Content-Length: 54691 | pFad | http://en.m.wikipedia.org/wiki/Schreier_domain

Schreier domain - Wikipedia

In abstract algebra, a Schreier domain, named after Otto Schreier, is an integrally closed domain where every nonzero element is primal; i.e., whenever x divides yz, x can be written as x = x1 x2 so that x1 divides y and x2 divides z. An integral domain is said to be pre-Schreier if every nonzero element is primal. A GCD domain is an example of a Schreier domain. The term "Schreier domain" was introduced by P. M. Cohn in 1960s. The term "pre-Schreier domain" is due to Muhammad Zafrullah.

In general, an irreducible element is primal if and only if it is a prime element. Consequently, in a pre-Schreier domain, every irreducible is prime. In particular, an atomic pre-Schreier domain is a unique factorization domain; this generalizes the fact that an atomic GCD domain is a UFD.

References

edit










ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://en.m.wikipedia.org/wiki/Schreier_domain

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy