Content-Length: 66060 | pFad | http://en.m.wikipedia.org/wiki/Moreau%27s_theorem

Moreau's theorem - Wikipedia

In mathematics, Moreau's theorem is a result in convex analysis named after French mathematician Jean-Jacques Moreau. It shows that sufficiently well-behaved convex functionals on Hilbert spaces are differentiable and the derivative is well-approximated by the so-called Yosida approximation, which is defined in terms of the resolvent operator.

Statement of the theorem

edit

Let H be a Hilbert space and let φ : H → R ∪ {+∞} be a proper, convex and lower semi-continuous extended real-valued functional on H. Let A stand for ∂φ, the subderivative of φ; for α > 0 let Jα denote the resolvent:

 

and let Aα denote the Yosida approximation to A:

 

For each α > 0 and x ∈ H, let

 

Then

 

and φα is convex and Fréchet differentiable with derivative dφα = Aα. Also, for each x ∈ H (pointwise), φα(x) converges upwards to φ(x) as α → 0.

References

edit
  • Showalter, Ralph E. (1997). Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. Providence, RI: American Mathematical Society. pp. 162–163. ISBN 0-8218-0500-2. MR1422252 (Proposition IV.1.8)








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://en.m.wikipedia.org/wiki/Moreau%27s_theorem

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy