

2.11 F4V Boxes for HTTP Streaming
2.11.1 Fragment Random Access box
Box type: 'afra'
Container: File
Mandatory: Yes for HTTP streaming support with F4V fragments, otherwise no.
Quantity: One per fragment for HTTP streaming support with F4V fragments, otherwise zero.
The Fragment Random Access (afra) box provides random access information to one or more fragments.
For HTTP streaming support with F4V fragments, the F4V file can contain one afra box for each fragment. The afra
box shall be located before the fragment's Media Data (mdat) and Movie Fragment (moof) boxes. The afra box can
be used to seek to the exact point in the F4V file that contains the closest random access sample to a given time.
The afra box is associated with a given fragment (here referred to as “the associated fragment”). The afra box also
provides random access to information in other fragments in the same segment or different segments.
The afra box contains arrays of entries. Each entry contains the location and the presentation time of a random
access sample. If a random access sample is not within the associated fragment, the entry also provides the
following information:

- Segment identifying information
- Fragment identifying information
- The byte offset from the beginning of the containing segment to the ‘afra’ box associated with this random

access point
- The byte offset from the associated ‘afra’ box to the sample

Note: Every random access sample in a fragment does not necessarily have an array entry.
The absence of the afra box does not mean that all the samples are sync samples. Random access information in the
'trun', 'traf', and 'trex' are set appropriately regardless of the presence of this box.

afra box

Field Type Comment

Header BOXHEADER BoxType = 'afra' (0x61667261)

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 38
 F4V Box Definitions

Version UI8 Either 0 or 1

Flags UI24 Reserved. Set to 0

LongIDs UI1 Controls the size of the Segment and Fragment fields of a
GLOBALAFRAENTRY.

LongOffsets UI1 Controls the size of the Offset field of an AFRAENTRY. Also
controls the size of the AfraOffset and OffsetFromAfra fields
of a GLOBALAFRAENTRY.

GlobalEntries UI1 The value 1 indicates that GlobalEntryCount is present

Reserved UI5 Set to 0

TimeScale UI32 The number of time units per second, used in the Time field
of AFRAENTRY and GLOBALAFRAENTRY.

EntryCount UI32 The number of entries in LocalAccessEntries

LocalAccessEntries AFRAENTRY
[EntryCount]

Random access to points in this fragment. This array does
not necessarily contain an entry for every random access
sample in this fragment.

GlobalEntryCount IF GlobalEntries == 1
UI32

The number of entries in GlobalAccessEntries. If
GlobalEntries == 0, then this field is not present and
GlobalEntryCount is 0.

GlobalAccessEntries GLOBALAFRAENTRY
[GlobalEntryCount]

Random access to points outside this fragment.

Each AFRAENTRY points to a sample within this fragment, and has the following format:

AFRAENTRY

Field Type Comment

Time UI64 The presentation time of the random access sample, in
TimeScale units

Offset IF LongOffsets == 0
 UI32
ELSE
 UI64

The byte offset from the beginning of this Fragment
Random Access box to the sample

Each GLOBALAFRAENTRY points to a sample outside this fragment, and has the following format:

GLOBALAFRAENTRY

Field Type Comment

Time UI64 The presentation time of the random access sample, in
TimeScale units

Segment IF LongIDs == 0
 UI16
ELSE
 UI32

The number of the segment containing this random access
point

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 39
 F4V Box Definitions

Fragment IF LongIDs == 0
 UI16
ELSE
 UI32

The number of the fragment containing this random access
point

AfraOffset IF LongOffsets == 0
 UI32
ELSE
 UI64

The byte offset from the beginning of the containing segment
to the afra box associated with this random access point

OffsetFromAfra IF LongOffsets == 0
 UI32
ELSE
 UI64

The byte offset from the associated afra box to the sample

2.11.2 Bootstrap Info box
Box type: 'abst'
Container: File
Mandatory: Yes for HTTP streaming support with F4V fragments, otherwise no.
Quantity: One or more for HTTP streaming support with F4V fragments, otherwise zero.
A Bootstrap Info (abst) box contains the information necessary to bootstrap the media-presentation URL requests
RFC1630 from the media client to the HTTP server. The media presentation can be either a live or a video-on-
demand scenario. This box contains basic information about the server, movie, and segment information. It also
contains one or more segment run tables and fragment run tables.
In the HTTP streaming segment, the abst box is optional and precedes the Movie (moov) box. In the HTTP
streaming fragment, the abst box is required. For a description of the boxes and structure required for HTTP
streaming, see Annex C. HTTP Streaming: File Structure.

abst box

Field Type Comment

Header BOXHEADER BoxType = 'abst' (0x61627374)

Version UI8 Either 0 or 1

Flags UI24 Reserved. Set to 0

BootstrapinfoVersion UI32 The version number of the bootstrap information.
When the Update field is set, BootstrapinfoVersion
indicates the version number that is being
updated.

Profile UI2 Indicates if it is the Named Access (0) or the Range
Access (1) Profile. One bit is reserved for future
profiles.

Live UI1 Indicates if the media presentation is live (1) or not.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 40
 F4V Box Definitions

Update UI1 Indicates if this table is a full version (0) or an
update (1) to a previously defined (sent) full
version of the bootstrap box or file.
Updates are not complete replacements. They may
contain only the changed elements. The server
sends the updates only when the bootstrap
information changes. The updates apply to the full
version with the same BootstrapinfoVersion
number. There may be more than one update for
the same BootstrapinfoVersion number.
If the server sends multiple updates, the updates
apply to the full version with the same
BootstrapinfoVersion number. Each update
includes all previous updates to the same
BootstrapinfoVersion. For multiple updates to a
single full version, the latest update is determined
based on the CurrentMediaTime.

Reserved UI4 Reserved, set to 0

TimeScale UI32 The number of time units per second. The field
CurrentMediaTime uses this value to represent
accurate time. Typically, the value is 1000, for a unit
of milliseconds.

CurrentMediaTime UI64 The timestamp in TimeScale units of the latest
available Fragment in the media presentation. This
timestamp is used to request the right fragment
number. The CurrentMediaTime can be the total
duration. For media presentations that are not live,
CurrentMediaTime can be 0.

SmpteTimeCodeOffset UI64 The offset of the CurrentMediaTime from the
SMPTE time code, converted to milliseconds. This
offset is not in TimeScale units. This field is zero
when not used. The server uses the SMPTE time
code modulo 24 hours to make the offset positive.

MovieIdentifier STRING The identifier of this presentation. The identifier is a
null-terminated UTF-8 string. For example, it can be
a filename or pathname in a URL. See
Annex C.4 URL Construction for usage.

ServerEntryCount UI8 The number of ServerEntryTable entries. The
minimum value is 0.

ServerEntryTable SERVERENTRY
[ServerEntryCount]

Server URLs in descending order of preference

QualityEntryCount UI8 The number of QualityEntryTable entries, which is
also the number of available quality levels. The
minimum value is 0. Available quality levels are for,
for example, multi bit rate files or trick files.

QualityEntryTable QUALITYENTRY
[QualityEntryCount]

Quality file references in order from high to low
quality

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 41
 F4V Box Definitions

DrmData STRING Null or null-terminated UTF-8 string. This string
holds Digital Rights Management metadata.
Encrypted files use this metadata to get the
necessary keys and licenses for decryption and
playback.

MetaData STRING Null or null-terminated UTF-8 string that holds
metadata

SegmentRunTableCount UI8 The number of entries in SegmentRunTableEntries.
The minimum value is 1. Typically, one table
contains all segment runs. However, this count
provides the flexibility to define the segment runs
individually for each quality level (or trick file).

SegmentRunTableEntries SegmentRunTable
[SegmentRunTableCount]

Array of SegmentRunTable elements

FragmentRunTableCount UI8 The number of entries in FragmentRunTable-
Entries. The minimum value is 1.

FragmentRunTableEntries FragmentRunTable
[FragmentRunTableCount]

Array of FragmentRunTable elements

Each SERVERENTRY has the following format:
SERVERENTRY

Field Type Comment

ServerBaseURL STRING The server base url for this presentation on that server. The value
is a null-terminated UTF-8 string, without a trailing "/".

Each QUALITYENTRY has the following format:
QUALITYENTRY

Field Type Comment

QualitySegmentUrlModifier STRING Name of the quality (segment) file that is used to construct the
right URL for that quality media. The value is a null-terminated
UTF-8 string, optionally with a trailing "/".

2.11.2.1 Segment Run Table box
Box type: 'asrt'
Container: Bootstrap Info box ('abst')
Mandatory: Yes
Quantity: One or more
The Segment Run Table (asrt) box can be used to locate a segment that contains a particular fragment.
There may be several asrt boxes, each for different quality levels.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 42
 F4V Box Definitions

The asrt box uses a compact encoding:
- A Segment Run Table may represent fragment runs for several quality levels.
- The Segment Run Table is compactly coded. Each entry gives the first segment number for a run of segments

with the same count of fragments. The count of segments having this same count of fragments can be
calculated by subtracting the first segment number in this entry from the first segment number in the next
entry.

asrt box

Field Type Comment

Header BOXHEADER BoxType = 'asrt' (0x61737274)

Version UI8 Either 0 or 1

Flags UI24 The following values are defined:
0 = A full table.
1 = The records in this table are updates (or new
entries to be appended) to the previously defined
Segment Run Table. The Update flag in the
containing Bootstrap Info box shall be 1 when this
flag is 1.

QualityEntryCount UI8 The number of QualitySegmentUrlModifiers
(quality level references) that follow. If 0, this
Segment Run Table applies to all quality levels,
and there shall be only one Segment Run Table
box in the Bootstrap Info box.

QualitySegmentUrlModifiers STRING
[QualityEntryCount]

An array of names of the quality levels that this
table applies to. The names are null-terminated
UTF-8 strings. The array shall be a subset of the
QualityEntryTable in the Bootstrap Info (abst) box.
The names shall not be present in any other
Segment Run Table in the Bootstrap Info box.

SegmentRunEntryCount UI32 The number of items in this
SegmentRunEntryTable. The minimum value is 1.

SegmentRunEntryTable SEGMENTRUNENTRY
[SegmentRunEntryCount
]

Array of segment run entries

Each SEGMENTRUNENTRY has the following format:

SEGMENTRUNENTRY

Field Type Comment

FirstSegment UI32 The identifying number of the first segment in the run of
segments containing the same number of fragments. The
segment corresponding to the FirstSegment in the next
SEGMENTRUNENTRY will terminate this run.

FragmentsPerSegment UI32 The number of fragments in each segment in this run.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 43
 F4V Box Definitions

2.11.2.2 Fragment Run Table box
Box type: 'afrt'
Container: Bootstrap Info box ('abst')
Mandatory: Yes
Quantity: One or more
The Fragment Run Table (afrt) box can be used to find the fragment that contains a sample corresponding to a given
time.
Fragments are individually identifiable by the URL scheme. Fragments may vary both in duration and in number of
samples. The Durations of the Fragments are stored in the afrt box.
The afrt box uses a compact encoding:

- A Fragment Run Table may represent fragments for more than one quality level.
- The Fragment Run Table is compactly coded, as each entry gives the first fragment number for a run of

fragments with the same duration. The count of fragments having this same duration can be calculated by
subtracting the first fragment number in this entry from the first fragment number in the next entry.

There may be several Fragment Run Table boxes in one Bootstrap Info box, each for different quality levels.

afrt box

Field Type Comment

Header BOXHEADER BoxType ='afrt' (0x61667274)

Version UI8 Either 0 or 1

Flags UI24 The following values are defined:
0 = A full table.
1 = The records in this table are updates (or new
entries to be appended) to the previously
defined Fragment Run Table. The Update flag in
the containing Bootstrap Info box shall be 1
when this flag is 1.

TimeScale UI32 The number of time units per second, used in
the FirstFragmentTimestamp and
FragmentDuration fields. Typically, the value is 1.

QualityEntryCount UI8 The number of QualitySegmentUrlModifiers
(quality level references) that follow. If 0, this
Fragment Run Table applies to all quality levels,
and there shall be only one Fragment Run Table
box in the Bootstrap Info box.

QualitySegmentUrlModifiers STRING
[QualityEntryCount]

An array of names of the quality levels that this
table applies to. The names are null-terminated
UTF-8 strings. The array shall be a subset of the
QualityEntryTable in the Bootstrap Info (abst)
box. The names shall not be present in any other
Fragment Run Table in the Bootstrap Info box

FragmentRunEntryCount UI32 The number of items in this
FragmentRunEntryTable. The minimum value is
1.

FragmentRunEntryTable FRAGMENTRUNENTRY
[FragmentRunEntryCount]

Array of fragment run entries

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 44
 F4V Box Definitions

Each FRAGMENTRUNENTRY has the following format:
FRAGMENTRUNENTRY

Field Type Comment

FirstFragment UI32 The identifying number of the first fragment in this
run of fragments with the same duration. The
fragment corresponding to the FirstFragment in the
next FRAGMENTRUNENTRY will terminate this run.

FirstFragmentTimestamp UI64 The timestamp of the FirstFragment, in TimeScale
units. This field ensures that the fragment
timestamps can be accurately represented at the
beginning. It also ensures that the timestamps are
synchronized when drifts occur due to duration
accuracy or timestamp discontinuities.

FragmentDuration U32 The duration, in TimeScale units, of each fragment
in this run

DiscontinuityIndicator IF FragmentDuration == 0
 UI8

Indicates discontinuities in timestamps, fragment
numbers, or both. This field is also used to identify
the end of a (live) presentation.
The following values are defined:
0 = end of presentation.
1 = a discontinuity in fragment numbering.
2 = a discontinuity in timestamps.
3 = a discontinuity in both timestamps and
fragment numbering.
All other values are reserved.
Signaling the end of the presentation in-band is
useful in live scenarios. Gaps in the presentation are
signaled as a run of zero duration fragments with
both fragment number and timestamp
discontinuities. Fragment number discontinuities
are useful to signal jumps in fragment numbering
schemes with no discontinuities in the presentation.

2.12 Movie Fragment box
Box type: 'moof'
Container: File
Mandatory: Yes for HTTP streaming support with F4V fragments, otherwise no.
Quantity: One per fragment for HTTP streaming support with F4V fragments, otherwise zero.
The Movie Fragment (moof) box provides segment-specific information that would otherwise be in the Media
(moov) box. The moof boxes shall be in sequence order.
moof box

Field Type Comment

Header BOXHEADER BoxType = 'moof' (0x6D6F6F66)

Boxes BOX [] A number of boxes that define the sample structure

For more information, see section 8.8.4 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 45
 F4V Box Definitions

2.12.1 Movie Fragment Header box
Box type: 'mfhd'
Container: Movie Fragment box ('moof')
Mandatory: Yes
Quantity: One
The Movie Fragment Header (mfhd) box contains a sequence number to verify the integrity of the file.
mfhd box

Field Type Comment

Header BOXHEADER BoxType = 'mfhd' (0x6D666864)

Version UI8 Expected to be 0

Flags UI24 Reserved. Set to 0

SequenceNumber UI32 Starts at 1 and increments in the order of occurrence for each movie
fragment in the file.

For more information, see section 8.8.5 of ISO/IEC 14496-12:2008.

2.12.2 Track Fragment box
Box type: 'traf'
Container: Movie Fragment box ('moof')
Mandatory: No
Quantity: Zero or more
The Track Fragment (traf) box corresponds to a track in the F4V file. Each traf box contains zero or more track
runs, which comprise a contiguous run for that track.
traf box

Field Type Comment

Header BOXHEADER BoxType = 'traf' (0x74726166)

Boxes BOX [] Arbitrary number of boxes that define the track runs in the fragment

For more information, see section 8.8.6 of ISO/IEC 14496-12:2008.

2.12.2.1 Track Fragment Header box
Box type: 'tfhd'
Container: Track Fragment box ('traf')
Mandatory: Yes
Quantity: One
The Track Fragment Header (tfhd) box sets up information and defaults used for the runs of samples in a movie
fragment. Each movie fragment can add zero or more fragments to each track, and a track fragment can add zero or
more contiguous runs of samples.
tfhd box

Field Type Comment

Header BOXHEADER BoxType = 'tfhd' (0x74666864)

Version UI8 Expected to be 0

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 46
 F4V Box Definitions

Flags UI24 The following flags may be used in any
combination:
0x000001 = base data offset present
0x000002 = sample description present
0x000008 = default sample duration present
0x000010 = default sample size present
0x000020 = default sample flags present
0x010000 = duration-is-empty: there are no
samples for the duration provided by
DefaultSampleDuration in either the tfhd box or
the trex box. See note below table

TrackID UI32 Identity of the associated track, as specified in the
Track Header box

BaseDataOffset IF Flags & 0x000001 == true
 UI64

Optional. The base offset to use when calculating
data offsets in each track run. The default value is
defined below the table.

SampleDescriptionIndex IF Flags & 0x000002 == true
 UI32

Optional. SampleDescriptionIndex to be used in
this fragment. This shall override the
DefaultSampleDescriptionIndex in the trex box for
this fragment.

DefaultSampleDuration IF Flags & 0x000008 == true
 UI32

Optional. Default SampleDuration to be used in
this fragment. This shall override the
DefaultSampleDuration in the trex box for this
fragment

DefaultSampleSize IF Flags & 0x000010 == true
 UI32

Optional. Default SampleSize to be used in this
fragment. This shall override the
DefaultSampleSize in the trex box for this fragment

DefaultSampleFlags IF Flags & 0x000020 == true
 SAMPLEFLAGS

Optional. Default SampleFlags to be used in this
fragment. This shall override the
DefaultSampleFlags in the trex box for this
fragment

BaseDataOffset: If a value is not provided here, the default value for the first track in the movie fragment is the
position of the first byte of the enclosing Movie Fragment box. For subsequent track fragments, the default is the
end of the data defined by the preceding fragment. Fragments that are “inheriting” their offset in this way shall all
use the same data-reference, that is, the data for these tracks shall be in the same file.
Note: 0x010000 duration-is-empty: If an F4V document has edit lists in the moov box and has empty duration
fragments, it is considered malformed.
For more information, see section 8.8.7 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 47
 F4V Box Definitions

2.12.2.2 Track Fragment Run box
Box type: 'trun'
Container: Track Fragment box ('traf')
Mandatory: No
Quantity: Zero or more
A Track Fragment Run (trun) box defines a contiguous set of samples for a track. If the duration-is-empty flag is set
in the Track Fragment box (traf) box, there are no trun boxes.
trun box

Field Type Comment

Header BOXHEADER BoxType = 'trun' (0x7472756E)

Version UI8 Expected to be 0

Flags UI24 The following flags may be used in any combination,
except both 0x000004 and 0x000400:
0x000001 = data-offset-present
0x000004 = first-sample-flags-present
0x000100 = sample duration present
0x000200 = sample size present
0x000400 = sample flags present
0x000800 = sample composition time offsets present

SampleCount UI32 The number of entries in SampleInformation

DataOffset IF Flags & 0x000001 == true
 SI32

Optional. Value to be added to data offset defined in
tfhd box. The default value is defined below the table.

FirstSampleFlags IF Flags & 0x000004 == true
 SAMPLEFLAGS

Optional. Flag to be used only for the first sample of
the set described in this trun box. See text below table.

SampleInformation SampleInformationStructure
[SampleCount]

All fields within the structure are optional

DataOffset: If the data-offset is not present, the data for this run starts at one of two locations. If this run is the first
in a track fragment, it starts at the base-data-offset defined by the track fragment header. Otherwise, it starts
immediately after the data of the previous run.
FirstSampleFlags: Override the default flags for the first sample only. This makes it possible to record a group of
frames where the first is a key and the rest are difference frames, without supplying explicit flags for every sample.
When this flag is set, sample-flags shall not be present.
Each SampleInformationStructure record has the following layout:

SampleInformationStructure

Field Type Comment

SampleDuration IF Flags & 0x000100 == true
 UI32

Optional. The duration of each sample, in
TimeScale units defined in the Media
Header for this track. If not present, default is
used.

SampleSize IF Flags & 0x000200 == true
 UI32

Optional. The size of each sample. If not
present, default is used.

SampleFlags IF Flags & 0x000400 == true
 SAMPLEFLAGS

Optional. The SampleFlags for each sample.
If not present, default is used.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 48
 F4V Box Definitions

SampleCompositionTimeOffset IF Flags & 0x000800 == true
 UI32

Optional. The composition time offset for
each sample. If not present, default is used.

For more information, see section 8.8.8 of ISO/IEC 14496-12:2008.

2.13 Media Data box
Box type: 'mdat'
Container: File
Mandatory: Yes
Quantity: One
A Media Data (mdat) box contains the media data payload for the F4V file. All video samples, audio samples, data
samples, and hint tracks and samples are contained in the mdat box. See 1.8 Supported Media Types.
The mdat box occurs at the top level of an F4V file, along with the Media (moov) box.
The mdat box cannot be understood on its own, which is why a moov box must be present in the file as well.
mdat box

Field Type Comment

Header BOXHEADER BoxType = 'mdat' (0x6D646174)

Payload UI8 [] Bytes of media data, the structure of which is defined in the file’s moov box

For more information, see section 8.2.2 of ISO/IEC 14496-12:2008.

2.13.1 Hint Track Samples for HTTP Streaming
The mdat box contains the hint track used for HTTP streaming with F4V fragments. The hint track contains
AdobeMuxHintSamples. The Adobe Mux Hint Sample Entry box (rtmp) describes the hint track.

2.13.1.1 AdobeMuxHintSample
A collection of AdobeMuxHintSamples makes up a hint track that is in the Adobe Multiplexed Hint Track Format.
An AdobeMuxHintSample has the following layout:
AdobeMuxHintSample

Field Type Comment

PacketCount IF PacketCountField == 1
 UI8

Number of AdobeMuxPacket entries in this
AdobeMuxHintSample. When PacketCountField == 0,
AdobeMuxPackets are self-describing and the number can
be implicitly determined.

Packets AdobeMuxPacket [PacketCount] Array of AdobeMuxPacket elements

2.13.1.2 AdobeMuxPacket
An AdobeMuxPacket has the following layout. The part up to and including EncryptionHeader is identical to the
corresponding part in the FLVTAG defined in Section E.4.1.
AdobeMuxPacket

Field Type Comment

Reserved UI2 Reserved for FMS, should be 0

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 49
 F4V Box Definitions

Filter UI1 Indicates if packets are filtered.
0 = No pre-processing required.
1 = Pre-processing (such as decryption) of the packet
is required before it can be rendered.
Shall be 0 in unencrypted files, and 1 for encrypted
tags. See Annex F. FLV Encryption for the use of
filters.

TagType UI5 Type of this tag. The following types are defined:
8 = audio
9 = video
All other values are reserved
(18 = script data shall not be used)

DataSize UI24 Length of the message. Number of bytes after
StreamID to end of packet (Equal to packet length –
11)

Timestamp UI24 Time in milliseconds at which the data in this tag
applies. This value is relative to the first tag in the FLV
file, which always has a timestamp of 0.

TimestampExtended UI8 Extension of the Timestamp field to form a SI32 value.
This field represents the upper 8 bits, while the
previous Timestamp field represents the lower 24 bits
of the time in milliseconds.

StreamID UI24 Always 0.

AudioTagHeader IF TagType == 8
 AudioTagHeader

AudioTagHeader element as defined in
Section E.4.2.1.

VideoTagHeader IF TagType == 9
 VideoTagHeader

VideoTagHeader element as defined in
Section E.4.3.1.

EncryptionHeader IF Filter == 1
 EncryptionTagHeader

Encryption header shall be included for each
protected sample, as defined in Section F.3.1.

ConstructorCount IF ConstructorCountField == 1
 UI8

Number of AdobeMuxHintConstructors. This field is
particularly used when a single FLV Tag or an RTMP
Message is constructed using multiple data blocks
using different modes or different parts of the
original sample.
If ConstructorCountField == 0, then
ConstructorCount = 1

DataEntry AdobeMuxHintConstructor
[ConstructorCount]

Array of AdobeMuxHintConstructors elements

TrailerLength If TrailerLengthField == 1
 UI8

Length of the trailer, in bytes.
If TrailerLengthField == 0, then TrailerLength =
TrailerDefaultSize

Trailer UI8 [TrailerLength] Additional data, for example, for compatibility. When
in FLV compatibility mode, this field carries the
PreviousTagSize.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 50
 F4V Box Definitions

2.13.1.3 AdobeMuxHintConstructor
An AdobeMuxHintConstructor has the following layout:

AdobeMuxHintConstructor

Field Type Comment

Mode If ModeField == 1
 UI8

Hint track mode being used.
When ModeField == 0, the mode can be
determined from the Adobe Mux Hint Process
(amhp) box.

HintInfo If Mode == 2
 AdobeMuxHintSampleConstructor
ELSE
 AdobeMuxHintImmediateConstructor

As indicated by mode. Although there are three
hinting modes defined, only two Constructors are
specified since both the Immediate and the
Immediate noDuplication modes use the
AdobeMuxHintImmediateConstructor.

2.13.1.4 AdobeMuxHintImmediateConstructor
The AdobeMuxHintImmediateConstructor shall be used in the Immediate and Immediate NoDuplication modes.
These modes are described in the Adobe Multiplexed Hint Track Format.
The AdobeMuxHintImmediateConstructor has the following layout:

AdobeMuxHintImmediateConstructor

Field Type Comment

Length If LengthField == 1
 UI24

Number of bytes to take from the data that follows.
If LengthField == 0, this field is not present, and the length
is computed from AdobeMuxPacket.DataSize.

Data UI8 [Length] Bytes of data to place into the payload portion

2.13.1.5 AdobeMuxHintSampleConstructor
The AdobeMuxHintSampleConstructor shall be used in the sample mode. The sample mode is described in the
Adobe Multiplexed Hint Track Format.
An AdobeMuxHintSampleConstructor has the following layout:
AdobeMuxHintSampleConstructor

Field Type Comment

TrackRefIndex SI8 Value that indicates which track the sample data will come
from. A value of 0 means that exactly one media track is
referenced. Values from 1 to 127 are indexes into the Hint
track reference Atom entries. These values indicate which
original media track the sample is to be read from. A value of
-1 means the hint track itself. That is, get the sample from
the same track as the hint sample you are currently parsing.

Length UI24 Number of bytes in the sample to copy.
LengthField shall be 1 for Mode == 2.

SampleNumber UI32 Sample number of the track.

SampleOffset UI32 Offset from the start of the sample to the point where to start
copying

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 51
 F4V Box Definitions

2.14 Meta box
Box type: 'meta'
Container: File, Movie box ('moov'), or Track box ('trak')
Mandatory: No
Quantity: Zero or one at each file level, movie level, or track level
The container for the Meta (meta) box is an F4V file, a Movie (moov) box, or a Track (trak) box.
The meta box can contain a variety of other boxes that carry metadata.
meta box

Field Type Comment

Header BOXHEADER BoxType = 'meta' (0x6D657461)

Version UI8 Reserved, set to 0

Flags UI24 Reserved, set to 0

Boxes BOX [] Arbitrary number of boxes that define the file’s metadata

For more information, see section 8.11.1 of ISO/IEC 14496-12:2008.

2.15 Free Space boxes
Box type: 'free' or 'skip'
Container: File or any box
Mandatory: No
Quantity: Any
The contents of the Free (free) and the Skip (skip) boxes are free file space and the player shall ignore their contents.
The boxes may be used wherever boxes are permitted. The boxes can reserve space for future expansion of data in
the container boxes.
free space box

Field Type Comment

Header BOXHEADER BoxType = 'free' (0x66726565) or 'skip' (0x736b6970)

Void UI8 [] Arbitrary number of bytes to end of box

2.16 Movie Fragment Random Access box
Box type: 'mfra'
Container: File
Mandatory: No
Quantity: One
The Movie Fragment Random Access (mfra) box assists in finding random access points in a fragmented F4V file
by providing Track Fragment Random Access (tfra) boxes for tracks (not necessarily for all the tracks). The
information in this box is not definitive, and provides only a hint to random access points.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 52
 F4V Box Definitions

The mfra box should be last in the file. The last box within the mfra box provides a copy of the length field from the
mfra box.
mfra box

Field Type Comment

Header BOXHEADER BoxType = 'mfra' (0x6D667261)

Boxes BOX [] Arbitrary number of boxes that define the random access points

For more information, see section 8.8.9 of ISO/IEC 14496-12:2008.

2.16.1 Track Fragment Random Access box
Box type: 'tfra'
Container: Movie Fragment Random Access box ('mfra')
Mandatory: No
Quantity: Zero or more
Each Track Fragment Random Access (tfra) box entry provides the location and the presentation time of a random
accessible sample. The tfra box does not need to contain an entry for each random accessible sample in the track. The
absence of this box does not mean that all the samples are sync samples.
tfra box

Field Type Comment

Header BOXHEADER BoxType = 'tfra' (0x74667261)

Version UI8 Either 0 or 1

Flags UI24 Reserved, set to 0

TrackID UI32 Identifies the track

Reserved UI26 Reserved. Set to 0

LengthSizeTrafNumMinus1 UI2 Length, in bytes, of the TrafNumber field in
the RandomAccessStructure record, minus
one

LengthSizeTrunNumMinus1 UI2 Length, in bytes, of the TrunNumber field in
the RandomAccessStructure record, minus
one

LengthSizeSampleNumMinus1 UI2 Length, in bytes, of the SampleNumber field
in the RandomAccessStructure record, minus
one

NumberEntry UI32 Number of entries for this track. If 0, every
sample is a random access point

RandomAccessSample RandomAccessStructure
[NumberEntry]

Position and presentation time of random
access samples

Each RandomAccessStructure record has the following layout:

RandomAccessStructure

Field Type Comment

Time IF Version == 0
 UI32
IF Version == 1

Presentation time of the random access
sample, in TimeScale units defined in the
Media Header for this track

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 53
 F4V Box Definitions

 UI64

MoofOffset IF Version == 0
 UI32
IF Version == 1
 UI64

The byte-offset of the corresponding Movie
Fragment box, from the beginning of the file

TrafNumber { UI8, UI16, UI24, UI32 }
[LengthSizeTrafNumMinus1]

Traf number containing the random
accessible sample. The first traf in each moof is
numbered 1. Type is one of UI8, UI16, UI24,
UI32 indexed by LengthSizeTrafNumMinus1

TrunNumber { UI8, UI16, UI24, UI32 }
[LengthSizeTrunNumMinus1]

Trun number containing the random
accessible sample. The first trun in each traf is
numbered 1.

SampleNumber { UI8, UI16, UI24, UI32 }
[LengthSizeSampleNumMinus1]

Sample number containing the random
accessible sample. The first sample in each
trun is numbered 1.

For more information, see section 8.8.10 of ISO/IEC 14496-12:2008.

2.16.2 Movie Fragment Random Access Offset box
Box type: 'mfro'
Container: Movie Fragment Random Access box ('mfra')
Mandatory: Yes
Quantity: One
The Movie Fragment Random Access Offset (mfro) box provides a copy of the length field of the Movie Fragment
Random Access (mfra) box and assists in finding the mfra box. The mfro box shall be placed last within the mfra
box.
mfro box

Field Type Comment

Header BOXHEADER BoxType = 'mfro' (0x6d66726f)

Version UI8 Either 0 or 1

Flags UI24 Reserved, set to 0

Size UI32 Size of enclosing Movie Fragment Random Access box, in bytes

For more information, see section 8.8.11 of ISO/IEC 14496-12:2008.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 54
 F4V Metadata

3 F4V Metadata
This section describes the metadata supported by the F4V file format

3.1 Tag box
Box types: 'auth', 'titl', 'dscp' and 'cprt'
Container: Movie box ('moov')
Mandatory: No
Quantity: Zero or one of each type.
The F4V file format supports four optional tag boxes contained within a Movie (moov) box. An F4V file may
contain up to 256 tags (including the tags in these boxes and the tags defined in an ilst box).
Tag box

Field Type Comment

Header BOXHEADER BoxType shall be one of the following:
'auth' (0x61757468) for Author
'titl' (0x7469746C) for Title
'dscp' (0x64736370) for Description
'cprt' (0x63707274) for Copyright

Version UI8 Shall be 0

Flags UI24 Reserved, set to 0

Pad UI1 Padding, set to 0

Language UI5 [3] 3-character code specifying language (see ISO 639-2/T). Each character is
interpreted as 0x60 + (5 bit) code to yield an ASCII character.

TagString UI8 [] Tag string data, occupying the remainder of the box. The TagString
length shall not exceed 65535 bytes

3.2 XMP Metadata box
Box type: 'uuid'
Container: File
Mandatory: No
Quantity: One
Beginning in version 10, Flash Player can load XMP data embedded in an F4V file. XMP is Adobe’s Extensible
Metadata Platform. For more information, see www.adobe.com/go/xmp.
The XMP Metadata box shall immediately follow the Movie (moov) box, with no intervening boxes. The size of the
XMP Metadata box shall not exceed 64 megabytes.
With the XMP Metadata box, the file can communicate XMP metadata to a SWF movie via ActionScript. The
XMPMetadata is exposed to ActionScript via a STRING property named data.

XMP Metadata box

Field Type Comment

Header BOXHEADER BoxType = ‘uuid’ (0x75756964)

UUID UI8 [16] 16-byte (128-bit) universally unique identifier (UUID). The UUID shall be the
hexadecimal bytes BE 7A CF CB 97 A9 42 E8 9C 71 99 94 91 E3 AF AC.

http://www.adobe.com/go/xmp

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 55
 F4V Metadata

XMPMetadata UI8 [] XMP metadata, formatted according to the XMP metadata standard

3.3 ilst box
Box type: 'ilst'
Container: Meta box ('meta')
Mandatory: No
Quantity: One
An ilst box occurs inside a Meta (meta) box and contains an arbitrary number of metadata tags. An F4V file may
contain up to 256 tags (including the tags in this box and in the 'auth', 'titl', 'dscp', and 'cprt' boxes).
.

ilst box

Field Type Comment

Header BOXHEADER BoxType = 'ilst' (0x696C7374)

TagCount UI32 The number of tags enumerated in the ilst box

Tags TAGRECORD [TagCount] A number of TAGRECORD entries

Each TAGRECORD has the following layout:

TAGRECORD

Field Type Comment

TagLength UI32 The total length of the TAGRECORD, including this length field

TagName UI8 [4] 4 bytes indicating the name of the tag. These bytes usually come from the
human-readable ASCII set, but not always

DataLength UI32 The total length of the data portion of the TAGRECORD

DataTag UI8 [4] The 4 bytes 'd', 'a', 't', and 'a' to indicate the data portion of the TAGRECORD

DataType UI32 Specifies the type of data in the data payload of the TAGRECORD

Reserved UI32 Reserved, set to 0

Payload UI8 [] An arbitrary number of bytes occupying the remainder of the TAGRECORD.
The precise payload format is dependent on the DataType

The supported values for the DataType are:
- 0: custom data. In the case of 'trkn' and 'disk' tag types, the data payload is interpreted as a single UI32
- 1: text data
- 13, 14: binary data
- 21: generic data

3.4 Text Track Metadata
Box type: See below
Container: Text samples ('text' or 'tx3g') in Media Data box ('mdat')
Mandatory: No
Quantity: Any
Text samples ('text' or 'tx3g') can contain the following metadata boxes. Their contents are exposed to a running
ActionScript program through the onTextData property.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 56
 F4V Metadata

3.4.1 Style box
A Style (styl) box carries text style specifications. This information is exposed to ActionScript via the style
property.

styl box

Field Type Comment

Header BOXHEADER BoxType = 'styl' (0x7374796C)

Count UI16 The number of entries in the Styles array

Styles STYLERECORD [Count] An array of STYLERECORD structures, each exposed as an
ActionScript object

An individual STYLERECORD has the following layout:

STYLERECORD

Field Type Comment

StartChar UI16 The first character to which this STYLERECORD applies, exposed to
ActionScript via a DOUBLE property named startchar

EndChar UI16 The last character to which this STYLERECORD applies, exposed to
ActionScript via a DOUBLE property named endchar

FontID UI16 The font ID to use for this style, exposed to ActionScript via a DOUBLE
property named fontid

FaceStyleFlags UI8 Exposed to ActionScript via a DOUBLE property named facestyleflags

FontSize UI8 The size to use for the font, exposed to ActionScript via the property
fontsize

TextColor UI32 The RGBA color for the text, exposed to ActionScript via the property
textcolor

3.4.2 Highlight box
A highlight (hlit) box specifies a range of text to be highlighting. This information is exposed to ActionScript via
the highlight property.

hlit box

Field Type Comment

Header BOXHEADER BoxType = 'hlit' (0x686C6974)

StartChar UI16 The first character to highlight, exposed to ActionScript via a DOUBLE
property named startchar

EndChar UI16 The final character to highlight, exposed to ActionScript via a DOUBLE
property named endchar

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 57
 F4V Metadata

3.4.3 Highlight Color box
A Highlight Color (hclr) box specifies the highlight color for text. This information is exposed to ActionScript via
the highlightcolor property.

hclr box

Field Type Comment

Header BOXHEADER BoxType = 'hclr' (0x68636C72)

HighlightColor UI16 [3] A three-element array that holds values for red, green, and blue
components in that order, exposed to ActionScript via a DOUBLE property
named highlightcolor

3.4.4 Karaoke box
A Karaoke (krok) box specifies karaoke metadata. This information is exposed to ActionScript via the karaoke
property. Times are expressed in TimeScale units as defined for the track.
krok box

Field Type Comment

Header BOXHEADER BoxType = 'krok' (0x6B726F6B)

StartTime UI32 Exposed to ActionScript via a DOUBLE property named starttime

Count UI16 The number of entries in the KaraokeRecords array

KaraokeRecords KARAOKEREC [Count] An array of KARAOKEREC structures, each exposed to ActionScript
as an object

An individual KARAOKEREC has the following structure:

KARAOKEREC

Field Type Comment

EndTime UI32 Exposed to ActionScript via a DOUBLE property named endtime

StartChar UI16 Exposed to ActionScript via a DOUBLE property named startchar

EndChar UI16 Exposed to ActionScript via a DOUBLE property named endchar

3.4.5 Scroll Delay box
A Scroll Delay (dlay) box specifies a scroll delay. This information is exposed to ActionScript via the scrolldelay
property, expressed in TimeScale units in relation to the track.
dlay box

Field Type Comment

Header BOXHEADER BoxType = 'dlay' (0x646C6179)

ScrollDelay UI32 Exposed to ActionScript via a DOUBLE property named scrolldelay

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 58
 F4V Metadata

3.4.6 Drop Shadow Offset box
A Drop Shadow (drpo) box specifies drop shadow offset coordinates for text.

drpo box

Field Type Comment

Header BOXHEADER BoxType = 'drpo' (0x6472706F)

DropShadowOffsetX UI16 Exposed to ActionScript via a DOUBLE property named
dropshadowoffsetx

DropShadowOffsetY UI16 Exposed to ActionScript via a DOUBLE property named
dropshadowoffsety

3.4.7 Drop Shadow Alpha box
A Drop Shadow Alpha (drpt) box specifies drop shadow alpha value.
drpt box

Field Type Comment

Header BOXHEADER BoxType = 'drpt' (0x64727074)

DropShadowAlpha UI16 A 16-bit alpha value, exposed to ActionScript via a DOUBLE property
named dropshadowalpha

3.4.8 Hypertext box
A Hypertext box (href) specifies a hypertext link with ALT text over a text range. This information is exposed to
ActionScript via the hypertext property.

href box

Field Type Comment

Header BOXHEADER BoxType = 'href' (0x68726566)

StartChar UI16 The beginning character of the text range, exposed to ActionScript via a
DOUBLE property named startchar

EndChar UI16 The last character of the text range, exposed to ActionScript via a DOUBLE
property named endchar

URLSize UI8 The length of the URL string

URL UI8 [URLSize] The URL string, exposed to ActionScript via a STRING property named url

ALTSize UI8 The length of the ALT string

ALT UI8 [ALTSize] The ALT string which is displayed when the user’s mouse hovers over the
link, exposed to ActionScript via a STRING property named alt

3.4.9 Text Box box
A Text Box (tbox) box defines the coordinates for a text box. This information is exposed to ActionScript via the
textbox property.

tbox box

Field Type Comment

Header BOXHEADER BoxType = 'tbox' (0x74626F78)

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 59
 F4V Metadata

Top UI16 The top pixel coordinate, exposed to ActionScript via a DOUBLE property
named top

Left UI16 The left pixel coordinate, exposed to ActionScript via a DOUBLE property
named left

Bottom UI16 The bottom pixel coordinate, exposed to ActionScript via a DOUBLE property
named bottom

Right UI16 The right pixel coordinate, exposed to ActionScript via a DOUBLE property
named right

3.4.10 Blinking box
A Blinking (blnk) box specifies a range of text to set blinking. This information is exposed to ActionScript via the
blink property.

blnk box

Field Type Comment

Header BOXHEADER BoxType = 'blnk' (0x626C6E6B)

StartChar UI16 The first character in the blinking range, exposed to ActionScript via a
DOUBLE property named startchar

EndChar UI16 The ending character in the blinking range, exposed to ActionScript via a
DOUBLE property named endchar

3.4.11 Text Wrap box
A Text Wrap (twrp) box sets the wrap flag for text.

twrp box

Field Type Comment

Header BOXHEADER BoxType = 'twrp' (0x74777270)

WrapFlag UI8 Boolean that is nonzero if the text should wrap, exposed to ActionScript via a
DOUBLE property named wrapflag

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 60
 Embedding Cue Points

Annex A. Embedding Cue Points
A.1 Overview
The ability to mix media playback and rich interactive data is a key benefit of using Flash to build media
applications. F4V applications can support the embedding of temporal data (cue points) in the form of AMF
samples. These samples are transmitted to the Flash runtime along with audio and video samples, where they are
dispatched to the application script.

A.2 The AMF Sample Format
An AMF sample is an AMF object containing a list of typed AMF values.
The AMF object shall be either an AMF0 object, or an AMF3 object, according to the type specified for the data
track. The specifications for AMF0 and AMF3 can be found at:
http://opensource.adobe.com/wiki/display/blazeds/Developer+Documentation
The first value shall be a string that represents the name of the AMF sample. The AMF values will be dispatched to a
method with this name. For example, if the first field is a string called "onFoo", then the method "onFoo" is called
when the AMF sample is played.
Table 3 lists names that are reserved for the runtime, and that are not dispatched to the script:

Table 3. Reserved names

attachAudio attachVideo call close getBufferInfo
onStatus pause play play2 publish
receiveAudio receiveVideo seek send setBufferTime

A.3 The AMF Data Track Structure
AMF samples can be stored in a data track. The data track shall be configured as follows:
The HandlerType in the Handler Reference (hdlr) box shall be 'data'
The Media Header box type shall be 'nmhd'
The Sample Description (stsd) box shall contain one description record describing AMF samples.
The description entry format shall be the SampleEntry type.
The description entry's box type shall be 'amf0' or 'amf3' corresponding to the samples' AMF format.
The following boxes of the data track shall contain an entry for each AMF sample:

- Decoding Time To Sample (stts) box, for the decoding time of the AMF sample.
- Sample Size (stsz) box, for the size of the AMF sample.
- Chunk Offset (stco or co64) box, for the offset of the AMF sample.
- Composition Time to Sample (ctts) box, for the time of passing the AMF sample to the ActionScript

program.
Within the Media Data (mdat) box, the samples in the data track should be interleaved with the audio and video
samples.

A.3.1 Decoding The Data Track
While playing an F4V file, the AMF samples inside the mdat box are passed to the AMF decoder.
At the time stated in the stts box, the AMF decoder decodes the sample.
At the time stated in the ctts box, the AMF decoder passes the decoded AMF sample to the ActionScript program.

http://opensource.adobe.com/wiki/display/blazeds/Developer+Documentation

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 61
 Embedding Cue Points

A.4 Progressive Download
With proper interleaving, this method is suitable for progressive download.
The AMF content should be interleaved at the right time along with the audio and video content, to ensure that the
data is available at the right time as the file is being downloaded.
The AMF data should not be stored at the end of the file, as, in such case, the entire file would have to be downloaded
before the first AMF sample could be dispatched, even if that sample were to occur temporally very early in the
content.

A.5 Multiple Data Tracks
There shall be only one data track.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 62
 Flash Player Metadata

Annex B. Flash Player Metadata
B.1 Stream Properties
When Flash Player loads an F4V file, various stream properties are made available to a running ActionScript
program via the NetStream.onMetaData property. The available properties differ depending on the software used
to create the file. Typical properties are:

- audiocodecid: a STRING with four characters that define the audio codec used, if audio is present and is
encoded with a codec that Flash Player can decode

- avclevel: a DOUBLE indicating the AVC level that the video conforms to, if video is present and is encoded
with AVC/H.264

- avcprofile: a DOUBLE indicating the AVC profile that the video conforms to, if video is present and is
encoded with AVC/H.264

- duration: a DOUBLE indicating the total length of the movie in seconds
- height: a DOUBLE indicating the height of the video, if video is present and is encoded with a codec that

Flash Player can decode
- moovposition: a DOUBLE indicating the absolute offset of the moov box within the F4V file. This property

is useful for determining if the file will load progressively
- videocodecid: a STRING with four characters that define the video codec used, if video is present and is

encoded with a codec that Flash Player can decode
- videoframerate: a DOUBLE indicating the average video frame rate of the video, if video is present and is

encoded with a codec that Flash Player can decode
- width: a DOUBLE indicating the width of the video, if video is present and is encoded with a codec that Flash

Player can decode

B.2 Image Metadata
If an F4V sample is an image type (GIF, PNG, or JPEG), the data is made available to a running ActionScript
program through the onImageData property. The following properties are present:

- data: a BYTEARRAY containing the compressed image data (that is, the original JPEG, PNG or GIF file
data)

- trackid: a DOUBLE indicating the track that this sample belongs to

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 63
 HTTP Streaming: File Structure

Annex C. HTTP Streaming: File Structure
C.1 Overview
Flash Player supports HTTP streaming with F4V fragments. An HTTP streaming presentation is composed of an
HTTP streaming manifest file (F4M) and HTTP streaming segments (Fragmented F4V files, or F4Fs).
The presentation is divided along the time line into HTTP streaming segments, further divided into HTTP
streaming fragments. The presentation may be available in parallel at multiple quality levels. The presentation can
be cached and delivered by fragment (fully or partially) and quality level.
The presentation's Bootstrap Info box specifies the data structure of the presentation and access to it.
The manifest file (F4M) is further described in
http://opensource.adobe.com/wiki/display/osmf/Flash+Media+Manifest+File+Format+Specification

C.2 HTTP Streaming Segment
An HTTP streaming segment is a complete F4V file containing fragments. The segment may belong to only one
quality level. The segment shall comprise of a set of boxes followed by a set of HTTP streaming fragments.
The set of boxes shall include the following boxes, preferably in this order (optional boxes are indicated by
brackets []):

- ftyp
- [afra]
- [abst]
- moov
- rtmp
- [mdat]

The set of boxes may include afra and mdat boxes. If included, the afra box shall be located before the mdat box and
the abst box.
A moof box outside the HTTP streaming fragments in an HTTP streaming segment shall not be used for HTTP
streaming.

C.3 HTTP Streaming Fragment
An HTTP streaming fragment shall include one of each of the following boxes, preferably in this order:

- afra
- abst
- moof
- mdat

The afra box shall be located before all other boxes.
The fragment is not a complete F4V file. The boxes ftyp, pdin, and moov are not allowed in an HTTP streaming
fragment.

http://opensource.adobe.com/wiki/display/osmf/Flash+Media+Manifest+File+Format+Specification

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 64
 HTTP Streaming: File Structure

C.4 URL Construction
Each HTTP streaming segment is a separate URL resource (file). A URL scheme can address each HTTP streaming
fragment uniquely. The URL for an HTTP streaming fragment shall be constructed as follows:

http://<ServerBaseUrl>/<MovieIdentifier><QualitySegmentUrlModifier>Seg<SegmentNumber>-
Frag<FragmentNumber>

where the F4V specification defines the fields in brackets and numbers have no leading zeroes.
If ServerEntryCount == 0, <ServerBaseUrl> and the trailing slash shall be omitted.
If QualityEntryCount == 0, <QualitySegmentUrlModifier> shall be omitted.
EXAMPLE: http://adobe.com/MyMovie/highSeg1-Frag210

C.5 Adobe Multiplexed Hint Track Format
F4V files that are intended for HTTP streaming need to include a hint track. The hint track provides information
that enables the streaming server to create transmission packets. See the ISO spec, section 7, for information on
streaming.
Adobe supports the Adobe Multiplexed Hint Track format. The Adobe Multiplexed Hint Track format is flexible
enough to support RTMP packets as well as a format like FLV, wherein the samples as a whole are interleaved in
time order. FLV compatibility mode is defined for efficient mapping between the hint samples and the FLV format.
The format can be configured to ensure that the mdat consisting of a series of hint samples would be identical to a
portion of an FLV corresponding to those samples.
The Adobe Mux Hint Sample Entry box (rtmp) describes the hint track. The hint track contains a collection of
AdobeMuxHintSamples and is in the Media Data box.
Three hinting modes are defined:
- The immediate Mode (Mode = 0)

In this mode, the payload of the multiplexed track is available directly in the hint sample itself for efficiency.
However, this mode has to be carefully used, as it can lead to some duplication in data.

- The immediate noDuplication Mode (Mode = 1)
The immediate noDuplication mode is defined to avoid the duplication of data in the immediate mode. In this
configuration, the offsets in the sample tables of the original (audio/video) tracks are adjusted to physically
point to the (immediate mode) hint samples that contain the media data (locally in the mdat location). Because
the chunk offsets are changed to point to the hint samples (after the header and where the sample starts) for
every sample, all chunks contain only one sample.
Therefore, the media box "mdat" will just contain the hint samples (no audio or video samples). The hint
samples will have the media data embedded in its immediate data field. This is possible only when full samples
are used in the Adobe Multiplexed packets (not in the chunked RTMP mode). In addition, this has the side effect
of growing the chunk offset table, but it is minimal compared to the efficiency gained.

- The sample Mode (Mode = 2)
In this mode, the Packet headers and trailers are defined to be part of the hint sample. The payload of the
multiplexed track is "pointed to" from the hint sample into the media tracks by referring to a particular sample
in the media track with a length and an offset.

http://adobe.com/MyMovie/highSeg1-Frag210

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 65
 F4V Encryption

Annex D. F4V Encryption
D.1 Overview
This section provides an overview of how Adobe's DRM key/rights management system is used to protect media
within F4V. The protection applies only to the audio/video tracks of F4V. The encryption format for other track
types (e.g. AMF tracks) is out of scope for this specification.

This section should be read in conjunction with ISO 14496-12:2008 Section 8.12 (Support for Protected Streams).
It is critical that the reader understand the above file format before reading the next sections.

D.2 The Encryption Process
The encryption process changes the sample formats from plaintext to cipher text. An Adobe DRM Access Unit
Header is inserted before each sample data. Because of converting plain text to cipher text, the underlying media
cannot be accessed by consuming application without the appropriate keys.
The sample description entry in the sample description table that describes the encrypted samples is transformed.
The transformed structure follows ISO 14496-12:2008 Section 8.12. The purpose of the transformation of the
sample description entry is twofold: the sample description entry prevents accidental treatment of encrypted data as
if it was unencrypted and documents the transforms applied.
The following sample description transformations are carried out:
- The 4CC of the sample description entry is replaced with a 4CC indicating the encryption:

o 'encv' for an encrypted video stream (instead of e.g. 'mp4v', 'avc1'),
o 'enca' for an encrypted audio stream (instead of e.g. 'mp4a', 'samr'),
o 'encr' for an encrypted data stream.

- A Protection Scheme Info (sinf) box is appended to the sample description entry, leaving all other boxes
unmodified. The sinf box contains all the information required both to understand the encryption transform
applied and its parameters, and to find other information such as the kind and location of the key management
system. It also documents the original (unencrypted) format of the media.

- The original format 4CC of the sample description entry is stored in the Original Format (frma) box , which is
a sub-box of the sinf box.

- The Scheme Type (schm) box is also a sub-box of the sinf box and specifies the encryption scheme as 4CC and
its version. In F4V file, this SchemeType 4CC shall be 'adkm', Adobe's DRM Key Management.

- In the sinf box, there is space for a "black box" (Scheme Information (schi) box) describing the parameters to the
key management governing access to the encrypted media content. The schi box is a container box that is
interpreted only by the scheme being used. In F4V file, this box shall be the Adobe DRM Key Management
System box.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 66
 F4V Encryption

Figure 1 – Example on storing the protection information in F4V

Figure 1 illustrates how the protection information is stored in F4V. In the example, placing a Protection Scheme
Info (sinf) box into each track's sample description entry, and specifying Adobe's DRM identifier as the key/rights
management system, protects the audio and video tracks.
The sinf box is per sample entry in a sample description box. While it is possible to have more than one sample
entry within a sample description box (there can be only one sample description box per track), this is not very
common. Hence, the above diagram only shows one sinf box per track. However, as it is possible to have more than
one per track, both the DRM packager and DRM decoder should be able to handle the case.

D.3 Encryption of Samples
This section describes how each sample is transformed when applying DRM to an audio or video track within a
F4V.

D.3.1 Access Unit Header
The Access Unit Header, defined in Table 4, specifies the format for each sample unit protected by Adobe's DRM. A
media file format specifies the layout of the media data as samples, but the encryption/decryption process requires
additional information carried in each sample. The additional information is dependent on the DRM key
management used. Adobe's DRM specifies its own access unit header, which shall precede each codec-specific
sample data. The F4V Access Unit Header is identical to the FLV Selective Encryption Filter Params.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 67
 F4V Encryption

Table 4. Access Unit Header

Access Unit Header

Field Type Comment

EncryptedAU UI1 Selective Encryption indicator shows if the packet is encrypted.
0 = sample is not encrypted
1 = sample is encrypted.

Reserved UI7 Shall be 0

IV IF EncryptedAU == 1
 UI8 [IVLength]

Only present if the sample is encrypted. Contains 16 bytes of IV
data for AES-CBC

The above specified access unit header shall be added to every sample whose sample description entry has DRM
turned on (i.e. has a Protection Scheme Info (sinf) box present), even when the particular sample is not encrypted.
The header is the only way the decoder knows whether a particular sample is encrypted or not (in case
SelectiveEncryption is 1). Selective encryption of samples can improve performance, when only critical Keyframes
are encrypted.

D.3.2 Padding Of Encrypted Samples
All encrypted samples shall be padded to a multiple of the block cipher’s block length.
The padding scheme shall be as described in RFC 2630, which is reproduced here:
Block ciphers expect the input data to be multiple of k octets (in case of AES 128, require it to be a multiple of 16
octets), where k is greater than 1. For such algorithms, the input shall be padded at the trailing end with k-(length
mod k) octets all having the value k-(length mod k), where length is the length of the input.
Thus, the input is padded at the trailing end with one of the following k byte sequences, as shown in Table 5.

Table 5. Padding the cipher block

Condition Bytes added to the end of the block

 IF length mod k = k-1 01

 IF length mod k = k-2 02 02

…

 IF length mod k = n … k-n k-n

…

 IF length mod k = 0 k k … k k k k

The size of the padding can be determined unambiguously from a padded block since all the input is padded,
including input values that are already a multiple of the block size, and no padding sequence is a suffix of another.
The last octet indicates how many octets to trim.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 68
 The FLV File Format

Annex E. The FLV File Format
E.1 Overview
Each tag type in an FLV file constitutes a single stream. There shall be no more than one audio and one video stream,
synchronized together, in an FLV file. An FLV file shall not define multiple independent streams of a single type.
The simple data types used in FLV are defined in the SWF format specification. FLV files use an additional type that
is not defined for SWF files: UI24 representing an unsigned 24-bit integer.
Unlike SWF files, FLV files shall store multi-byte numbers in big-endian byte order. For example, as a UI16 in
SWF file format, the byte sequence that represents the number 300 (0x12C) is 0x2C 0x01; as a UI16 in FLV file
format, the byte sequence that represents the number 300 is 0x01 0x2C.
See also the SWF File Format Specification at http://www.adobe.com/go/swf_file_format

E.2 The FLV header
An FLV file shall begin with the FLV header:
FLV header

Field Type Comment

Signature UI8 Signature byte always 'F' (0x46)

Signature UI8 Signature byte always 'L' (0x4C)

Signature UI8 Signature byte always 'V' (0x56)

Version UI8 File version (for example, 0x01 for FLV version 1)

TypeFlagsReserved UB [5] Shall be 0

TypeFlagsAudio UB [1] 1 = Audio tags are present

TypeFlagsReserved UB [1] Shall be 0

TypeFlagsVideo UB [1] 1 = Video tags are present

DataOffset UI32 The length of this header in bytes

The DataOffset field usually has a value of 9 for FLV version 1. This field is present to accommodate larger headers
in future versions.

E.3 The FLV File Body
After the FLV header, the remainder of an FLV file shall consist of alternating back-pointers and tags. They
interleave as shown in the following table:

FLV File Body

Field Type Comment

PreviousTagSize0 UI32 Always 0

Tag1 FLVTAG First tag

PreviousTagSize1 UI32 Size of previous tag, including its header, in bytes. For FLV version
1, this value is 11 plus the DataSize of the previous tag.

Tag2 FLVTAG Second tag

...

PreviousTagSizeN-1 UI32 Size of second-to-last tag, including its header, in bytes.

http://www.adobe.com/go/swf_file_format

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 69
 The FLV File Format

TagN FLVTAG Last tag

PreviousTagSizeN UI32 Size of last tag, including its header, in bytes.

E.4 FLV Tag Definition
E.4.1 FLV Tag
The FLV tag contains metadata for audio, video, or scripts, optional encryption metadata, and the payload.
FLVTAG

Field Type Comment

Reserved UB [2] Reserved for FMS, should be 0

Filter UB [1] Indicates if packets are filtered.
0 = No pre-processing required.
1 = Pre-processing (such as decryption) of the packet is
required before it can be rendered.
Shall be 0 in unencrypted files, and 1 for encrypted tags.
See Annex F. FLV Encryption for the use of filters.

TagType UB [5] Type of contents in this tag. The following types are
defined:
8 = audio
9 = video
18 = script data

DataSize UI24 Length of the message. Number of bytes after StreamID to
end of tag (Equal to length of the tag – 11)

Timestamp UI24 Time in milliseconds at which the data in this tag applies.
This value is relative to the first tag in the FLV file, which
always has a timestamp of 0.

TimestampExtended UI8 Extension of the Timestamp field to form a SI32 value. This
field represents the upper 8 bits, while the previous
Timestamp field represents the lower 24 bits of the time in
milliseconds.

StreamID UI24 Always 0.

AudioTagHeader IF TagType == 8
 AudioTagHeader

AudioTagHeader element as defined in Section E.4.2.1.

VideoTagHeader IF TagType == 9
 VideoTagHeader

VideoTagHeader element as defined in Section E.4.3.1.

EncryptionHeader IF Filter == 1
 EncryptionTagHeader

Encryption header shall be included for each protected
sample, as defined in Section F.3.1.

FilterParams IF Filter == 1
 FilterParams

FilterParams shall be included for each protected sample, as
defined in Section F.3.2.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 70
 The FLV File Format

Data IF TagType == 8
 AUDIODATA
IF TagType == 9
 VIDEODATA
IF TagType == 18
 SCRIPTDATA

Data specific for each media type.

In playback, the time sequencing of FLV tags depends on the FLV timestamps only. Any timing mechanisms built
into the payload data format shall be ignored.

E.4.2 Audio Tags
Audio tags are similar to the DefineSound tag in the SWF file format. For formats also supported in SWF, the
payload data is identical in FLV and SWF.

E.4.2.1 AUDIODATA
The AudioTagHeader contains audio-specific metadata.

AudioTagHeader

Field Type Comment

SoundFormat

(See notes following
table, for special
encodings)

UB [4] Format of SoundData. The following values are defined:
0 = Linear PCM, platform endian
1 = ADPCM
2 = MP3
3 = Linear PCM, little endian
4 = Nellymoser 16 kHz mono
5 = Nellymoser 8 kHz mono
6 = Nellymoser
7 = G.711 A-law logarithmic PCM
8 = G.711 mu-law logarithmic PCM
9 = reserved
10 = AAC
11 = Speex
14 = MP3 8 kHz
15 = Device-specific sound
Formats 7, 8, 14, and 15 are reserved.
AAC is supported in Flash Player 9,0,115,0 and higher.
Speex is supported in Flash Player 10 and higher.

SoundRate UB [2] Sampling rate. The following values are defined:
0 = 5.5 kHz
1 = 11 kHz
2 = 22 kHz
3 = 44 kHz

SoundSize UB [1] Size of each audio sample. This parameter only pertains to
uncompressed formats. Compressed formats always decode
to 16 bits internally.
0 = 8-bit samples
1 = 16-bit samples

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 71
 The FLV File Format

SoundType UB [1] Mono or stereo sound
0 = Mono sound
1 = Stereo sound

AACPacketType IF SoundFormat == 10
 UI8

The following values are defined:
0 = AAC sequence header
1 = AAC raw

Format 3, linear PCM, stores raw PCM samples. If the data is 8-bit, the samples are unsigned bytes. If the data is
16-bit, the samples are stored as little endian, signed numbers. If the data is stereo, left and right samples are stored
interleaved: left - right - left - right - and so on.
Format 0 PCM is the same as format 3 PCM, except that format 0 stores 16-bit PCM samples in the endian order
of the platform on which the file was created. For this reason, format 0 should not be used.
Nellymoser 8 kHz and 16 kHz are special cases, as the SoundRate field cannot represent 8 or 16 kHz sampling rates.
When Nellymoser 8 kHz or Nellymoser 16 kHz is specified in SoundFormat, the Flash Player ignores the
SoundRate and SoundType fields. For other Nellymoser sampling rates, specify the normal Nellymoser
SoundFormat and use the SoundRate and SoundType fields as usual.
If the SoundFormat indicates AAC, the SoundType should be 1 (stereo) and the SoundRate should be 3 (44 kHz).
However, this does not mean that AAC audio in FLV is always stereo, 44 kHz data. Instead, the Flash Player ignores
these values and extracts the channel and sample rate data is encoded in the AAC bit stream.
If the SoundFormat indicates Speex, the audio is compressed mono sampled at 16 kHz, the SoundRate shall be 0, the
SoundSize shall be 1, and the SoundType shall be 0. For information regarding Speex capabilities and limitations
when stored in a SWF file, see the SWF File Format Specification at http://www.adobe.com/go/swf_file_format.

The AUDIODATA segment contains the audio payload.

AUDIODATA

Field Type Comment

IF Encrypted See Annex F. FLV Encryption for details.

 Body EncryptedBody AudioTagBody encrypted as specified in Section F.3.3.

ELSE

 Body AudioTagBody

The AudioTagBody holds the audio payload.

AudioTagBody

Field Type Comment

SoundData IF SoundFormat == 10
 AACAUDIODATA
ELSE
 Varies by format

E.4.2.2 AACAUDIODATA
The AAC format is supported in Flash Player 9,0,115,0 and higher.
AACAUDIODATA

Field Type Comment

Data IF AACPacketType == 0 The AudioSpecificConfig is defined in ISO

http://www.adobe.com/go/swf_file_format

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 72
 The FLV File Format

 AudioSpecificConfig
ELSE IF AACPacketType == 1
 Raw AAC frame data in UI8 []

14496-3. Note that this is not the same as the
contents of the esds box from an MP4/F4V file.

E.4.3 Video Tags
Video tags are similar to the VideoFrame tag in the SWF file format, and their payload data is identical.
See also the SWF File Format Specification at http://www.adobe.com/go/swf_file_format

E.4.3.1 VIDEODATA
The VideoTagHeader contains video-specific metadata.

VideoTagHeader

Field Type Comment

Frame Type UB [4] Type of video frame. The following values are defined:
1 = key frame (for AVC, a seekable frame)
2 = inter frame (for AVC, a non-seekable frame)
3 = disposable inter frame (H.263 only)
4 = generated key frame (reserved for server use only)
5 = video info/command frame

CodecID UB [4] Codec Identifier. The following values are defined:
2 = Sorenson H.263
3 = Screen video
4 = On2 VP6
5 = On2 VP6 with alpha channel
6 = Screen video version 2
7 = AVC

AVCPacketType IF CodecID == 7
 UI8

The following values are defined:
0 = AVC sequence header
1 = AVC NALU
2 = AVC end of sequence (lower level NALU sequence ender is
not required or supported)

CompositionTime IF CodecID == 7
 SI24

IF AVCPacketType == 1
 Composition time offset
ELSE
 0
See ISO 14496-12, 8.15.3 for an explanation of composition
times. The offset in an FLV file is always in milliseconds.

http://www.adobe.com/go/swf_file_format

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 73
 The FLV File Format

The VIDEODATA segment contains video metadata, optional encryption metadata, and the video payload.

VIDEODATA

Field Type Comment

IF Encrypted See Annex F. FLV Encryption for details.

 Body EncryptedBody VideoTagBody encrypted as specified in Section F.3.3.

ELSE

 Body VideoTagBody

The VideoTagBody contains the video frame payload.

VideoTagBody

Field Type Comment

VideoTagBody IF FrameType == 5
 UI8
ELSE (
IF CodecID == 2
 H263VIDEOPACKET
IF CodecID == 3
 SCREENVIDEOPACKET
IF CodecID == 4
 VP6FLVVIDEOPACKET
IF CodecID == 5
 VP6FLVALPHAVIDEOPACKET
IF CodecID == 6
 SCREENV2VIDEOPACKET
IF CodecID == 7
 AVCVIDEOPACKET
)

Video frame payload or frame info

If FrameType == 5, instead of a video payload, the
Video Data Body contains a UI8 with the following
meaning:
0 = Start of client-side seeking video frame
sequence
1 = End of client-side seeking video frame
sequence

For all but AVCVIDEOPACKET, see the SWF File
Format Specification for details

E.4.3.2 AVCVIDEOPACKET
An AVCVIDEOPACKET carries a payload of AVC video data.
AVCVIDEOPACKET

Field Type Comment

Data IF AVCPacketType == 0
 AVCDecoderConfigurationRecord
IF AVCPacketType == 1
 One or more NALUs (Full frames are required)

See ISO 14496-15, 5.2.4.1 for the description of AVCDecoderConfigurationRecord. This contains the same
information that would be stored in an avcC box in an MP4/FLV file.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 74
 The FLV File Format

E.4.4 Data Tags
Data tags encapsulate single-method invocations, which usually are called on a NetStream object in Flash Player.
Data tags comprise of a method name and a set of arguments.

E.4.4.1 SCRIPTDATA
The SCRIPTDATA segment contains optional encryption metadata, and the script payload.

SCRIPTDATA

Field Type Comment

IF Encrypted See Annex F. FLV Encryption for details.

 Body EncryptedBody ScriptTagBody encrypted as specified in Section F.3.3.

ELSE

 Body ScriptTagBody

The ScriptTagBody contains SCRIPTDATA encoded in the Action Message Format (AMF), which is a compact
binary format used to serialize ActionScript object graphs. The specification for AMF0 is available at:
http://opensource.adobe.com/wiki/display/blazeds/Developer+Documentation
ScriptTagBody

Field Type Comment

Name SCRIPTDATAVALUE Method or object name. SCRIPTDATAVALUE.Type = 2 (String)

Value SCRIPTDATAVALUE AMF arguments or object properties.
SCRIPTDATAVALUE.Type = 8 (ECMA array)

E.4.4.2 SCRIPTDATAVALUE
A SCRIPTDATAVALUE record contains a typed ActionScript value.
SCRIPTDATAVALUE

Field Type Comment

Type UI8 Type of the ScriptDataValue.
The following types are defined:
0 = Number
1 = Boolean
2 = String
3 = Object
4 = MovieClip (reserved, not supported)
5 = Null
6 = Undefined
7 = Reference
8 = ECMA array
9 = Object end marker
10 = Strict array
11 = Date
12 = Long string

http://opensource.adobe.com/wiki/display/blazeds/Developer+Documentation

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 75
 The FLV File Format

ScriptDataValue IF Type == 0
 DOUBLE

IF Type == 1
 UI8

IF Type == 2
 SCRIPTDATASTRING

IF Type == 3
 SCRIPTDATAOBJECT

IF Type == 7
 UI16

IF Type == 8
 SCRIPTDATAECMAARRAY

IF Type == 10
 SCRIPTDATASTRICTARRAY

IF Type == 11
 SCRIPTDATADATE

IF Type == 12
 SCRIPTDATALONGSTRING

Script data value.

The Boolean value is (ScriptDataValue ≠ 0).

E.4.4.3 SCRIPTDATADATE
A SCRIPTDATADATE record stores date and time.
SCRIPTDATADATE

Field Type Comment

DateTime DOUBLE Number of milliseconds since Jan 1, 1970 UTC.

LocalDateTimeOffset SI16 Local time offset in minutes from UTC. For time zones located
west of Greenwich, UK, this value is a negative number. Time
zones east of Greenwich, UK, are positive.

E.4.4.4 SCRIPTDATAECMAARRAY
A SCRIPTDATAECMAARRAY record stores an ECMA array. An ECMA Array is an associative array, and shall
be used when an ActionScript Array contains non-ordinal indices. All indices, ordinal or otherwise, are strings
instead of integers. For the purposes of serialization, this type is very similar to an anonymous ActionScript Object.
The list contains approximately ECMAArrayLength number of items. A SCRIPTDATAOBJECTEND record
follows the list of items.
SCRIPTDATAECMAARRAY

Field Type Comment

ECMAArrayLength UI32 Approximate number of items in ECMA array

Variables SCRIPTDATAOBJECTPROPERTY [] List of variable names and values

List Terminator SCRIPTDATAOBJECTEND List terminator

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 76
 The FLV File Format

E.4.4.5 SCRIPTDATALONGSTRING
SCRIPTDATASTRING and SCRIPTDATALONGSTRING records store strings.
SCRIPTDATALONGSTRING

Field Type Comment

StringLength UI32 StringData length in bytes

StringData STRING String data, with no terminating NUL

E.4.4.6 SCRIPTDATAOBJECT
A SCRIPTDATAOBJECT record encodes the properties of an anonymous ActionScript object. A
SCRIPTDATAOBJECTEND record follows the list of properties.
SCRIPTDATAOBJECT

Field Type Comment

ObjectProperties SCRIPTDATAOBJECTPROPERTY [] List of object properties

List Terminator SCRIPTDATAOBJECTEND List terminator

E.4.4.7 SCRIPTDATAOBJECTEND
The SCRIPTDATAOBJECTEND record terminates a list of SCRIPTDATAOBJECTPROPERTY records. The
SCRIPTDATAOBJECTEND record is a SCRIPTDATAOBJECTPROPERTY record with a zero-length string and
an Object end marker.
SCRIPTDATAOBJECTEND

Field Type Comment

ObjectEndMarker UI8 [3] Shall be 0, 0, 9

E.4.4.8 SCRIPTDATAOBJECTPROPERTY
A SCRIPTDATAOBJECTPROPERTY record defines an object property of an ActionScript object or a variable of
associated array.

SCRIPTDATAOBJECTPROPERTY

Field Type Comment

PropertyName SCRIPTDATASTRING Name of the object property or variable

PropertyData SCRIPTDATAVALUE Value and type of the object property or variable

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 77
 The FLV File Format

E.4.4.9 SCRIPTDATASTRICTARRAY
A SCRIPTDATASTRICTARRAY record stores a strict array. A strict array contains only ordinal indices, which
are implied, not stored in the record. The indices can be dense or sparse. Undefined entries in the sparse regions
between indices shall be serialized as undefined. The list shall contain StrictArrayLength number of values. No
terminating record follows the list.
SCRIPTDATASTRICTARRAY

Field Type Comment

StrictArrayLength UI32 Number of items in the array

StrictArrayValue SCRIPTDATAVALUE [StrictArrayLength] List of typed values

E.4.4.10 SCRIPTDATASTRING
SCRIPTDATASTRING and SCRIPTDATALONGSTRING records store strings.
The SCRIPTDATASTRING record may be used for strings no longer than 65535 characters.
SCRIPTDATASTRING

Field Type Comment

StringLength UI16 StringData length in bytes.

StringData STRING String data, up to 65535 bytes, with no terminating NUL

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 78
 The FLV File Format

E.5 onMetaData
The FLV metadata object shall be carried in a SCRIPTDATA tag named onMetadata. Various properties are
available to a running ActionScript program via the NetStream.onMetaData property. The available properties
differ depending on the software creating the FLV file. Typical properties include:

onMetadata properties

Property Name Type Comment

audiocodecid Number Audio codec ID used in the file (see E.4.2.1 for available SoundFormat values)

audiodatarate Number Audio bit rate in kilobits per second

audiodelay Number Delay introduced by the audio codec in seconds

audiosamplerate Number Frequency at which the audio stream is replayed

audiosamplesize Number Resolution of a single audio sample

canSeekToEnd Boolean Indicating the last video frame is a key frame

creationdate String Creation date and time

duration Number Total duration of the file in seconds

filesize Number Total size of the file in bytes

framerate Number Number of frames per second

height Number Height of the video in pixels

stereo Boolean Indicating stereo audio

videocodecid Number Video codec ID used in the file (see E.4.3.1 for available CodecID values)

videodatarate Number Video bit rate in kilobits per second

width Number Width of the video in pixels

E.6 XMP Metadata in FLV
The XMP metadata object shall be carried in a SCRIPTDATA tag named onXMPData. The tag shall be placed at time
0. The tag should be after all time 0 onMetaData tags, and before all time 0 audio or video tags, but readers should
not require this ordering.

XMPMetadata object

Property Name Type Comment

liveXML String or Long string XMP metadata, formatted according to the XMP metadata
specification

For further details, see www.adobe.com/devnet/xmp/pdfs/XMPSpecificationPart3.pdf

http://www.adobe.com/devnet/xmp/pdfs/XMPSpecificationPart3.pdf

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 79
 FLV Encryption

Annex F. FLV Encryption
F.1 Overview
FLV files are encrypted as follows:

1. An encryption header, containing the encryption metadata needed to decrypt the FLV such as encryption
algorithm, key length, and content encryption key retrieval protocol identifier, is stored as ScriptData
immediately after the FLV Header, before any encrypted content.

2. Content-carrying tags are encrypted.
a. For efficiency, there is an option to only encrypt subset of the tags, such as I-frames.
b. If the tag is encrypted, the filter flag is turned on in the packet. The filter flag indicates that the

packet needs to be pre-processed before decoding. The encryption filter is specified in the packet.
Non-compliant players will ignore tags with the filter flag set, as they effectively have a new tag
type.

c. Most metadata (e.g. whether it’s an audio or video frame, key frame or I-frame, codec type) are
kept in clear so that servers and client-side players can process metadata without the need to
decrypt the content.

d. Encryption is applied to the contents as dictated by the encryption algorithm and the encryption
key. The encrypted data is stored in the packet.

This specification defines the header metadata and the format of the encrypted packets.

F.2 Header Information
F.2.1 AdditionalHeader object
In encrypted FLV files, the AdditionalHeader object shall be present, and shall include the Encryption Header
object.
The AdditionalHeader object shall be carried in a SCRIPTDATA tag named |AdditionalHeader. (Note the vertical
bar ('|') in the name.) The object should be present at the beginning of the FLV, with timestamp 0, immediately after
the onMetaData ScriptData tag. This gives the FLV decoder access to the encryption metadata before it encounters
any encrypted tags.

AdditionalHeader object

Property Name Type Comment

Encryption Encryption Header object Encryption Header

F.2.2 Encryption Header object
The Encryption Header object contains the encryption metadata needed to decrypt the FLV.
Encryption Header object
Property Name Type Comment
Version Number Version of Encryption Header.

Shall be 1 or 2, indicating the version of the
encryption format.
1 = FMRMS v1.x products.
2 = Flash Access 2.0 products.
Contents protected using either version are in
existence, so applications shall be able to
consume both versions of the content.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 80
 FLV Encryption

Method String Encryption method. Shall be ‘Standard’
Flags Number Encryption flags. Shall be 0.
Params Standard Encoding Parameters

object
Parameters for encryption method 'Standard'

IF Version == 1
SigFormat String No information is provided on the SigFormat in

this document.
Signature Long string No information is provided on the Signature in

this document.

F.2.3 Standard Encoding Parameters object
This structure contains parameters specific to the ‘Standard’ encryption method.

Standard Encoding Parameters object

Property Name Type Comment

Version Number Version. Shall be 1.

EncryptionAlgorithm String The encryption algorithm. Shall be ‘AES-CBC’,
which specifies that the encryption used is ‘AES-
CBC’ with padding as per RFC 2630.

EncryptionParams AES-CBC Encryption Parameters
object

Parameters for encryption algorithm ‘AES-CBC’.

KeyInfo Key Information object Information to get to the decryption key

F.2.4 AES-CBC Encryption Parameters object
This structure contains parameters specific to the encryption algorithm, in this case AES-CBC_128.

AES-CBC Encryption Parameters object

Property Name Type Comment

KeyLength Number Key length for the encryption algorithm in
bytes. Shall be 16 (i.e. 128 bits)

F.2.5 Key Information object
The key information box contains information for retrieving the key for decryption of samples. The details of the
entries contained in these boxes, and the mechanism used by the DRM client to retrieve the keys are outside the
scope of this specification

Key Information object

Property Name Type Comment

SubType String IF EncryptionHeader.Version == 1
‘APS’ = (Adobe Policy Server) An online key
agreement negotiation protocol

ELSE
 ‘FlashAccessv2’ = An online key retrieval
protocol

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 81
 FLV Encryption

Data IF SubType == ‘APS’
Adobe Policy Server object

IF SubType == ’FlashAccessv2’
FlashAccessv2 object

No further information is provided for SubType
‘APS’ as it is no longer produced by conforming
applications.

F.2.6 FlashAccessv2 object
A Flash Access server provides the decryption key using an online key retrieval protocol.
The FlashAccessv2 object contains the following high level elements (the details of these elements are outside the
scope of the document) needed by the FlashAccessv2 module to carry out the online key retrieval.

FlashAccessv2 object

Property Name Type Comment

Metadata Long string Base 64 encoded metadata used by the DRM
client to retrieve the decryption key.

F.3 Encryption of Contents
This section describes how FLV tags are encrypted.
In an encrypted FLV file, each FLV tag can indicate its state of encryption:
- The Filter flag may indicate that pre-processing of the packet is required before it can be rendered.
- In Version 2, when the Filter flag is set, the Selective Encryption indicator may further indicate whether a

packet is encrypted.
Whether the file is fully or partially encrypted, in Version 2 (EncryptionHeader.Version == 2) every audio and
video packet should have the FLVTAG.Filter bit set. For script data that are not encrypted, the filter bit shall not be
set, enabling the player to locate the onMetadata info.
A small set of specified bytes are kept in clear, to enable intelligent client-side processing without decrypting the
rest of the content.

F.3.1 Encryption Tag Header
If the Filter flag is set in the FLV tag, the packet contents shall be pre-processed before rendering. The Encryption
Tag Header specifies the filters to apply. Filters specify the type of encryption and indicate if encryption is applied.
EncryptionTagHeader

Field Type Comments

NumFilters UI8 Number of filters applied to the packet. Shall be 1.

FilterName String Name of the filter.
IF EncryptionHeader.Version == 1
 ‘Encryption’
ELSE
 ‘SE’
SE stands for Selective Encryption.

Length UI24 Length of FilterParams in bytes

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 82
 FLV Encryption

F.3.2 Filter Parameters
FilterParams contains parameters specific for the decryption method.
FilterParams

Field Type Comments

FilterParams IF FilterName = ‘Encryption’
EncryptionFilterParams

IF FilterName = ‘SE’
SelectiveEncryptionFilterParams

Parameters specific to the filter.

The filter parameters for (non-selective) encryption are defined in EncryptionFilterParams. All packets with this
field shall be encrypted.
EncryptionFilterParams

Field Type Comment

IV UI8 [16] Contains 16 bytes of IV data for AES-CBC.

The filter parameters for selective encryption are defined in SelectiveEncryptionFilterParams.

SelectiveEncryptionFilterParams

Field Type Comment

EncryptedAU UB [1] Selective Encryption indicator shows if the packet is encrypted.
0 = packet is not encrypted
1 = packet is encrypted.

Reserved UB [7] Shall be 0

IV IF EncryptedAU == 1
 UI8 [16]

Only present if the packet is encrypted. Contains 16 bytes of IV
data for AES-CBC

F.3.3 Encrypted Body
If the packet is encrypted, then the body shall contain the Encrypted Body described in this section, else the body
shall contain the plaintext data.

EncryptedBody

Field Type Comment

Content UI8 [Plaintext Length] Cipher text

Padding UI8 [Padding Length] Encrypted padding.

F.3.3.1 Padding
All encrypted samples shall be padded to a multiple of the block cipher’s block length.
The padding scheme shall be as described in RFC 2630, which is reproduced here:
Block ciphers expect the input data to be a multiple of k octets (in case of AES 128, a multiple of 16 octets), where k
is greater than 1. For such algorithms, the input shall be padded at the trailing end with k - (length mod k) octets all
having the value k - (length mod k), where length is the length of the input.
The padding brings the block size to the next integral multiple of the block cipher’s block length. The padding is
present even when the plaintext is evenly divisible by the block length.

 ADOBE FLASH VIDEO FILE FORMAT SPECIFICATION VERSION 10.1 83
 FLV Encryption

EXAMPLE: If k is 16 bytes and length is 32 bytes, the padding is 16 bytes long containing 0x10, and the block size
is 48 bytes.

F.4 Encryption and Metadata
The onMetaData script data shall always be kept in clear when the FLV is encrypted.
This is needed by various FLV parsers to successfully stream the FLV and by media players to provide some
contextual information to the use.

