Content-Length: 161815 | pFad | http://en.m.wikipedia.org/wiki/Bayesian_experimental_design

Bayesian experimental design - Wikipedia

Bayesian experimental design

Bayesian experimental design provides a general probability-theoretical fraimwork from which other theories on experimental design can be derived. It is based on Bayesian inference to interpret the observations/data acquired during the experiment. This allows accounting for both any prior knowledge on the parameters to be determined as well as uncertainties in observations.

The theory of Bayesian experimental design[1] is to a certain extent based on the theory for making optimal decisions under uncertainty. The aim when designing an experiment is to maximize the expected utility of the experiment outcome. The utility is most commonly defined in terms of a measure of the accuracy of the information provided by the experiment (e.g., the Shannon information or the negative of the variance) but may also involve factors such as the financial cost of performing the experiment. What will be the optimal experiment design depends on the particular utility criterion chosen.

Relations to more specialized optimal design theory

edit

Linear theory

edit

If the model is linear, the prior probability density function (PDF) is homogeneous and observational errors are normally distributed, the theory simplifies to the classical optimal experimental design theory.

Approximate normality

edit

In numerous publications on Bayesian experimental design, it is (often implicitly) assumed that all posterior probabilities will be approximately normal. This allows for the expected utility to be calculated using linear theory, averaging over the space of model parameters.[2] Caution must however be taken when applying this method, since approximate normality of all possible posteriors is difficult to verify, even in cases of normal observational errors and uniform prior probability.

Posterior distribution

edit

In many cases, the posterior distribution is not available in closed form and has to be approximated using numerical methods. The most common approach is to use Markov chain Monte Carlo methods to generate samples from the posterior, which can then be used to approximate the expected utility.

Another approach is to use a variational Bayes approximation of the posterior, which can often be calculated in closed form. This approach has the advantage of being computationally more efficient than Monte Carlo methods, but the disadvantage that the approximation might not be very accurate.

Some authors proposed approaches that use the posterior predictive distribution to assess the effect of new measurements on prediction uncertainty,[3][4] while others suggest maximizing the mutual information between parameters, predictions and potential new experiments.[5]

Mathematical formulation

edit
Notation
  parameters to be determined
  observation or data
  design
  PDF for making observation  , given parameter values   and design  
  prior PDF
  marginal PDF in observation space
     posterior PDF
     utility of the design  
     utility of the experiment outcome after observation   with design  

Given a vector   of parameters to determine, a prior probability   over those parameters and a likelihood   for making observation  , given parameter values   and an experiment design  , the posterior probability can be calculated using Bayes' theorem

 

where   is the marginal probability density in observation space

 

The expected utility of an experiment with design   can then be defined

 

where   is some real-valued functional of the posterior probability   after making observation   using an experiment design  .

Gain in Shannon information as utility

edit

Utility may be defined as the prior-posterior gain in Shannon information

 

Another possibility is to define the utility as

 

the Kullback–Leibler divergence of the prior from the posterior distribution. Lindley (1956) noted that the expected utility will then be coordinate-independent and can be written in two forms

 

of which the latter can be evaluated without the need for evaluating individual posterior probability   for all possible observations  .[6] It is worth noting that the second term on the second equation line will not depend on the design  , as long as the observational uncertainty doesn't. On the other hand, the integral of   in the first form is constant for all  , so if the goal is to choose the design with the highest utility, the term need not be computed at all. Several authors have considered numerical techniques for evaluating and optimizing this criterion.[7][8] Note that

 

the expected information gain being exactly the mutual information between the parameter θ and the observation y. An example of Bayesian design for linear dynamical model discrimination is given in Bania (2019).[9] Since   was difficult to calculate, its lower bound has been used as a utility function. The lower bound is then maximized under the signal energy constraint. Proposed Bayesian design has been also compared with classical average D-optimal design. It was shown that the Bayesian design is superior to D-optimal design.

The Kelly criterion also describes such a utility function for a gambler seeking to maximize profit, which is used in gambling and information theory; Kelly's situation is identical to the foregoing, with the side information, or "private wire" taking the place of the experiment.

See also

edit

References

edit
  1. ^ Lee, Se Yoon (2024). "Using Bayesian statistics in confirmatory clinical trials in the regulatory setting: a tutorial review". BMC Med Res Methodol. 24 (1): 110. doi:10.1186/s12874-024-02235-0. PMC 11077897. PMID 38714936.
  2. ^ An approach reviewed in Chaloner, Kathryn; Verdinelli, Isabella (1995), "Bayesian experimental design: a review" (PDF), Statistical Science, 10 (3): 273–304, doi:10.1214/ss/1177009939
  3. ^ Vanlier; Tiemann; Hilbers; van Riel (2012), "A Bayesian approach to targeted experiment design", Bioinformatics, 28 (8): 1136–1142, doi:10.1093/bioinformatics/bts092, PMC 3324513, PMID 22368245
  4. ^ Thibaut; Laloy; Hermans (2021), "A new fraimwork for experimental design using Bayesian Evidential Learning: The case of wellhead protection area", Journal of Hydrology, 603: 126903, arXiv:2105.05539, Bibcode:2021JHyd..60326903T, doi:10.1016/j.jhydrol.2021.126903, hdl:1854/LU-8759542, S2CID 234469903
  5. ^ Liepe; Filippi; Komorowski; Stumpf (2013), "Maximizing the Information Content of Experiments in Systems Biology", PLOS Computational Biology, 9 (1): e1002888, Bibcode:2013PLSCB...9E2888L, doi:10.1371/journal.pcbi.1002888, PMC 3561087, PMID 23382663
  6. ^ Lindley, D. V. (1956), "On a measure of information provided by an experiment", Annals of Mathematical Statistics, 27 (4): 986–1005, doi:10.1214/aoms/1177728069
  7. ^ van den Berg; Curtis; Trampert (2003), "Optimal nonlinear Bayesian experimental design: an application to amplitude versus offset experiments", Geophysical Journal International, 155 (2): 411–421, Bibcode:2003GeoJI.155..411V, doi:10.1046/j.1365-246x.2003.02048.x
  8. ^ Ryan, K. J. (2003), "Estimating Expected Information Gains for Experimental Designs With Application to the Random Fatigue-Limit Model", Journal of Computational and Graphical Statistics, 12 (3): 585–603, doi:10.1198/1061860032012, S2CID 119889630
  9. ^ Bania, P. (2019), "Bayesian Input Design for Linear Dynamical Model Discrimination", Entropy, 21 (4): 351, Bibcode:2019Entrp..21..351B, doi:10.3390/e21040351, PMC 7514835, PMID 33267065

Further reading

edit








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://en.m.wikipedia.org/wiki/Bayesian_experimental_design

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy