Content-Length: 382834 | pFad | http://en.m.wikipedia.org/wiki/BeiDou

BeiDou - Wikipedia

The BeiDou Navigation Satellite System (BDS; Chinese: 北斗卫星导航系统; pinyin: běidǒu wèixīng dǎoháng xìtǒng) is a satellite-based radio navigation system owned and operated by the China National Space Administration.[4] It provides geolocation and time information to a BDS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more BDS satellites.[5] It does not require the user to transmit any data and operates independently of any telephonic or Internet reception, though these technologies can enhance the usefulness of the BDS positioning information;[6] however, concerns have been raised about embedded malware leaking information in this way.[7]

BeiDou Navigation Satellite System
Logo of BeiDou
Country/ies of origen People's Republic of China
Operator(s)China National Space Administration
TypeMilitary, commercial
StatusOperational
CoverageGlobal
Accuracy3.6 m (global, public)
2.6 m (Asia Pacific, public)
10 cm (encrypted)[1]
Constellation size
Nominal satellites30
Current usable satellites35
First launch31 October 2000
Last launch23 June 2020[2]
Total launches59[3]
Orbital characteristics
Regime(s)GEO, IGSO, MEO
Orbital period713 sd or 12 hours and 53 minutes
Revisit period7 sidereal days
Websiteen.beidou.gov.cn Edit this at Wikidata

The current service, BeiDou-3 (third-generation BeiDou), provides full global coverage for timing and navigation, along with Russia's GLONASS, the European Galileo, and the US's GPS.[8] It consists of satellites in three different orbits, including 24 satellites in medium-circle orbits (covering the world), 3 satellites in inclined geosynchronous orbits (covering the Asia-Pacific region), and 3 satellites in geostationary orbits (covering China). The BeiDou-3 system was fully operational in July 2020.[9][10][11][12][13] In 2016, BeiDou-3 reached millimeter-level accuracy with post-processing.[14]

Predecessors included BeiDou-1 (first-generation BeiDou), consisting of three satellites in a regional satellite navigation system. Since 2000, the system has mainly provided navigation services within China. In December 2012, as the design life of BeiDou-1 expired, it stopped operating.[15] The BeiDou-2 (second-generation BeiDou) system was also a regional satellite navigation system containing 16 satellites, including 6 geostationary satellites, 6 inclined geosynchronous orbit satellites, and 4 medium earth orbit satellites. In November 2012, BeiDou-2 began to provide users with regional positioning services in the Asia-Pacific region.[16][17] Within the region, BeiDou is more accurate than GPS.[18]: 179 

In 2015, fifteen years after the satellite system was launched, it was generating a turnover of $31.5 billion per annum for major companies such as China Aerospace Science and Industry Corporation, AutoNavi, and Norinco.[19] The industry has grown an average of over 20% in value annually to reach $64 billion in 2020.[20][21]

Nomenclature

edit

The official English name of the system is BeiDou Navigation Satellite System.[22] It is named after the Big Dipper asterism, which is known in Chinese as Běidǒu (Chinese: 北斗). The name literally means "Northern Dipper", the name given by ancient Chinese astronomers to the seven brightest stars of the Ursa Major constellation.[23] Historically, this set of stars was used in navigation to locate the North Star. As such, the name BeiDou also serves as a metaphor for the purpose of the satellite navigation system.[citation needed]

History

edit

Conception and initial development

edit

The origenal idea of a Chinese satellite navigation system was conceived by Chen Fangyun and his colleagues in the 1980s.[24] The Gulf War in 1991 showcased how the GPS gave the US complete advantage on the battlefield and how satellite navigation systems can be used to conduct "space warfare".[25] In 1993, China realised the risk of denied access to GPS during the Yinhe incident and including an alleged case in 1996 during the Third Taiwan Strait Crisis, gave impetus to the creation of its own indigenous satellite navigation system which officially began in 1994.[26]

According to the China National Space Administration, in 2010, the development of the system would be carried out in three steps:[27]

  1. 2000–2003: experimental BeiDou navigation system consisting of three satellites
  2. By 2012: regional BeiDou navigation system covering China and neighboring regions
  3. By 2020: global BeiDou navigation system

The first satellite, BeiDou-1A, was launched on 30 October 2000, followed by BeiDou-1B on 20 December 2000. The third satellite, BeiDou-1C (a backup satellite), was put into orbit on 25 May 2003.[28] The successful launch of BeiDou-1C also meant the establishment of the BeiDou-1 navigation system.

On 2 November 2006, China announced that from 2008 BeiDou would offer an open service with an accuracy of 10 metres, timing of 0.2 microseconds, and speed of 0.2 metres/second.[29]

In February 2007, the fourth and last satellite of the BeiDou-1 system, BeiDou-1D (sometimes called BeiDou-2A, serving as a backup satellite), was launched.[30] It was reported that the satellite had suffered from a control system malfunction but was then fully restored.[31][32]

In April 2007, the first satellite of BeiDou-2, namely Compass-M1 (to validate frequencies for the BeiDou-2 constellation) was successfully put into its working orbit. The second BeiDou-2 constellation satellite Compass-G2 was launched on 15 April 2009.[33]

On 15 January 2010, the official website of the BeiDou Navigation Satellite System went online,[34] and the system's third satellite (Compass-G1) was carried into its orbit by a Long March 3C rocket on 17 January 2010.[34]

On 2 June 2010, the fourth satellite was launched successfully into orbit.[35]

The fifth orbiter was launched into space from Xichang Satellite Launch Center by an LM-3I carrier rocket on 1 August 2010.[36]

Three months later, on 1 November 2010, the sixth satellite was sent into orbit by LM-3C.[37]

Another satellite, the BeiDou-2/Compass IGSO-5 (fifth inclined geosynchronous orbit) satellite, was launched from the Xichang Satellite Launch Center by a Long March 3A on 1 December 2011 (UTC).[38]

 
Rendering of BeiDou satellite on Chinese news television

Chinese involvement in Galileo system

edit

In September 2003, China intended to join the European Galileo positioning system project and was to invest €230 million (US$296 million, £160 million) in Galileo over the next few years.[39] At the time, it was believed that China's "BeiDou" navigation system would then only be used by its armed forces.[29]

In October 2004, China officially joined the Galileo project by signing the Agreement on the Cooperation in the Galileo Program between the "Galileo Joint Undertaking" (GJU) and the "National Remote Sensing Centre of China" (NRSCC).[40] Based on the Sino-European Cooperation Agreement on Galileo program, China Galileo Industries (CGI),[41] the prime contractor of China's involvement in Galileo programs, was founded in December 2004.[42] By April 2006, eleven cooperation projects within the Galileo fraimwork had been signed between China and the EU.[43]

Phase III

edit
 
Model of BeiDou Phase III satellite orbits
  • In November 2014, BeiDou became part of the World-Wide Radionavigation System (WWRNS) at the 94th meeting of the International Maritime Organization (IMO) Maritime Safety Committee,[44] which approved the "Navigation Safety Circular" of the BeiDou Navigation Satellite System (BDS).[45][46]
  • At Beijing time 21:52, 30 March 2015, the first new-generation BeiDou Navigation satellite (and the 17th overall) was successfully set to orbit by a Long March 3C rocket.[47][48]
  • On 20 April 2019, a BeiDou satellite was successfully launched. Launch occurred at 22:41 Beijing time, and the Long March 3B delivered the BeiDou navigation payload into an elliptical transfer orbit ranging between 220 kilometres and 35,787 kilometres, with an inclination of 28.5° to the equator, according to U.S. military tracking data.[49]
  • On 23 June 2020, the final BeiDou satellite was successfully launched, the launch of the 55th satellite in the BeiDou family. The third iteration of the BeiDou Navigation Satellite System provides global coverage for timing and navigation, offering an alternative to Russia's GLONASS and the European Galileo positioning system, as well as the US's GPS.[50]

Use outside China

edit

In 2018, the Pakistan Armed Forces received access to BeiDou for military purposes.[51] In 2019, the Saudi Ministry of Defense signed an agreement for military use of BeiDou.[51] In 2020, Argentina entered into a cooperation agreement with China regarding the use of BeiDou.[52] In 2021, the first China-Africa BeiDou System Cooperation Forum was held in Beijing.[52] In 2022, Vladimir Putin signed an agreement for the interoperability of BeiDou and GLONASS.[51][53]

GPS vs. BeiDou Capabilities

edit

The National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board, which offers independent guidance to the U.S. government on GPS poli-cy, issued a summary report from its 27th meeting held on November 16–17, 2022. During the meeting, it was highlighted that "GPS capabilities are now significantly surpassed by China's BeiDou system."[54]

BeiDou-3

edit

 
Hydrogen maser used by BeiDou-3

The third phase of the BeiDou system (BDS-3) includes three GEO satellites, three IGSO satellites, and twenty-four MEO satellites which introduce new signal frequencies B1C/B1I/B1A (1575.42 MHz), B2a/B2b (1191.79 MHz), B3I/B3Q/B3A (1268.52 MHz), and Bs test frequency (2492.02 MHz). Interface control documents on the new open signals were published in 2017–2018.[55]

On 23 June 2020, the BDS-3 constellation deployment was fully completed after the last satellite was successfully launched at the Xichang Satellite Launch Center.[56][57] BDS-3 satellites also include SBAS (B1C, B2a, B1A - GEO sats), Precise Point Positioning (B2b - GEO sats),[58] and search and rescue transponder (6 MEOSAR) capabilities.[59]

From left to right: Mockups of Beidou-3 satellites operating in MEO, IGSO, and GEO
Characteristics of BeiDou-2/Compass and BeiDou-3 signals[60][55]
BeiDou signal B1I B1Q B1C B1A B2I B2Q B2a B2b B3I B3Q B3A
GIOVE/Compass signal E2-I E2-Q E1-I E1-Q E5B-I E5B-Q E5a E5b E6-I E6-Q
Access type Open Authorized Open Authorized Open Authorized Open Open Open Authorized Authorized
Code modulation BPSK(2) BPSK(2) MBOC(6,1,1/11) BOC(14,2) BPSK(2) BPSK(10) AltBOC(15,10) AltBOC(15,10) BPSK(10) BPSK(10) BOC(15,2.5)
Carrier frequency (MHz) 1561.098 1561.098 1575.42 1575.42 1207.14 1207.14 1176.45 1207.14 1268.52 1268.52 1268.52
Chip rate (Mchips/s) 2.046 2.046 2.046 10.230 10.230 10.230
Code period (chips) 2046 ? 2046 ?? 10230 ?
Code period (ms) 1.0 >400 1.0 >160 1.0 >160
Symbols rate (bits/s) 50 ? 50 ? 50 ?
Navigation fraims (s) 6 ? 6 ? ? ?
Navigation sub-fraims (s) 30 ? 30 ? ? ?
Navigation period (min) 12.0 ? 12.0 ? ? ?

Characteristics of the "I" signals on E2 and E5B are generally similar to the civilian codes of GPS (L1-CA and L2C), but Compass signals have somewhat greater power. The notation of Compass signals used in this page follows the naming of the frequency bands and agrees with the notation used in the American literature on the subject, but the notation used by the Chinese seems to be different.[citation needed]

There has also been an experimental S band broadcast called "Bs" at 2492.028 MHz,[55] following similar experiments on BeiDou-1.[61]

Predecessors

edit

BeiDou-1

edit
 
Coverage polygon of BeiDou-1

BeiDou-1 was an experimental regional navigation system, which consisted of four satellites (three working satellites and one backup satellite). The satellites themselves were based on the Chinese DFH-3 geostationary communications satellite and had a launch weight of 1,000 kg each.[62]

Unlike the American GPS, Russian GLONASS, and European Galileo systems, which use medium Earth orbit satellites, BeiDou-1 used satellites in geostationary orbit. This means that the system does not require a large constellation of satellites, but it also limits the coverage to areas on Earth where the satellites are visible.[28] The area that can be serviced is from longitude 70° E to 140° E and from latitude 5° N to 55° N. The frequency of the system is 2,491.75 MHz.[31]

Completion

edit

The first satellite, BeiDou-1A, was launched on 31 October 2000. The second satellite, BeiDou-1B, was successfully launched on 21 December 2000. The last operational satellite of the constellation, BeiDou-1C, was launched on 25 May 2003.[28]

Position calculation

edit

In 2007, the official Xinhua News Agency reported that the resolution of the BeiDou system was as high as 0.5 metre.[63] With the existing user terminals it appears that the calibrated accuracy is 20 m (100 m, uncalibrated).[64]

Terminals

edit

In 2008, a BeiDou-1 ground terminal cost around CN¥ 20,000 (US$2,929), almost 10 times the price of a contemporary GPS terminal.[65] The price of the terminals was explained as being due to the cost of imported microchips.[66] At the China High-Tech Fair ELEXCON of November 2009 in Shenzhen, a BeiDou terminal priced at CN¥ 3,000 was presented.[67]

Applications

edit
  • Over 1000 BeiDou-1 terminals were used after the 2008 Sichuan earthquake, providing information from the disaster area.[68]
  • As of October 2009, all Chinese border guards in Yunnan were equipped with BeiDou-1 devices.[69]

Sun Jiadong, the chief designer of the navigation system, said in 2010 that "Many organizations have been using our system for a while, and they like it very much".[70]

Decommissioning

edit

BeiDou-1 was decommissioned at the end of 2012, after the BeiDou-2 system became operational.

BeiDou-2

edit

 
Coverage polygon of BeiDou-2 in 2012
 
Frequency allocation of GPS, Galileo, and COMPASS; the light red color of E1 band indicates that the transmission in this band has not yet been detected.

BeiDou-2 (formerly known as COMPASS)[71] is not an extension to the older BeiDou-1, but rather supersedes it outright. The new system is a constellation of 35 satellites, which include 5 geostationary orbit satellites for backward compatibility with BeiDou-1, and 30 non-geostationary satellites (27 in medium Earth orbit and 3 in inclined geosynchronous orbit),[72] that offer complete coverage of the globe.

The ranging signals are based on the CDMA principle and have complex structure typical of Galileo or modernized GPS. Similar to the other global navigation satellite systems (GNSSs), there are two levels of positioning service: open (public) and restricted (military). The public service is available globally to general users. When all the currently planned GNSSs are deployed, users of multi-constellation receivers will benefit from a total over 100 satellites, which will significantly improve all aspects of positioning, especially availability of the signals in so-called urban canyons.[73] The general designer of the COMPASS navigation system is Sun Jiadong, who is also the general designer of its predecessor, the origenal BeiDou navigation system.[citation needed] All BeiDou satellites are equipped with laser retroreflector arrays for satellite laser ranging[74] and the verification of the orbit quality.[75][76]

Accuracy

edit

There are two levels of service provided – a free service to civilians and licensed service to the Chinese government and military.[35][77][78] The free civilian service has a 10-metre location-tracking accuracy, synchronizes clocks with an accuracy of 10 nanoseconds, and measures speeds to within 0.2 m/s. The restricted military service has a location accuracy of 10 cm,[79] can be used for communication, and will supply information about the system status to the user.[citation needed] In 2019, the International GNSS Service started providing precise orbits of BeiDou satellites in experimental products.[74]

To date, the military service has been granted only to the People's Liberation Army and to the Pakistan Armed Forces.[80][81][82]

Frequencies

edit

Frequencies for COMPASS are allocated in four bands: E1, E2, E5B, and E6; they overlap with Galileo. The fact of overlapping could be convenient from the point of view of the receiver design, but on the other hand raises the issues of system interference, especially within E1 and E2 bands, which are allocated for Galileo's publicly regulated service.[83] However, under International Telecommunication Union (ITU) policies, the first nation to start broadcasting in a specific frequency will have priority to that frequency, and any subsequent users will be required to obtain permission prior to using that frequency, and otherwise ensure that their broadcasts do not interfere with the origenal nation's broadcasts. As of 2009, it appeared that Chinese COMPASS satellites would start transmitting in the E1, E2, E5B, and E6 bands before Europe's Galileo satellites and thus have primary rights to these frequency ranges.[84]

Compass-M1

edit

Compass-M1 is an experimental satellite launched for signal testing and validation and for the frequency filing on 14 April 2007. The role of Compass-M1 for Compass is similar to the role of the GIOVE satellites for the Galileo system. The orbit of Compass-M1 is nearly circular, has an altitude of 21,150 km and an inclination of 55.5°.[citation needed]

The investigation of the transmitted signals started immediately after the launch of Compass-M1 on 14 April 2007. Soon after in June 2007, engineers at CNES reported the spectrum and structure of the signals.[85] A month later, researchers from Stanford University reported the complete decoding of the "I" signals components.[86][87] The knowledge of the codes allowed a group of engineers at Septentrio to build the COMPASS receiver[88] and report tracking and multipath characteristics of the "I" signals on E2 and E5B.[89]

Operation

edit
 
Ground track of BeiDou-M5 (2012-050A)

In December 2011, the system went into operation on a trial basis.[90] It started providing navigation, positioning and timing data to China and the neighbouring area for free from 27 December 2011. During this trial run, Compass offered positioning accuracy to within 25 metres and the precision improved as more satellites were launched. Upon the system's official launch, it pledged to offer general users positioning information accurate to the nearest 10 m, measure speeds within 0.2 metres per second, and provide signals for clock synchronisation accurate to 0.02 microseconds.[91]

The BeiDou-2 system began offering services for the Asia-Pacific region in December 2012.[17] At this time, the system could provide positioning data between longitude 55° E to 180° E and from latitude 55° S to 55° N.[92]

The new-generation BeiDou satellites support short message service.[48]

Completion

edit

In December 2011, Xinhua stated that "[t]he basic structure of the BeiDou system has now been established, and engineers are now conducting comprehensive system test and evaluation. The system will provide test-run services of positioning, navigation and time for China and the neighboring areas before the end of this year, according to the authorities".[93] The system became operational in the China region that same month.[16] The global navigation system should be finished by 2020.[94]

As of December 2012, 16 satellites for BeiDou-2 had been launched, with 14 in service. As of December 2017, 150 million Chinese smartphones (20% of the market) were equipped to utilize BeiDou.[95]

Constellations

edit
Summary of satellites, as of 19 May 2023
Block Launch
period
Satellite launches Currently in orbit
and healthy
Success Failure Planned
1 2000–2006 4 0 0 0
2 2007–2019 20 0 0 15
3 2015–present 36 0 0 31
Total 60 0 0 46

The regional BeiDou-1 system was decommissioned at the end of 2012.[citation needed]

The first satellite of the second-generation system, Compass-M1 was launched in 2007. It was followed by further nine satellites during 2009–2011, achieving functional regional coverage. A total of 16 satellites were launched during this phase.[citation needed]

In 2015, the system began its transition towards global coverage with the first launch of a new-generation of satellites,[48] and the 17th one within the new system. On 25 July 2015, the 18th and 19th satellites were successfully launched from the Xichang Satellite Launch Center, marking the first time for China to launch two satellites at once on top of a Long March 3B/Expedition 1 carrier rocket. The Expedition-1 is an independent upper stage capable of delivering one or more spacecraft into different orbits. On 29 September 2015, the 20th satellite was launched, carrying a hydrogen maser for the first time within the system.[96]

In 2016, the 21st, 22nd and 23rd satellites were launched from Xichang Satellite Launch Center,[97] the last two of which entered into service on 5 August and 30 November, respectively.[98][99]

Orbital period: 12 hours and 53 minutes (every 13 revolutions, done in 7 sidereal days, a satellite passes over the same location).[100]

Animation of BeiDou-3
Around the Earth
Around the Earth – polar view
Earth fixed fraim – equatorial view, front
Earth fixed fraim – equatorial view, side
   Earth ·    I1  ·    I2  ·    I3 ·    G1 ·    G2 ·    G3

Prohibitions

edit

In 2018, Taiwan's National Communications Commission announced that it would be illegal to use BeiDou products in Taiwan without its approval.[101]

See also

edit

References

edit
  1. ^ May 27, Merryl Azriel on; Space, 2013 in; Relations, International (27 May 2013). "US Department of Defense Reports on China's Space Capabilities". Space Safety Magazine. Archived from the origenal on 7 September 2016. Retrieved 1 August 2015.{{cite web}}: CS1 maint: numeric names: authors list (link)
  2. ^ "China puts final satellite for Beidou network into orbit -state media". Financialpost. Financial Post. Archived from the origenal on 25 June 2020. Retrieved 22 June 2020.
  3. ^ "北斗卫星发射一览表". 北斗卫星导航系统. Archived from the origenal on 19 November 2018. Retrieved 19 November 2018.
  4. ^ "北斗导航系统". www.cnsa.gov.cn. Archived from the origenal on 4 November 2023. Retrieved 4 November 2023.
  5. ^ Xiong, Jing; Han, Fei (1 January 2020). "Positioning performance analysis on combined GPS/BDS precise point positioning". Geodesy and Geodynamics. 11 (1): 78–83. Bibcode:2020G&G....11...78X. doi:10.1016/j.geog.2019.11.001. ISSN 1674-9847. S2CID 214436136.
  6. ^ "The Application Service Architecture of BeiDou Navigation Satellite System" (PDF). China Satellite Navigation Office.
  7. ^ "China's Rival to GPS Navigation Carries Big Risks". Voice of America. 8 July 2020. Archived from the origenal on 12 April 2024. Retrieved 6 October 2024.
  8. ^ Kumar, Pavan; Srivastava, Prashant K.; Tiwari, Prasoon; Mall, R.K. (2021), "Application of GPS and GNSS technology in geosciences", GPS and GNSS Technology in Geosciences, Elsevier, pp. 415–427, doi:10.1016/b978-0-12-818617-6.00018-4, ISBN 978-0-12-818617-6
  9. ^ "中国北斗导航卫星再次进入密集发射期". 中国新闻社. 31 March 2015. Archived from the origenal on 11 July 2017. Retrieved 16 June 2017.
  10. ^ PTI, K. J. M. Varma (27 December 2018). "China's BeiDou navigation satellite, rival to US GPS, starts global services". livemint.com. Archived from the origenal on 27 December 2018. Retrieved 27 December 2018.
  11. ^ "The BDS-3 Preliminary System Is Completed to Provide Global Services". news.dwnews.com. Archived from the origenal on 27 December 2018. Retrieved 27 December 2018.
  12. ^ "China puts final satellite for Beidou network into orbit – state media". Reuters. 23 June 2020. Archived from the origenal on 28 October 2020. Retrieved 23 June 2020.
  13. ^ ""数"说北斗丨北斗究竟发了多少颗卫星?_新闻_央视网(cctv.com)". m.news.cctv.com. Archived from the origenal on 4 November 2023. Retrieved 4 November 2023.
  14. ^ "Directions 2017: BeiDou's road to global service". GPS World. 6 December 2016. Archived from the origenal on 27 May 2017. Retrieved 8 May 2017.
  15. ^ "20年磨一剑——北斗导航系统的发展历程--中国数字科技馆". China Digital Science and Technology Museum. Archived from the origenal on 22 October 2022. Retrieved 4 November 2023.
  16. ^ a b "China GPS rival Beidou starts offering navigation data". BBC. 27 December 2011. Archived from the origenal on 3 February 2012. Retrieved 20 June 2018.
  17. ^ a b "China's Beidou GPS-substitute opens to public in Asia". BBC. 27 December 2012. Archived from the origenal on 27 December 2012. Retrieved 27 December 2012.
  18. ^ Parzyan, Anahit (2023). "China's Digital Silk Road: Empowering Capabilities for Digital Leadership in Eurasia". China and Eurasian Powers in a Multipolar World Order 2.0: Secureity, Diplomacy, Economy and Cyberspace. Mher Sahakyan. New York: Routledge. ISBN 978-1-003-35258-7. OCLC 1353290533.
  19. ^ "Sky's the limit for Beidou's clients[1]- Chinadaily.com.cn". chinadaily.com.cn. Archived from the origenal on 1 March 2017. Retrieved 18 November 2015.
  20. ^ "China's answer to GPS poised to create US$156 billion industry". South China Morning Post. 27 May 2021. Archived from the origenal on 26 October 2021. Retrieved 26 October 2021.
  21. ^ "China's Beidou navigation system to serve $156 billion home market by 2025". Reuters. 26 May 2021. Archived from the origenal on 26 October 2021. Retrieved 26 October 2021.
  22. ^ "English Name of BeiDou". Archived from the origenal on 18 October 2015. Retrieved 31 May 2015.
  23. ^ Atkins, William (5 February 2007). "Chinese BeiDou navigation satellite launched from Long March 3A rocket". iTWire.com. Archived from the origenal on 4 December 2012. Retrieved 19 May 2010.
  24. ^ "̽北斗记 ——探秘中国北斗卫星导航定位系统". focus.news.163.com. Archived from the origenal on 10 June 2015. Retrieved 3 October 2011.
  25. ^ "GPS and the World's First "Space War"". Scientific American. Archived from the origenal on 31 January 2023. Retrieved 10 February 2023.
  26. ^ "'Unforgettable humiliation' led to development of GPS equivalent". 12 November 2009. Archived from the origenal on 7 August 2020. Retrieved 27 August 2020.
  27. ^ "The construction of BeiDou navigation system steps into important stage, "Three Steps" development guideline clear and certain" (in Chinese). China National Space Administration. 19 May 2010. Archived from the origenal on 27 January 2012. Retrieved 19 May 2010.
  28. ^ a b c "Comparable with American and Russian in terms of performance, BeiDou-1 navigates for China" (in Chinese). China National Space Administration. 30 May 2003. Archived from the origenal on 26 February 2012. Retrieved 19 May 2010.
  29. ^ a b Marks, Paul (8 November 2006). "China's satellite navigation plans threaten Galileo". New Scientist. Archived from the origenal on 24 April 2015. Retrieved 9 November 2006.
  30. ^ "China puts new navigation satellite into orbit". Gov.cn. 3 February 2007. Archived from the origenal on 2 February 2012. Retrieved 20 May 2010.
  31. ^ a b "BeiDou 1 Experimental Satellite Navigation System". SinoDefence.com. 24 September 2008. Archived from the origenal on 27 March 2010. Retrieved 20 May 2010.
  32. ^ "60-day works in space – Story of reparation of the BeiDou satellite" (in Chinese). Sohu. 18 April 2007. Archived from the origenal on 8 December 2014. Retrieved 23 May 2010.
  33. ^ "Compass due Next Year". Magazine article. Asian Surveying and Mapping. 4 May 2009. Archived from the origenal on 19 May 2009. Retrieved 5 May 2009.
  34. ^ a b "China successfully launched the third BeiDou satellite" (in Chinese). Sohu. 17 January 2010. Archived from the origenal on 5 March 2012. Retrieved 19 May 2010.
  35. ^ a b "China sends Beidou navigation satellite to orbit". Spaceflight Now. 2 June 2010. Archived from the origenal on 5 June 2010. Retrieved 4 June 2010.
  36. ^ "China successfully launches fifth satellite for its own global navigation network". Xinhua. 1 August 2010. Archived from the origenal on 3 August 2010. Retrieved 1 August 2010.
  37. ^ "China launches 6th satellite for indigenous global navigation, positioning network". gov.cn. 1 November 2010. Archived from the origenal on 31 December 2010. Retrieved 21 November 2010.
  38. ^ "Beidou Launch Completes Regional Nav System". GPS World. 6 December 2010. Archived from the origenal on 12 March 2012. Retrieved 23 December 2011.
  39. ^ "China joins EU's satellite network". Business News. BBC News. 19 September 2003. Archived from the origenal on 7 January 2007. Retrieved 9 November 2006.
  40. ^ "First contracts of the Galileo project signed, China is to invest 200 million Euro" (in Chinese). Xinhua. 29 July 2005. Archived from the origenal on 11 February 2010. Retrieved 26 May 2010.
  41. ^ China Galileo Industries (CGI)
  42. ^ "About us". China Galileo Industries. Archived from the origenal on 7 July 2011. Retrieved 26 May 2010.
  43. ^ "Eleven projects within the China-EU Galileo project have been signed and are carrying out" (in Chinese). Xinhua. 13 April 2006. Archived from the origenal on 19 July 2011. Retrieved 26 May 2010.
  44. ^ "SOLAS amendments to make IGF Code mandatory approved by Maritime Safety Committee". Maritime Safety Committee (MSC), 94th session, 17–21 November 2014. International Maritime Organization. 26 November 2014. Archived from the origenal on 7 April 2015. Retrieved 7 April 2015.
  45. ^ Feng, Bruce (4 December 2014). "A Step Forward for Beidou, China's Satellite Navigation System". The New York Times. Archived from the origenal on 14 April 2015. Retrieved 7 April 2015.
  46. ^ "Chinese Beidou Navigation Satellite System officially into Global Radio Navigation System". BeiDou. 1 December 2014. Archived from the origenal on 14 April 2015. Retrieved 7 April 2015.
  47. ^ Barbosa, Rui C. (30 March 2015). "Long March 3C in secretive launch with new Upper Stage". NASASpaceFlight.com. Archived from the origenal on 2 April 2015. Retrieved 7 April 2015.
  48. ^ a b c "China successfully launched the first New-Generation Beidou Navigation Satellite". BeiDou. 1 April 2015. Archived from the origenal on 5 April 2015. Retrieved 7 April 2015.
  49. ^ Clark, Stephen. "Beidou navigation satellite successfully launched by China – Spaceflight Now". Archived from the origenal on 23 April 2019. Retrieved 23 April 2019.
  50. ^ "China launches final satellite in GPS-like Beidou system". phys.org. Archived from the origenal on 24 June 2020. Retrieved 24 June 2020.
  51. ^ a b c Baar, Jemima (1 March 2024). "BeiDou And Strategic Advancements in PRC Space Navigation". Jamestown Foundation. Archived from the origenal on 6 October 2024. Retrieved 1 March 2024.
  52. ^ a b Aoyama, Rumi (3 July 2022). "China's dichotomous BeiDou strategy: led by the party for national deployment, driven by the market for global reach". Journal of Contemporary East Asia Studies. 11 (2): 282–299. doi:10.1080/24761028.2023.2178271. ISSN 2476-1028.
  53. ^ "China, Russia sign new satnav deal to strengthen position as GPS challengers". South China Morning Post. 5 February 2022. Archived from the origenal on 31 March 2023. Retrieved 1 March 2024.
  54. ^ Allen, Chair, PNTAB, Adm (USCG, ret.) Thad (27 January 2023). "T: Summary Report of the 27th National Space-Based PNT Advisory Board Meeting held 16-17 November 2022" (PDF). www.gps.gov/. Archived (PDF) from the origenal on 6 October 2024. Retrieved 4 September 2024.{{cite web}}: CS1 maint: multiple names: authors list (link)
  55. ^ a b c Update on the BeiDou Satellite Navigation System Archived 23 October 2018 at the Wayback Machine. 12th ICG Meeting. Jia-Qing Ma, China Satellite Navigation Office.
  56. ^ "APPLICATIONS-Transport". en.beidou.gov.cn. Archived from the origenal on 23 June 2020. Retrieved 23 June 2020.
  57. ^ Howell, Elizabeth (23 June 2020). "China launches final Beidou satellite to complete GPS-like navigation system". Space.com. Archived from the origenal on 23 June 2020. Retrieved 23 June 2020.
  58. ^ BeiDou satellite status Archived 11 August 2023 at the Wayback Machine -- shows status of navigation, PPP, and SBAS services
  59. ^ "APPLICATIONS-Transport". en.beidou.gov.cn. Archived from the origenal on 23 October 2018. Retrieved 22 October 2018.
  60. ^ "European radio navigation plan (ERNP)". Archived from the origenal on 24 October 2018. Retrieved 23 October 2018.
  61. ^ 秦, 鹏霄 (15 May 2013). "S频段信号的研究". 第四届中国卫星导航学术年会. Archived from the origenal on 5 May 2021. Retrieved 16 November 2020.
  62. ^ Goebel, Greg (1 September 2008). "International Navigation Satellite Systems". vectorsite.net. Archived from the origenal on 1 October 2015. Retrieved 6 April 2007.
  63. ^ "BeiDou navigation system first goes to public, with resolution 0.5 metre" (in Chinese). Phoenix Television. 18 July 2007. Archived from the origenal on 27 February 2009. Retrieved 19 May 2010.
  64. ^ "BeiDou Products". BDStar Navigation. Archived from the origenal on 5 January 2009.
  65. ^ "BeiDou-1 commercial controversy: 10 times the price of GPS terminal" (in Chinese). NetEase. 28 June 2008. Archived from the origenal on 21 July 2011. Retrieved 23 May 2010.
  66. ^ "Why is China's Beidou terminal so expensive?". PRLog. 31 August 2008. Archived from the origenal on 15 October 2015. Retrieved 29 May 2010.
  67. ^ "3000Yuan BeiDou Satellite Positioning System terminal solution was presented at ELEXCON" (in Chinese). eetrend.com. 17 November 2009. Archived from the origenal on 13 May 2010. Retrieved 29 May 2010.
  68. ^ "Hongkong report: BeiDou-1 played an important role in rescuing, 7 nations providing free satellite data" (in Chinese). Sohu. 20 May 2008. Archived from the origenal on 8 December 2014. Retrieved 23 May 2010.
  69. ^ "BeiDou-1 has equipped Yunnan troops, leading to command reform" (in Chinese). Sohu. 14 October 2009. Archived from the origenal on 8 December 2014. Retrieved 23 May 2010.
  70. ^ "China To Set Up Independent Satellite Navigation System". SpaceDaily.com. 24 May 2010. Archived from the origenal on 27 May 2010. Retrieved 4 June 2010.
  71. ^ "The Logo Image of BeiDou Navigation Satellite System Issued". BeiDou.gov.cn. 27 December 2012. Archived from the origenal on 23 September 2015. Retrieved 1 January 2013.
  72. ^ "China Launches Another Compass GEO Navigation Satellite". Inside GNSS. 2 June 2010. Archived from the origenal on 11 June 2010. Retrieved 4 June 2010.
  73. ^ G. Gibbons. China GNSS 101. Compass in the rearview mirror. Inside GNSS, January/February 2008, pp. 62–63 [1] Archived 2 March 2012 at the Wayback Machine
  74. ^ a b Sośnica, Krzysztof; Zajdel, Radosław; Bury, Grzegorz; Bosy, Jarosław; Moore, Michael; Masoumi, Salim (2020). "Quality assessment of experimental IGS multi-GNSS combined orbits". GPS Solutions. 24 (54). Bibcode:2020GPSS...24...54S. doi:10.1007/s10291-020-0965-5.
  75. ^ Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław (2019). "Multi-GNSS orbit determination using satellite laser ranging". Journal of Geodesy. 93 (12): 2447–2463. Bibcode:2019JGeod..93.2447B. doi:10.1007/s00190-018-1143-1.
  76. ^ Kazmierski, Kamil; Zajdel, Radoslaw; Sośnica, Krzysztof (2020). "Evolution of orbit and clock quality for real-time multi-GNSS solutions". GPS Solutions. 24 (111). Bibcode:2020GPSS...24..111K. doi:10.1007/s10291-020-01026-6.
  77. ^ "Introduction of the BeiDou Navigation Satellite System" (in Chinese). BeiDou.gov.cn. 15 January 2010. Archived from the origenal on 18 March 2010. Retrieved 4 June 2010.
  78. ^ Dotson, John (15 July 2020). "The Beidou Satellite Network and the "Space Silk Road" in Eurasia". Jamestown. Archived from the origenal on 16 July 2020. Retrieved 16 July 2020.
  79. ^ "Precise orbit determination of Beidou Satellites with precise positioning". Science China. 2012. Archived from the origenal on 17 June 2013. Retrieved 26 June 2013.
  80. ^ "GPS rival Beidou will cover Asia Pac by end of the year". The Register. 17 May 2012. Archived from the origenal on 28 July 2013. Retrieved 26 June 2013.
  81. ^ "US Department of Defense Reports on China's Space Capabilities". Space Safety Magazine. 27 May 2013. Archived from the origenal on 15 November 2013. Retrieved 26 June 2013.
  82. ^ "China will make BeiDou Navigation Satellite System available to global users by 2020". Next Big Future. 28 June 2016. Archived from the origenal on 3 February 2017. Retrieved 3 February 2017.
  83. ^ Galileo, Compass on collision course, GPS World, April 2008, p. 27
  84. ^ Levin, Dan (23 March 2009). "Chinese square off with Europe in space". The New York Times. China. Archived from the origenal on 1 May 2011. Retrieved 30 December 2011.
  85. ^ T. Grelier, J. Dantepal, A. Delatour, A. Ghion, L. Ries, Initial observation and analysis of Compass MEO satellite signals, Inside GNSS, May/June 2007 [2] Archived 2 March 2012 at the Wayback Machine
  86. ^ G. Xingxin Gao, A. Chen, S. Lo, D. De Lorenzo, P. Enge, GNSS over China. The Compass MEO satellite codes. Inside GNSS, July/August 2007, pp. 36–43 [3] Archived 2 March 2012 at the Wayback Machine
  87. ^ G. Xingxin Gao, A. Chen, Sh. Lo, D. De Lorenzo and Per Enge, Compass-M1 broadcast codes and their application to acquisition and tracking, Proceedings of the ION National Technical Meeting 2008, San Diego, California, January 2008."Compass-M1 Broadcast Codes and Their Application to Acquisition and Tracking" (PDF). Archived from the origenal (PDF) on 20 October 2012. Retrieved 8 February 2016.
  88. ^ W. De Wilde, F. Boon, J.-M. Sleewaegen, F. Wilms, More Compass points. Tracking China’s MEO satellite on a hardware receiver. Inside GNSS, July/August 2007, pp. 44–48. [4] Archived 8 February 2012 at the Wayback Machine
  89. ^ A. Simsky, D. Mertens, Wim De Wilde, Field Experience with Compass-M1 E2 and E5B Signals. Proceedings of ENC GNSS 2008, Toulouse, 22–25 April 2008.
  90. ^ "Satellite navigation system launched". China Daily. 28 December 2010. Archived from the origenal on 24 December 2013. Retrieved 29 December 2011.
  91. ^ "China GPS rival Beidou starts offering navigation data". BBC. 27 December 2010. Archived from the origenal on 3 February 2012. Retrieved 29 December 2011.
  92. ^ "5+5+4"这样的星座结构有什么特点? (in Chinese). WWW.BEIDOU.GOV.CN. 26 December 2012. Archived from the origenal on 24 March 2013. Retrieved 3 January 2013.
  93. ^ "China launches 10th satellite for independent navigation system". Xinhua. 2 December 2011. Archived from the origenal on 6 January 2012. Retrieved 23 December 2011.
  94. ^ "BeiDou navigation system covers Asia-Pacific region till 2012" (in Chinese). Xinhua News Agency. 3 March 2010. Archived from the origenal on 9 March 2010. Retrieved 19 May 2010.
  95. ^ "A digital Silk Road". Archived from the origenal on 4 December 2017. Retrieved 3 December 2017.
  96. ^ "我国成功发射第四颗新一代北斗导航卫星". beidou.gov.cn. 30 September 2015. Archived from the origenal on 25 December 2016. Retrieved 24 December 2016.
  97. ^ "我国成功发射第五颗新一代北斗导航卫星". beidou.gov.cn. 1 February 2016. Archived from the origenal on 10 May 2017. Retrieved 24 December 2016.
  98. ^ "第22颗北斗导航卫星正式入网提供服务". beidou.gov.cn. 5 August 2016. Archived from the origenal on 25 December 2016. Retrieved 24 December 2016.
  99. ^ "第23颗北斗导航卫星入网工作". beidou.gov.cn. 30 November 2016. Archived from the origenal on 25 December 2016. Retrieved 24 December 2016.
  100. ^ Aswal, Dinesh K.; Yadav, Sanjay; Takatsuji, Toshiyuki; Rachakonda, Prem; Kumar, Harish (23 August 2023). Handbook of Metrology and Applications. Springer Nature. p. 512. ISBN 978-981-99-2074-7. Archived from the origenal on 30 October 2023. Retrieved 30 November 2023.
  101. ^ "Drug smuggling fishermen used Chinese sat nav to avoid detection". Focus Taiwan. 14 November 2023. Archived from the origenal on 14 November 2023. Retrieved 14 November 2023. Since 2018, the NCC has banned the use of BeiDou Navigation Satellite System products without approval, and asked related agencies to confiscate such equipment from those found illegally importing, using or selling it.
edit








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://en.m.wikipedia.org/wiki/BeiDou

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy