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ABSTRACT

We use N-body simulations to examine the consequences of Neptune’s outward migration into the Kuiper Belt,
with the simulated end states being compared rigorously and quantitatively to the observations. These simulations
confirm the 2003 findings of Chiang and coworkers, who showed that Neptune’s migration into a previously stirred-
up Kuiper Belt can account for the Kuiper Belt objects (KBOs) known to librate at Neptune’s 5:2 resonance. We
also find that capture is possible at many other weak, high-order mean-motion resonances, such as 11:6, 13:7, 13:6,
9:4,7:3,12:5,8:3,3:1,7:2, and 4:1. The more distant of these resonances, such as the 9:4, 7:3, 5:2, and 3:1, can
also capture particles in stable, eccentric orbits beyond 50 AU, in the region of phase space conventionally known
as the “Scattered Disk.” Indeed, 90% of the simulated particles that persist over the age of the solar system in the
Scattered-Disk zone never had a close encounter with Neptune but instead were promoted into these eccentric orbits
by Neptune’s resonances during the migration epoch. This indicates that the observed Scattered Disk might not be
so scattered. This model also produced only a handful of Centaurs, all of which originated at Neptune’s mean-
motion resonances in the Kuiper Belt. However, a noteworthy deficiency of the migration model considered here is
that it does not account for the observed abundance of Main Belt KBOs having inclinations higher than 15°. In order
to rigorously compare the model end state with the observed Kuiper Belt in a manner that accounts for telescopic
selection effects, Monte Carlo methods are used to assign sizes and magnitudes to the simulated particles that
survive over the age of the solar system. If the model considered here is indeed representative of the outer solar
system’s early history, then the following conclusions are obtained: (1) The observed 3:2 and 2:1 resonant pop-
ulations are both depleted by a factor of ~20 relative to model expectations; this depletion is likely due to un-
modeled effects, possibly perturbations by other large planetesimals. (2) The size distribution of those KBOs
inhabiting the 3:2 resonance is significantly shallower than the Main Belt’s size distribution. (3) The total number of
KBOs having radii R > 50 km and orbiting interior to Neptune’s 2: 1 resonance is N ~ 1.7 x 10°; these bodies have a
total mass of M ~ 0.08(p/1 g cm™3)( p/0.04) > M, assuming they have a material density p and an albedo p. We also
report estimates of the abundances and masses of the Belt’s various subpopulations (e.g., the resonant KBOs, the Main
Belt, and the so-called Scattered Disk) and provide upper limits on the abundance of Centaurs and Neptune’s Trojans, as

well as upper limits on the sizes and abundances of hypothetical KBOs that might inhabit the a > 50 AU zone.
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1. INTRODUCTION

The Kuiper Belt is the vast swarm of small bodies that inhabit
the outer solar system beyond the orbit of Neptune. The Kuiper
Belt objects (KBOs) are relics of the solar system’s primor-
dial planetesimal disk; they are bits of debris that failed to co-
alesce into other large planets. The Kuiper Belt is also of great
interest because it preserves a record of the outer solar system’s
early dynamical history. This is reflected in the KBOs’ curious
distribution of orbits, which suggest that there was consider-
able readjustment of the solar system’s early architecture. The
possibility that the orbits of the giant planets may have shifted
significantly (that is, after the solar nebula gas had already dis-
sipated) was first demonstrated by the accretion simulations of
Fernandez & Ip (1984); they showed that as the growing giant
planets gravitationally scatter the residual planetesimal debris,
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they can exchange angular momentum with the debris disk in
a way that causes the planets’ orbits to drift. Malhotra (1993b)
later showed that an episode of outward migration by Neptune
by at least Aa ~ 5 AU could also account for Pluto’s peculiar
orbit, which resides at Neptune’s 3:2 resonance with an eccen-
tricity of e ~ 0.25. In this scenario, Pluto’s large eccentricity is a
consequence of it having been captured by Neptune’s advancing
3:2 resonance, which pumped Pluto’s e up as it shepherded the
small planet outward. Further support for this planet-migration
scenario is provided by the subsequent discovery of numerous
other KBOs also inhabiting Neptune’s 3:2 resonance with ec-
centricities similar to model predictions (Malhotra 1995), as
well as by more modern N-body simulations of the orbital evo-
lution of giant planets while they are still embedded in a mas-
sive planetesimal disk (Hahn & Malhotra 1999; Gomes et al.
2004).

The purpose of the present work is to use higher resolution
simulations to update this conventional model of Neptune’s



NEPTUNE’S MIGRATION INTO KUIPER BELT 2393

migration into the Kuiper Belt. This model’s strengths, as well
as its weaknesses, are assessed quantitatively by rigorously com-
paring the simulations’ end states to current observations of the
Belt. In the following, we execute two simulations that track
the orbital evolution of the four migrating giant planets plus 10*
massless test particles (the latter representing the KBOs) over
the age of the solar system. In one simulation the initial state
of the Kuiper Belt is dynamically cold (i.e., the particles have
initial eccentricities and inclinations of e and sini ~ 0.001),
while the second simulation is of a Kuiper Belt that is initially
stirred up a modest amount (i.e., e and sini ~ 0.1). We then use
a Monte Carlo method to assign sizes (and hence magnitudes)
to the simulated KBOs; this allows us to account for the tele-
scopic biases that tend to select those KBOs that inhabit or-
bits that are more favorable for discovery over those KBOs in
less favorable orbits. Then, by comparing the resulting model
Kuiper Belts with the current observational data, we rigorously
test the planet-migration scenario, as well as obtain a more re-
alistic assessment of the abundance of KBOs. This analysis
also provides the relative abundance of the Belt’s various sub-
populations: the resonant KBOs, the Main Belt objects, and the
Scattered Disk, plus the Centaurs and Neptune’s Trojans.

The paper is organized as follows: Section 2 describes the
so-called standard model considered here, as well as the numer-
ical methods to be employed. Results from the two simulations
of the Kuiper Belt are reported in §§ 3 and 4, while § 5 exam-
ines the Kuiper Belt inclination problem. Section 6 details the
Monte Carlo model that is then used in §§ 7—10 to assess the
relative abundance of the Belt’s various subpopulations, with a
final tally of the Belt’s total population given in § 11. Section 12
comments on some important unmodeled effects, and § 13 sum-
marizes the results.

2. SIMULATING PLANET MIGRATION

The MERCURY6 N-body integrator (Chambers 1999) is
used to track the orbital evolution of the four giant planets plus
numerous massless particles. In our simulations, planet migra-
tion is implemented by applying an external torque to each planet’s
orbit so that its semimajor axis a; varies as

aj(t) = afd' — Aj@it/T, (1)

where a; ;is planet;’s final semimajor axis, A; is the planet’s net
radial displacement, and 7 is the e-fold timescale for planet mi-
gration; this form of planet migration was first used in Malhotra
(1993b). To implement this in MERCURY6, the integrator is
modified so that each planet’s velocity v; is incremented by the
small velocity kick

_ 144

Av; =
Y 2a; T

ey, (2)

with each time step Az. This additional velocity kick is directed
along the planet’s velocity vector and results in a torque 7; =
m;a;Av;/ At being applied to the planet. Since 7; = dL;/dt, where
L; is the planet’s angular momentum, these velocity kicks cause
the planet’s orbit to vary at the rate &; = 24, Tj/L; = (A;/T)e "™,
which then recovers equation (1) when integrated.

The simulations reported below adopt the current planets’
masses and orbits as initial conditions, except that their initial
semimajor axes are displaced by an amount —A; so that the
migration torque ultimately delivers these planets into orbits
similar to their present ones. The free parameters that describe

this migration are the planets’ radial displacements A; and the
migration timescale 7. At present, there is only one strong con-
straint on the A; values, namely, that Neptune’s orbit must ex-
pand by Ay ~ 8.7 AU if resonance trapping is to account for
the KBOs having eccentricities of 0 < e < 0.32 at Neptune’s 3:2
resonance (see Appendix A). Another constraint, on the mag-
nitude of Jupiter’s inward migration, can be obtained from the
orbital distribution of asteroids in the outer asteroid belt. Liou
& Malhotra (1997) show that the severe depletion of the outer
asteroid belt can be explained if Jupiter migrated inward by at
least 0.2 AU, and Franklin et al. (2004) show that the orbits
of the Hilda asteroids at Jupiter’s 3:2 resonance are consistent
with Jupiter having migrated inward by about 0.45 AU. The
remaining A; values for Saturn and Uranus are less well con-
strained, but stability considerations require them to be neither
too large nor too small. With this in mind, our simulations adopt
the following values for the A; values: A; = 0.900 AU for Jupiter,
Ag = 2.09 AU for Saturn, Ay = 4.52 AU for Uranus, and Ay =
8.70 AU for Neptune. All the simulations reported here also
employ a planet-migration timescale of 7 = 107 yr. This value
is supported by the self-consistent N-body simulations by Hahn
& Malhotra (1999) of the giant planets’ migration while they
are embedded in a planetesimal disk. Those simulations show
that a planetesimal disk having a mass Mp ~ 50 M, spread over
10 AU < a < 50 AU will cause Neptune’s orbit to expand by
Aa ~ 7 AU over a characteristic timescale of 7 ~ 107 yr (see
also Gomes et al. 2004).

We note that the orbital evolution adopted here is constructed
so that the migrating planets’ eccentricities are always com-
parable to their present values and that the migration proceeds
along nearly circular orbits. But this particular choice for the
planets’ eccentricities is merely a simplifying assumption, since
we do not know the e-evolution of the giant planets during the
migration epoch. For instance, it is possible that dynamical
friction with the particle disk would have conspired to keep the
planets’ eccentricities low, but there may also have been other
transient protoplanets roaming about the outer solar system, and
their perturbations would tend to pump up the planets’ eccen-
tricities. Given the uncertainty in the relative rates of these ef-
fects, we adopt the simplest possible model, one that assumes
that the giant planets’ eccentricities were always comparable to
their present ones. However, alternate migration schemes are
possible; for instance, Tsiganis et al. (2005) consider a scenario
in which the giant planets pump up their eccentricities as they
pass through mutual resonances. But it is uncertain as to whether
this possible history would have altered the bulk properties of the
Kuiper Belt, and it is not considered here.

In order to enforce migration in nearly circular orbits, our sim-
ulations have Jupiter migrating outward Ay = 0.9 AU, whereas
other self-consistent simulations show that Jupiter usually mi-
grates inward a small amount (Hahn & Malhotra 1999). Note
that this choice avoids having Jupiter approach the 5:2 reso-
nance with Saturn, which tends to excite the planets’ eccentric-
ities above current levels. However, that eccentricity excitation
might then have been damped back to current levels by dynam-
ical friction with the particle disk, but that is a phenomenon that
goes unmodeled in our massless particle disk. We simply avoid
this event altogether by instead having Jupiter migrate outward
a modest amount. But this not a concern here, since our interest
is in the Kuiper Belt, whose end state is not likely to preserve
any memory of whether Jupiter migrated slightly inward or
outward. The remaining A; values are similarly chosen to avoid
all major resonances, and the simulated planets’ semimajor axes
a;(¢) are also shown in Figure 1.
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Fig. 1.—Planets’ semimajor axes a; vs. time ¢, as well as a few of Neptune’s
mean-motion resonances that are effective at trapping particles.

In the simulations described below, the model Kuiper Belt is
initially composed of 10* massless particles having semimajor
axes randomly distributed over 20 AU < a < 80 AU, with a sur-
face number density that varies as 2. The inner edge of this
particle disk is 1.4 AU inward of Neptune’s initial semimajor
axis, and the disk extends well beyond the outer reaches of the
observed Main Belt. All simulations described here use a time
step of At = 0.5 yr, which is sufficiently short to accurately
evolve particles in eccentric orbits down to perihelia as low as
Gmin = (10A2/1 yr)Z/ 3 AU ~ 3 AU without suffering the peri-
helion instability® described in Rauch & Holman (1999). Of
course, particles can still achieve orbits having perihelia lower
than ¢, , but their orbits will not be calculated correctly in our
simulations. However, this is of little consequence, since these
planet-crossing bodies have very short dynamical lifetimes and
are quickly removed from the system anyway.

3. MIGRATION INTO A DYNAMICALLY
COLD KUIPER BELT

Accretion models have shown that the observed KBO pop-
ulation must have formed in an environment that was initially
dynamically cold, that is, the known KBOs must have formed
from seeds that were in nearly circular and coplanar orbits with
initial e and sin i values that were <1073 (Stern 1996; Kenyon
& Luu 1999). In anticipation of this, many investigations of the
dynamical history of the Kuiper Belt have adopted initial KBO
orbits that are dynamically cold (e.g., Malhotra 1993b, 1995;
Duncan et al. 1995; Yu & Tremaine 1999; Chiang & Jordan
2002).

Figure 2 shows the results of a simulation of Neptune’s
smooth migration into a dynamically cold swarm of massless
KBOs having initial e-values that are Rayleigh-distributed about
amean value (e¢) = 0.001 and initial inclinations similarly dis-
tributed with a mean (sini) = (e)/2. This system is evolved
for t = 5% 10% yr. As is well known from previous studies,

2 This difficulty is overcome by the algorithm of Levison & Duncan (2000).

Neptune’s smooth migration is very efficient at inserting par-
ticles into the planet’s mean-motion resonances, principally the
2:1, 5:3, and 3:2 resonances. However, it is also well recog-
nized that the end state of this idealized model differs from the
observed KBO orbits (Fig. 2, red circles) in several ways. For
example, one prominent discrepancy is that the 2: 1 resonance is
densely populated with simulated particles, while only sparsely
populated by observed KBOs.

However, the discrepancy that is most important to this
discussion lies in the 44 AU < a < 47 AU zone between the
7:4 and the 2:1 resonances, which is the outer half of the Main
Belt, conventionally defined as the region between the 3:2 and
2:1 resonances. Although these simulated particles managed to
slip through the advancing 2:1 resonance, they still reside in or-
bits that are only modestly disturbed, with e ~ 0.05 andi ~ 075,
whereas the observed KBOs inhabit orbits that are consider-
ably more excited. Thus, Neptune’s smooth migration into a
dynamically cold Kuiper Belt is unable to account for the Belt’s
stirred-up state.

Evidently, some other event has also disturbed the Kuiper
Belt, and this stirring event may have taken place prior to or
after the onset of Neptune’s migration. However, § 4 provides
reason to believe that this stirring event occurred before the
onset of Neptune’s migration into the Kuiper Belt.

4. MIGRATION INTO A STIRRED-UP BELT

To examine the effects of Neptune’s migration and its reso-
nance sweeping of a previously stirred-up Kuiper Belt popula-
tion, we repeat the numerical integrations with 10* simulated
KBOs but with initial e-values Rayleigh-distributed about a
mean value of (¢) = 0.1 and initial i-values distributed similarly
about a mean value of (sini) = (e)/2. However, this time the
simulation is evolved for the age of the solar system, 4.5 Gyr,
with Figure 3 showing the resulting Kuiper Belt end state.

First we note that in this case we find an outer solar system
that is far more depleted in transient particles such as Centaurs
(which are scattered particles having semimajor axes interior
to Neptune) and Scattered Disk objects (which are particles
that were lofted into eccentric Neptune-crossing orbits due to a
close encounter with Neptune [ Duncan & Levison 1997]); those
bodies usually reside in orbits having perihelia ¢ between the g =
30 and ¢ = 40 AU curves seen in Figures 2 and 3. This dif-
ference is primarily due to the simulation’s longer integration
time.

Another prominent difference with the “cold belt” simulation
is that Neptune’s weaker higher order resonances, such as 3:1 and
5:2, are considerably more efficient at capturing particles when
Neptune migrates into a hot disk, a phenomenon that was first
noted by Chiang et al. (2003). This result was rather surprising,
because low-order resonance capture theory predicts a generally
lower capture probability for particles having higher eccentrici-
ties (Borderies & Goldreich 1984; Malhotra 1993a). However, a
careful examination of the theory of adiabatic resonance capture
(e.g., Dermott et al. 1988) shows that there are two reasons for
this result: (1) The higher order resonances have capture proba-
bilities that drop off more slowly with eccentricity than first-order
resonances; although the first-order resonance capture probability
varies as ~e >, the second-order resonance capture probability
falls off more slowly, as ~e~!, while the third-order resonance
capture probability varies as ~e~ 2. (2) The threshold migration
speeds for adiabatic resonance capture are also lower for the
higher order resonances, and they also depend more strongly on
the initial eccentricities. For capture at a j + k: j resonance, the
requirement for adiabatic resonance capture is that Neptune’s



I MY o I am . N -
O M DN N ON 10 X} ~ <
O7§|||'|'||'||'|I
E L I I 1 e I
Fo. ° . . . q 30 AU
0.6E 1 | 1| I, I L
E Tooe ° I Ie e
o 05E 111 PO a=40 AU
> FE o0 I
O 0.4F o 1 I I
Z g [ I
"E 3 L. I
o 038 " |
O SR B |
® 02F -1ER. |
e Be . |
S 4 I !
0.1F HFiauhkd .
WAL E |
0.0E8 . 1t N
30 40 50 60 70 80
semimajor axis a (AU)
<M N M~ N NN — ~ —
40 SN e B S N e B R S, S
E T e l B
—~ - N T A | T T L T S | | .
$ SR I T | T | | | ]
O C T T N O B R | e [ | ]
< 30 (I [ B ([ T I I | I 7
O B S ‘e * 1. ° 1
L A S A R TR
~ B [ L I R T I R I I ° ]
. |f..‘.r 101 ey Lo * | e | ]
2 20F LRl e C
S SRR FE SR SR R B
= e ;.-. II- do I ol , | | E
RTINS I
e b g Lo e ]
.= __‘ 4.;'. [ | o | -
Ce © "1 % [ | [ [ ]
or AT ¥ el I L]
30 40 50 60 70 80
semimajor axis a (AU)

Fic. 2.—Simulation of Neptune’s migration into a dynamically cold Kuiper Belt. The model Kuiper Belt is initially composed of 10* massless particles with
semimajor axes randomly distributed over 20 AU < a < 80 AU and a surface number density that varies as 2. The particles’ initial eccentricities are Rayleigh-
distributed about a mean (e) = 0.001, and their initial inclinations (which are measured with respect to the system’s invariable plane) are similarly distributed over
(sini) = (e)/2, while their other angular orbital elements are uniformly distributed over 27. The four giant planets’ orbits migrate according to the prescription
described in § 2, and the black circles show the simulated Kuiper Belt end state: the particles’ e- and i-values vs. a at time ¢ = 5 x 108 yr. The red circles show the ecliptic
orbital elements of KBOs reported by the Minor Planet Center as having been observed for at least two oppositions. The yellow circles indicate Neptune’s orbit, and the
vertical dashed lines show the locations of Neptune’s various j + & : j mean-motion resonances. Orbits having perihelia ¢ = 30 and 40 AU are also indicated by the
curves.
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migration rate, which is ay ~ An/T ~ 10°° AU yr‘1 in these
simulations, be sufficiently slow, namely, that

. . mN an
< 8jCyef —— 3
|aN| J) /ke M@ PN ’ ( )

where my and Py are Neptune’s mass and orbital period and Cj;

is a function of Laplace coefficients. For example, the 5:2 reso-
nance has Cy3 ~ 3.3, so the migration speed threshold that per-
mits adiabatic resonance sweeping is |an| < 5x 1077 AU yr~!
among particles having e ~ 0.1, while the threshold is reduced
to |an| < 5x 10713 AU yr~! among particles having e ~ 0.001.
It is clear then that a dynamically cold particle swarm has
no chance of adiabatic capture at Neptune’s high-order mean-
motion resonances, while particles that are stirred up to e ~ 0.1
are at least near the threshold for adiabatic resonance capture.
And as Chiang et al. (2003) point out, the fact that seven ec-
centric KBOs are known to librate at Neptune’s 5:2 resonance
also lends support to the prestirred Kuiper Belt scenario.

Another advantage of this stirred-up Kuiper Belt scenario is
that it recovers eccentricities that are observed to be as large as
e ~ 0.2 in the Main Belt, which lies between the 3:2 and 2:1
resonances at 40 AU < a <48 AU (Fig. 3, red circles). This is
a feature that the cold Belt scenario (Fig. 2) does not account
for. Of course, Figure 3 also shows that the simulated Main Belt
is densely populated by low-eccentricity particles having e ~
0.05 at a ~ 47 AU, whereas the observed Kuiper Belt is only
sparsely populated here. But § 7 shows that there are a variety
of possible explanations for this discrepancy—such as a change
in the KBO size distribution or perhaps an outer edge in the
primordial Kuiper Belt.

Figure 3 also shows that trapping at the distant high-order
resonances such as 5:2 and 3:1 is quite effective at promoting
bodies into eccentric orbits having a 2 50 AU and perihelia
30 AU £ ¢ <40 AU. This domain is usually regarded as the
Scattered Disk. This result then suggests the possibility that
some of the observed KBOs in the 30 AU < ¢ <40 AU zone
may actually be resonantly trapped bodies that are masquerad-
ing as members of the Scattered Disk. Of course, particles scat-
tered by Neptune also tend to spend a large fraction of their
time near resonances due to the resonance sticking phenomenon
(e.g., Duncan & Levison 1997; Malyshkin & Tremaine 1999).
Therefore, the discrimination between scattered and resonantly
trapped particles must be done carefully. Toward this end, we
examine the orbital histories of all surviving particles in the
shaded zone in Figure 4 that have e > 0.25 and @ > 50 AU.
The usual definition of being “in” a j + k :j mean-motion
resonance is that the particle’s resonance angle ¢ (eq. [Al])
librates about some fixed value with some modest amplitude
| A/ that is usually <90°, while the resonance angle for a scat-
tered body that is temporarily “stuck” in a resonance will have
a ¢;; that circulates over £180°. However, we find that [Ag;/ is
not the best discriminant for identifying trapped and scattered
particles, because a small but significant fraction of particles do
get trapped at a resonance with a ¢y that is either circulating or
else librating with a very large amplitude. For some trapped
particles, this distinction is unclear due to this simulation’s in-
frequent time sampling, which occurs every At = 108 yr.

Rather, a more reliable discriminant between trapped and
scattered particles is based on Brouwer’s integral B (eq. [A6]).
This integral is conserved by resonantly trapped particles but
is not conserved by scattered particles that are temporarily ex-
hibiting the resonance sticking phenomenon. Of the 134 par-

eccentricity e

semimajor axis a  (AU)

Fic. 4—Eccentricity e vs. semimajor axis a at time ¢ = 4.5 x 10° yr for the
model population with initial e ~ 0.1 shown in Fig. 3. The vertical dashed lines
indicate the mean-motion resonances occupied by trapped particles with peri-
helia ¢ < 40 AU or particles inhabiting resonances in the gray region with
libration amplitudes |¢;| < 90°. Crosses indicate scattered particles.

ticles that inhabit the gray zone in Figure 4, only 12, or about
10% of these particles, are truly scattered particles whose orbits
(a, e) evolve stochastically about the 30 AU < ¢ <40 AU zone;
these scattered particles are indicated by the crosses in Figure 4.
The remaining particles are resonantly trapped particles, most®
of which preserved their B-integral to within ~3%.

The orbits of all particles having perihelia ¢ < 40 AU have
also been inspected, and those resonances inhabited by trapped
particles having libration amplitudes |¢;| < 90° are indicated
by the vertical dashed lines in the figure. We find that parti-
cles get trapped at a number of exotic resonances, such as 11:6,
13:7,13:6, 9:4, 12:5, 8:3, and 11:4.

5. KUIPER BELT INCLINATIONS

Inspection of the inclinations shown in Figure 3 suggests that
the smooth migration model does not produce sufficient numbers
of bodies in high-inclination orbits. This has been recognized
in previous studies (Malhotra 1995; Gomes 1997) but has not
been quantified. However, one should not directly compare the
simulation’s i-values to the observed KBO inclinations, since
the latter are heavily biased by telescopic selection effects. Note
that most telescopic surveys of the Kuiper Belt observe near the
ecliptic, which favors the discovery of lower i KBOs that spend
a larger fraction of their time at lower latitudes (Jewitt & Luu
1995). To mitigate this selection effect, one should instead con-
sider the ecliptic inclination distribution, which is the inclina-
tion distribution of objects having latitudes § very near the
ecliptic (e.g., Brown 2001). The ecliptic inclination distribution

3 However, the e- and i-values of some resonantly trapped particles will still
oscillate with constant ¢ in a manner that preserves their Jacobi integral; this
evolution usually occurs after migration has ceased, and these particular mo-
tions do not preserve B.
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for multiopposition KBOs having perihelia ¢ < 42 AU and
latitudes | 3| < 1° is shown in Figure 5 (red curve), as well as the
simulated ecliptic inclination distribution for particles from Fig-
ure 3 that are selected similarly (black curve).

The agreement seen in Figure 5 among bodies having in-
clinations of 0° < i <15° shows that the smooth migration
model can readily recover the Kuiper Belt’s lower inclination
members. Of course, this agreement is partly due to the par-
ticles’ initial inclinations being distributed around (i) ~ 3°. But
Figure 5 also shows this model to be quite deficient in pro-
ducing sufficient numbers of the high-i bodies having i 215°.
Similar results are also obtained among bodies orbiting at
Neptune’s 3:2 resonance. This is a serious discrepancy, since
Brown (2001) has shown that there are two inclination pop-
ulations in the Kuiper Belt: a minor population of low i having
characteristic inclinations of i ~ 3°, and a high-i population
having i ~ 15°, containing about three-quarters of all KBOs.
Note that these high-i bodies are very underrepresented in Fig-
ure 5 due to telescopic selection effects.

Of course, Neptune-scattered particles routinely achieve
high inclinations of i 2 15°; for instance, many of the high-i
particles seen in Figure 2 were scattered by Neptune. Could the
Scattered Disk be a source of the high-i KBOs that are found
elsewhere in the Belt? Recent N-body simulations by Gomes
(2003) show that a small fraction of these Neptune-scattered
particles can evolve from very eccentric, Neptune-crossing or-
bits into less eccentric orbits in the Main Belt. In Gomes’s sim-
ulations, this occurs principally at secular and mean-motion
resonances that drive large oscillations in a scattered particle’s
eccentricity. When a scattered particle visits a resonance, it can
have its e temporarily lowered and its g raised. If this occurs
during the planet-migration epoch, this process becomes irre-
versible and can strand scattered particles in the Main Belt
with high inclinations. Such bodies are identified by Gomes as
“evaders,” since they are Neptune-crossing bodies that ulti-
mately manage to evade Neptune when deposited in the Main
Belt. Note, however, that the efficiency of this process is quite

low, affecting only € ~ 0.002 of all scattered particles in the
simulation, which is evolved over the age of the solar system
by Gomes (2003). However, all the high-i particles seen in our
simulation (Fig. 3) achieved their inclinations while temporarily
or permanently trapped in Neptune’s advancing resonances.
There were no Neptune-scattered evaders having i > 10° that
survived in our simulations.

Despite the evader mechanism’s inefficiency, a model can
still be constructed that yields a KBO inclination distribution
that is quite similar to the observed one. For instance, this can be
achieved by making the number density of small bodies initially
orbiting interior to ~27 AU about 60 times higher than the
density of bodies initially orbiting beyond 27 AU. As Gomes
(2003) shows, Neptune’s migration through this densely pop-
ulated inner disk creates the Kuiper Belt’s high-i evaders, while
the sparse outer disk provides the Belt’s low-i component. Al-
though this scheme yields an i-distribution that does indeed
agree with the observations, that success is achieved via a spe-
cial configuration of the initial particle disk.

However, Levison & Morbidelli (2003) avoid this problem
of special initial conditions by assuming that the initial plane-
tesimal disk simply ended at ~35 AU. This is the “push-out”
model, which argues that most of the Kuiper Belt is a con-
sequence of Neptune’s advancing 2:1 resonance, which can
drag bodies outward to litter the Main Belt with low-i KBOs.
The Belt’s high-i component is then presumed to be due to the
evader mechanism. While the push-out model remains quite
intriguing, it would be interesting to see this scenario subjected
to greater scrutiny to see whether it can indeed reproduce the
Kuiper Belt’s curious mix of high- and low-inclination KBOs
in a self-consistent manner.

6. A KUIPER BELT CENSUS:
COMPARISON WITH OBSERVATIONS

Figure 6 plots the relative abundance, over time, of the
simulated Belt’s various dynamical classes among particles
having perihelia ¢ < 45 AU. These curves are normalized such
that the final abundance of the Main Belt, where 40.1 AU <
a <47.2 AU, is unity. Note that this model predicts a 2:1
resonance that is 1.4 times more abundant than the Main Belt
and 2.5 times more abundant than the 3:2 resonance, while
the observations (Fig. 3) show a 2:1 resonance that is only
sparsely populated. Of course, when comparing the simulated
population to the observed population, one must first deal with
the observational selection effect that strongly favors the dis-
covery of larger and/or nearer KBOs. However, it is shown be-
low that the effects of this bias can be accounted for by using
a Monte Carlo method that assigns random sizes to the simu-
lated population. This then allows one to make a fair compar-
ison of the relative abundances of the simulated and observed
populations.

Begin by letting N(R) be the number of bodies in the sim-
ulated population having radii exceeding a radius R. Also, let
& be a random number that is uniformly distributed between 0
and 1 and interpret this number as the probability of selecting a
body with a radius that is smaller than R. This is also equal to the
probability of not selecting a body of radius >R, so £ = 1—
N(R)/Niot, where Ny is the total number of bodies in this pop-
ulation. Since most small-body populations have a cumulative
size distribution N(R) that varies as a power law, adopt

R -0
N(R) = Nt <len> ) (4)
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Fic. 6.—Abundances of the Belt’s various dynamical populations plotted over time ¢, with all populations normalized to the Main Belt (/ine MB) population at time
t = 4.5x 10° yr and counting only those particles with perihelia ¢ < 45 AU. The resonant populations are counts of all particles with semimajor axes within 0.6 AU of
exact resonance, while the Main Belt curve gives the number of particles with semimajor axes 40.1 AU < a < 47.2 AU, excepting bodies in or near the 5:3 and 7:4
resonances. However, the Scattered Disk (/ine SD) curve shows the number of particles with ¢ > 49 AU and perihelia ¢ < 40 AU that are not members of any of the
indicated resonances (e.g., the 5:2 and 3:1), while Centaurs (/ine C) are particles with a less than Neptune’s semimajor axis.
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where R, is the radius of the smallest member of the swarm.
Then R/Rpmin = (1 — 5)_1@, but 1 — £ can be replaced with &,
since these random numbers have the same distribution, so

R

RO =175 (5)

Equation (5) is then used to generate random sizes for the
simulated population of Figure 3, which has apparent R-band
magnitudes of

- —2sulo(2) (2)°(52) ]

where r is the particle’s heliocentric distance, r; =1 AU,
me = —27.29 is the Sun’s apparent R magnitude, R i, =20 km
is adopted here, and the observation is presumed to occur at
solar opposition. All our calculations also adopt the usual al-
bedo of p = 0.04, so that our findings can be readily compared
to past results obtained by others. However, if an alternate al-
bedo p is desired, simply revise all KBO radii reported here by a
factor of ( p/0.04)~ "2 and all masses by a factor of ( p/0.04)=3/2.
Finally, note that a power-law size distribution results in a cu-
mulative luminosity function that varies as X(m) oc 10",
where Y(m) is the sky-plane number density of KBOs brighter
than apparent magnitude m, and the logarithmic slope is o =
QO/5 (Irwin et al. 1995).

Hubble Space Telescope (HST) observations reveal that the
bright end of the Kuiper Belt’s luminosity function has a steep
logarithmic slope of a = 0.88 £ 0.1 for bodies having magni-
tudes my < 24, while the faint end (my > 24) of the luminosity
function has a shallow logarithmic slope of o = 0.32 £ 0.15
(Bernstein et al. 2004); the steeper slope of the bright end of the
luminosity function was also confirmed recently by Elliot et al.
(2005). This luminosity function can be interpreted as evidence
that the KBO size distribution is actually two power laws that
break even at a magnitude my, =~ 24, which corresponds to a
body of radius Ry, ~ 65 km orbiting at a characteristic distance
of r ~ 40 AU, assuming it has an albedo of p = 0.04. However,
our application concentrates only on those KBOs that have
known orbits, and 99% of those bodies have magnitudes myp <
my,. Consequently, this study is sensitive only to the larger end
of the KBO size spectrum, and such bodies are characterized
here via a single power-law size distribution having o = 0.88
and O = Sa =44.

Although ~5000 simulated particles in Figure 3 manage to
survive over the age of the solar system, the Monte Carlo model
assigns far too few of them with sizes that would be detected by
any telescopic survey of the Kuiper Belt. To boost the statistics
of the detectable portion of the simulated population, each
survivor is replicated 10* times, such that each particle’s orbital
elements a, e, I, {2, and w are preserved, while its mean anomaly
M is randomly distributed over 0 < M < 2. It should be noted
that this step effectively assumes that the particles’ longitudes
are uniformly distributed over 27, which is not quite correct
since Neptune’s resonant perturbations tend to arrange the par-
ticles’ longitudes in a nonuniform manner (Malhotra 1996;
Chiang & Jordan 2002). Nonetheless, this is not a major con-
cern since the observed KBOs were discovered along lines of
sight that are distributed roughly uniformly in ecliptic longitude,
which effectively washes out Neptune’s azimuthal arrangement
of'the Belt; see Appendix C for a more detailed examination and
justification of this assumption. Finally, this Monte Carlo model
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is then tested by verifying that the randomly generated popu-
lation does indeed exhibit the expected luminosity function,
which varies as X(m) oc 10973

Further comparison of the Monte Carlo model of the Kuiper
Belt to any observations must be done carefully. Note that the
brighter KBOs tend to be discovered in shallow, wide-angle sur-
veys that observe a large area A() on the sky, while the fainter
KBOs tend to be discovered in deeper surveys that observe
smaller areas AQ2. Consequently, the observed abundances of
the various KBO subclasses (e.g., the Main Belt and the Scat-
tered Disk) are proportional to all of these surveys’ total area
Q(myp), which itself is some function of the limiting magnitude
mg. However, Appendix B shows that this dependence on Q(mp)
can be factored out by constructing ratios of the Belt’s various
subclasses. Appendix B also shows that the ratio of the ob-
served abundance of any two dynamical classes of KBOs is
approximately equal to the ratio of the intrinsic abundances of
the much larger unseen populations.* Thus, by plotting ratios
of the simulated populations to the observed KBO populations,
we can compare the model to the observations in a manner that
is insensitive to survey details such as individual sky coverage
AQ.

Figure 7 shows the apparent abundances of the 2:1 and the
3:2 populations relative to the Main Belt (MB) as a function of
their R-band magnitudes my. In the top panel, the light gray curve
is the simulated ratio, which predicts an apparent 2: 1 abundance
of about 80% of the Main Belt, while the dark gray curve is the
observed ratio. Taking the ratio of these two curves reveals that
their discrepancy at magnitudes mg > 21 (which refers to about
90% of the observed subpopulations) is a factor of f,.; >~ 20; the
observed 2:1 resonance is markedly underabundant relative to the
observed Main Belt population. There are Nyp(R > 50 km) =
1.0 x 10° Monte Carlo particles in the simulated Main Belt having
radii R > 50 km, and N.;(R > 50 km) = 8.2 x 10* particles in
the 2:1 resonance. If we let ,.,up represent the inferred ratio of
2:1 to Main Belt objects, then ry.;;m =~ No.1/f2:1NvB = 0.041,
which is comparable (albeit lower by a factor of ~2) to the ratio
that Tryjillo et al. (2001) infer from telescopic surveys of the
Kuiper Belt.

The observed 3:2/MB ratio plotted in Figure 7 (bottom) also
shows that this resonant population is underabundant relative
to model predictions by a factor of ~6 among bright objects
with 21 < mp < 23, and by a factor of ~60 at fainter magni-
tudes. Close inspection of the observations suggests that there
is indeed a deficiency of fainter KBOs in the 3:2 resonance and
that this curve is not due to some overabundance of Main Belt
KBOs having magnitudes of mp = 23.

It should be noted that the results given in Figure 7 are not
particularly sensitive to the detailed location of the Main Belt’s
outer edge. For instance, if we assume the Belt’s primordial edge
was instead at a = 45 AU (e.g., Trujillo & Brown 2001; see also
§7), this reduces both the 2: 1 and Main Belt populations by about
40%, while leaving the 3:2 population unchanged. Conse-
quently, the 2:1/MB ratios of Figure 7 are largely unchanged for
both the simulated and observed populations, while the 3:2/MB
ratios increase by a factor of (1 — 0.4)"! ~ 1.7. However, the
discrepancy between the simulated and observed populations is
still the same factors of ~6—60.

4 Of course, this method of analyzing the Belt’s relative abundances will tell
us little about those KBO populations that are either too rare, too dim, or
otherwise too difficult to recover in telescopic surveys. Nonetheless, we still can
use our method to place upper limits on the abundances of any hypothetical
KBO populations that are unseen using the method described in § 7.
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Fic. 7—Number of KBOs that have been observed (for two or more oppo-
sitions) orbiting in or near the 2: 1 resonance with apparent magnitudes mg + Am
relative to the observed Main Belt population at 40.1 AU < a < 47.2 AU (zop,
dark-gray curve), and the observed 3:2/MB ratio (bottom, dark-gray curve).
Likewise, the light-gray curves show the 2:1/MB and 3:2/MB ratios for the
simulation of Fig. 3, in which these bodies’ sizes and magnitudes are assigned
using the Monte Carlo method of § 6 assuming Q = 4.4 and Ry,;, = 20 km. All
these curves are smoothed over a magnitude window with a half-width Am = 0.5,
and the vertical half-widths of the gray zones are 1 o assuming Poisson counting
uncertainties. The observed curves end at mp ~ 24.5, which is the magnitude of
the faintest multiopposition KBO. The dashed curve shows the simulated 3:2/MB
ratio when the 3:2 population has a shallow size distribution with Q = 2.7 and
Rpin = 4.3 km, while the Main Belt bodies have Q = 4.4 and Ry, = 20 km.

Although there are several possible interpretations of the dis-
crepancies seen in Figure 7, the most plausible explanation is that
other unmodeled processes are responsible for (1) reducing the
trapping efficiencies of the 2:1 and 3:2 resonances by factors of
~6—60 or (2) causing trapped particles to diffuse out of the res-
onances and into nearby regions of phase space that are quite
unstable (see Fig. 1 of Duncan et al. 1995), resulting in their ejec-
tion from the Kuiper Belt. Such unmodeled processes include
the collisions and gravitational scatterings that occurred with ever
greater vigor during earlier times when the Belt was more crowded.
The scattering of these planetesimals by Neptune was of course
responsible for driving that planet’s migration, so the occasional
scattering of a large and/or close planetesimal will cause that
planet’s orbit and hence its resonances to shudder some. Like-
wise, scattering events among the KBOs themselves would also
cause their semimajor axes to diffuse some, as would collisions.
This means that scatterings and collisions will have driven a ran-
dom walk in the resonant particles’ semimajor axes, as well as a
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random walk in the locations of the resonances themselves. It is
possible then that these unmodeled effects can drive particles out
ofresonances and reduce the resonant population by the large fac-
tors indicated in Figure 7, a scenario that is also explored in sim-
ulations by Zhou et al. (2002).

The magnitude dependence of the observed 3:2/MB ratio
shown in Figure 7 is also quite curious. The fact that the ob-
served ratio varies with apparent magnitude mp, while the sim-
ulated ratio remains constant at magnitudes fainter than mp =
21, suggests that the N(R) oc R~¢ power law that was univer-
sally applied throughout the entire Belt is overly simplistic.
One way for the model to achieve better agreement with the
observations is to assume that larger, brighter bodies are more
abundant in the 3:2 resonance and that smaller, fainter bodies
are less abundant there than they are in the Main Belt, which
requires a shallower size distribution. The dashed curve in
Figure 7 illustrates this possibility, which shows the simulated
3:2/MB ratio assuming that the 3:2 bodies have a shallow
O = 2.7 size distribution with Ry, = 4.3 km (note that re-
ducing R, has the effect of reducing the total number of visible
objects), while the Main Belt bodies have the usual distribution
with O = 4.4 and R, = 20 km. The shallow size distribution
that is inferred here for the 3:2 population is also consistent with
the logarithmic slope of o ~ 0.56 that Elliot et al. (2005) re-
cently reported for the luminosity function of their “resonant”
population, which is dominated by 3:2 KBOs; the size distri-
bution inferred from that work is Q = 5a = 2.8. KBO sizes can
also vary with inclination (Levison & Stern 2001, but see also
footnote 1 of Gomes 2003). In particular, Bernstein et al. (2004)
report that the bright end of the luminosity function for high-
inclination (i > 5°) KBOs has a logarithmic slope of o = 0.66
and a size distribution Q = 5a = 3.3, which is much shallower
than the low-i KBOs with o = 1.36 and a Q = 5a = 6.8.

In our Monte Carlo model there are only N3.»(R > 50 km) =
2100 bodies larger than R = 50 km, so their numerical abun-
dance relative to the Main Belt is 73.0mp = N3.2/Nyg = 0.021,
which again is comparable (but again lower by a factor of ~2)
to the ratio reported in Trujillo et al. (2001). The largest Monte
Carlo body at the 3:2 resonance has a radius R ~ 1000 km,
which is comparable to the size of the largest multiopposition
KBO there’® with R ~ 1100 km, assuming p = 0.04.

This range of power-law indices that is inferred for the Kuiper
Belt, 2.7 < O £4.4, is comparable to the values of QO that are
observed at various sites throughout the asteroid belt. Near-
Earth objects have a fairly shallow size distribution with Q =
1.95 (Stuart & Binzel 2004), while the asteroid families exhibit
steeper size distributions. For instance, Figure 1 of Tanga et al.
(1999) shows size distributions for several prominent asteroid
families having values of 2 < O < 6. Note also that nonfamily
asteroids have Q ~ 3.0 (Ivezi¢ et al. 2001), which is slightly
steeper than the canonical Q = 2.5 value that results from a
collisional cascade (Dohnanyi 1969). Since the various asteroid
subclasses exhibit such a wide variation in their size distribu-
tions over a relatively narrow range of semimajor axes of Aa ~
4 AU, perhaps it should be of no surprise that the spatially much
wider Kuiper Belt might also exhibit some variety in Q.

7. THE OUTER EDGE OF THE SOLAR SYSTEM

Inspection of Figure 3 shows a prominent absence of ob-
served KBOs having modest eccentricities of e ~ 0.1 near and

3 Excepting Pluto, of course, which has an anomalously high albedo of
p~0.5.
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Fic. 8. —KBO surface number density o(r) (circles), normalized to peak at
unity and inferred from the KBO radial distribution function f(r) o ro(r) reported
by Trujillo & Brown (2001). The t = 0 and 4.5 Gyr curves show the simulated
Belt’s initial and final surface densities. The “truncated Belt” curve shows the
simulation’s final surface density assuming that the Belt is truncated at a = 45 AU
and that the 3:2 population also does not contribute to o. Note that the surface
density of the inner half of this Belt increases as a very steep function of distance,
o(r) o< r%3 for r < 45 AU.

beyond Neptune’s 2:1 resonance. The prevailing interpretation
of this observed feature is that there is a boundary near 45 AU <
a <50 AU that marks the outer edge of the solar system’s pri-
mordial Kuiper Belt (Allen et al. 2001; Trujillo & Brown 2001).
The circles in Figure 8 show the Belt’s surface density o(r) in-
ferred from these observations, which peaks at » ~ 45 AU. We
have nonetheless allowed our simulated Kuiper Belt to extend
out to a = 80 AU in order to use the dearth of observed distant
KBOs to place quantitative upper limits on the abundance of
hypothetical KBOs that might live beyond 50 AU.

The N-body/Monte Carlo model of § 6 can be used to predict
how many KBOs should have been observed in the a > 50 AU
zone (which we identify here as the Outer Belt [OB]) assuming
(1) that the primordial Kuiper Belt extends smoothly out to a =
80 AU and (2) that all KBOs everywhere have the same size dis-
tribution with the usual parameters Q = 4.4 and R,;, = 20 km.
This simulation’s ratio of Outer Belt to Main Belt objects,
ro/MB(7R), is plotted versus magnitude mp in Figure 9. This is
the ratio of N&g'(mp), the number of bodies in the simulated
Outer Belt (whose members have semimajor axes 50 AU < a <
80 AU and eccentricities e < 0.2), to N{jg(mp), the number of
bodies in the simulated Main Belt (where 40.1 AU < a <
47.2 AU) in the magnitude interval mg = Am, where Am =
0.5. According to the figure, the expected OB/MB ratio is
rop/ms = 0.4. At present there are Nf,}g = 264 KBOs in the
Main Belt that have been observed for two or more oppositions,
and the dimmest member of this group of KBOs has an apparent
magnitude mj = 24.5. The N-body/Monte Carlo model thus pre-
dicts that there should also be N3% = rop/ MmNy ~ 100 objects
brighter than m} orbiting in the Outer Belt beyond a = 50 AU.
This prediction is in marked contrast with the observations, which
show that there are no known multiopposition objects orbiting in
the Outer Belt with magnitudes brighter than m}, i.e., N3y < 1.
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Fic. 9.—Expected ratio of bodies in the Outer Belt (¢ > 50 AU) relative to the
Main Belt (40.1 AU < a < 47.2 AU) as a function of magnitude my assuming the
size distribution has Q = 4.4 and Ry, = 20 km ( gray curve). The black curve shows
the OB/MB ratio assuming the Outer Belt instead has a steeper QO = 6.0 size dis-
tribution, while the Main Belt has Q = 4.4, with Ry, = 20 km for both populations.

This prediction that the Outer Belt would have an observed
abundance that is 40% of the Main Belt differs considerably
from that of Gladman et al. (1998), who estimated that the ob-
served Outer Belt population should only be ~6% of the total
observed population. However, this much lower estimate was
obtained by assuming that the current Belt’s surface number
density resembles its primordial o(7), which likely varied as »~2
or so. This very common assumption causes the inner part of the
Belt to be more concentrated than its outer part. However, a real
Kuiper Belt would have been dynamically eroded over the eons
by the giant planets’ gravitational perturbations. This dynamical
erosion is illustrated in Figure 8, which shows the simulated
Belt’s primordial surface density ( gray curve) and its final surface
density (dashed curve); similar erosion is also seen in the long-
term integrations of Duncan et al. (1995). Figure 8 shows that
o(r) for an eroded Belt is a sharply increasing function of » for
r <50 AU, which implies that the inner observable portion of the
Belt is very underdense relative to the more distant » ~ 50 AU
zone. This dynamical erosion accounts for the discrepancies be-
tween our Outer Belt predictions and that by Gladman et al. (1998).

Recall that Figures 3 and 7 show that the 2:1 and 3:2 pop-
ulations are very depleted relative to model predictions and that
the zone beyond Neptune’s 2:1 resonance is either empty or in-
habited by bodies too small and faint to be seen. To account for
these depletions, the solid curve in Figure 8 also shows a revised
surface density curve obtained from the simulated Belt that is
truncated at a = 45 AU (about 3 AU inward of Neptune’s 2:1
resonance), and with the negligible contribution from the 3:2
population also being ignored. This results in a curve that agrees
quite well with the Belt’s observed surface density variations. De-
spite this good agreement in the radial distributions of the simu-
lated and observed Kuiper Belts, Figure 3 shows that this apparent
edge at a = 45 AU is still rather fuzzy, since there are four multi-
opposition KBOs of low eccentricity (¢ < 0.05) orbiting in the
Main Beltat45 AU < a < 48 AU. Close inspection of Figure 3
shows that a hard edge at a = 45 AU also could not account for
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the KBOs having e ~ 0.1 in the 45 AU < a < 48 AU zone,
unless the advancing 2:1 resonance also dragged some bodies out
of the a < 45 AU zone and deposited them here, reminiscent of
the scenario suggested by Levison & Morbidelli (2003).

The remainder of this section places upper limits on the size
and abundance of any unseen KBOs that might lurk beyond
a = 50 AU. Of course, there are multiple interpretations of the
dearth of observed multiopposition bodies orbiting beyond a =
50 with modest eccentricities of e ~ 0.1, i.e., that N3& < 1.
One interpretation of this upper limit is that assumption 1 is
incorrect—that the primordial Kuiper Belt’s density did not ex-
tend smoothly beyond Neptune’s 2:1 resonance but instead was
reduced by a factor f'(relative to the smooth model’s density) in
the a > 50 AU zone. In this case, the OB/MB ratio becomes

rosmp = 0.4/f = N3% /Nobs < 1/Nyps,

which implies that the primordial density of the Outer Belt was
smaller than the Main Belt by a factor /' = 100.

Alternatively, assumption 2 could be incorrect, namely, it
could be that the KBO size distribution is not uniform every-
where. For instance, the absence of any multiopposition bodies
in the Outer Belt having magnitudes brighter than mj = 24.5
could simply mean that bodies beyond » ~ 50 AU are dimmer
than m, and thus have radii smaller than R ~ 80( p/0.04)~"? km
(see eq. [6]). Note that Trujillo et al. (2001) obtained a similar
limit but that they came to regard this scenario as unlikely.

It is also possible that the Outer Belt’s size distribution is
steeper, i.e., has a larger O, than the Main Belt’s size distribu-
tion. An increase in Q decreases the abundance of bright bodies,
as is illustrated by the curve in Figure 9, which gives the rop/MmB
ratio for an Outer Belt having a Q = 6.0 size distribution, while
bodies in the Main Belt have the usual Q = 4.4 distribution.
This particular Q is also the minimum value consistent with
the observed upper limit of rog/mp < 1/264; Outer Belts with a
smaller O would contain at least 1 KBO brighter than m} in the
a > 50 AU zone for every 264 KBOs detected in the Main Belt,
while an Outer Belt having a larger O would be undetected. This
particular model is near the threshold of detection, and its larg-
est member has a radius of R = 250 km. Trujillo et al. (2001)
also considered this scenario, but they concluded that the ab-
sence of distant KBOs requires a steeper O > 9 size distribu-
tion. The origin of this discrepancy is unclear.

It is also interesting to note that the low-inclination KBOs
have a logarithmic slope of & = 1.36 along the bright end of
their luminosity function (Bernstein et al. 2004), which implies
a steep size distribution of Q = 5a = 6.8. Such bodies, if they
inhabit the Outer Belt beyond a = 50 AU with the same abun-
dances as adopted by our model, could conceivably have avoided
detection to date due to their steep size distribution. In other
words, a Main Belt whose low-i population extends beyond a =
50 AU while its high-i population terminates ata = 50 AU could
be quite consistent with their nondetection.

From these considerations it can be concluded that the ob-
served absence of multiopposition KBOs in the @ > 50 AU zone
having modest eccentricities e ~ 0.1 implies (1) this part of the
primordial Kuiper Belt was underdense by a factor /' = 100 rel-
ative to the @ < 50 AU zone, (2) these distant KBOs have radii
R <80 km, (3) their size distribution has a power-law index
0O > 6.0, or perhaps (4) some combination of the above effects.

8. THE ORIGIN OF CENTAURS

It is generally accepted that Centaurs are those bodies that
have diffused inward from the Kuiper Belt into orbits that cross
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Fi6. 10.—Orbits of the simulation’s seven Centaurs at time ¢ = 108 yr (open
circles) and their subsequent motions (black circles). Gray circles show the sim-
ulation’s end state at time ¢ = 4.5 x 10° yr, red circles indicate multiopposi-
tion KBOs and Centaurs, and yellow circles show the giant planets’ final orbits.
Neptune’s mean-motion resonances are indicated, and the curve is the threshold
for Neptune-crossing orbits.

the giant planets (e.g., Duncan et al. 1988). Currently there are
27 known Centaurs observed for more than one opposition;
these are the red circles in Figure 10 having a < 30 AU. Since
planet crossers are quickly ejected or accreted, Centaurs have
short dynamical lifetimes of only ~107 yr (Levison & Duncan
1997; Tiscareno & Malhotra 2003). Consequently, the density of
these “escapees from the Kuiper Belt” (e.g., Stern & Campins
1996) is very tenuous inside a = 30 AU (see Fig. 8). Indeed,
only N! =7 Centaurs are detected during the final AT =
2 billion yr of our simulation, which was only sparsely time
sampled once every Atz = 10® yr, so the instantaneous num-
ber of Centaurs is Nc = NE(At/AT) = 0.35 at the end of the
simulation. There are also Nyg = 565 bodies in the Main Belt,
so the Centaur/Main Belt ratio is provisionally estimated at
r'c/MB — 6.2 x 10_4.

The open circles in Figure 10 show the orbital elements of
these seven Centaurs at time r = 108 yr, which is at a time when
planet migration has only recently ceased. Thus, the open cir-
cles indicate the locations where Neptune has parked these
proto-Centaurs in the Kuiper Belt. Note that all seven Centaurs
originate from sites in or near Neptune’s mean-motion reso-
nances, namely, the 3:2, 5:3, 13:7, 2:1, and 5:2. Their subse-
quent motions at times ¢z > 10% yr are shown as black circles
(again, poorly time sampled), which show that the eccentrici-
ties of nearly all proto-Centaurs initially wander up and down
with constant a until they have a close encounter with Nep-
tune, scatter off that planet, make a brief appearance in the a <
30 AU Centaur zone, and then are quickly removed from the
system.

These seven bodies have initial semimajor axes of 28 AU <
a <48 AU at time ¢ = 0, so Centaurs can also be regarded as
samples that have been drawn from a wide swath of the outer
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solar nebula. Figure 10 also shows that the simulated Centaurs
are concentrated just inside Neptune’s orbit; their mean helio-
centric distance is » = 26 + 3 AU, and their mean inclination
is i = 16° & 10°. Note also that three of the seven Centaurs
emerged from the 3:2 and 2:1 resonances, which § 6 showed to
be heavily depleted relative to the model’s predictions. Conse-
quently, the Centaur/Main Belt ratio reported above should in-
stead be interpreted as an upper limit, e.g., 7o/mp < 6.2 x 1074, It
is shown in § 11 that our model predicts that there are Nyg ~
1.3 x 10° Main Belt KBOs having radii R > 50 km, so this model
also predicts that there are Nc = rc/mpNvp < 80 similarly sized
Centaurs.

Although the Centaur upper limit reported here is com-
parable to the population that Sheppard et al. (2000) infer from
the Centaur luminosity function, there is still a prominent dis-
connect in the heliocentric distances of the simulated and ob-
served populations; our simulated Centaurs all reside at » >
22 AU, while the three Centaurs that Sheppard et al. (2000) used
to construct the Centaur luminosity function were detected at
heliocentric distances of » < 19 AU. One possible interpretation
of this excess of Centaurs at » < 20 AU is that Centaurs may be
breaking up and spawning new Centaurs (e.g., Pittich & Rickman
1994) as they wander among the giant planets. Finally, we note
that deep, wide-angle surveys of the Kuiper Belt, such as the
Legacy Survey that is currently being implemented at the Canada-
France-Hawaii Telescope, may soon reveal the existence of the
Centaurs anticipated by this model to reside at greater distances of
23 AUSr=<29 AU.

9. NEPTUNE’S TROJANS

Figure 3 also shows that Ny = 5 particles managed to survive
the length of the simulation at Neptune’s 1:1 resonance. These
simulated particles are, of course, Neptune’s Trojans, of which
two are currently known: 2001 QR3,, (Chiang et al. 2003) and
2004 UP,( (Sheppard et al. 2005). For this simulation the Trojan/
Main Belt ratio is 71/mp = Nt/Nug = 8.8 x 1073, where Nyg =
565 is the number of survivors that persist in the Main Belt.
The spatial coordinates of the two observed and five simulated
Trojans are shown in Figure 11, which indicates that these par-
ticles can roam about with longitudes +30° from Neptune’s
triangular Lagrange points and semimajor axes £0.32 AU from
Neptune’s. The extent of these Trojan sites is similar to that
seen in integrations by Holman & Wisdom (1993) and Nesvorny
& Dones (2002). Note that no special effort was made to start any
of the simulated particles at Neptune’s Lagrange points. Rather,
all particles were distributed randomly about a disk according
to a smooth surface density law, with the inner edge of the disk
being well inside Neptune’s initial tadpole region. In our simu-
lation the five survivors had initial semimajor axes approxi-
mately +0.28 AU from Neptune’s initial a, and there were a
total of 68 particles initially in Neptune’s Trojan source region
(i.e., |Aal < 0.28 AU and |A¢| < 30°), so the surviving Trojan
fraction is about 7%. This survival fraction is comparable to that
obtained by Kortenkamp et al. (2004) in a similar simulation.
That work also showed that as planets migrate, several secondary
resonances sweep across the 1:1 resonance, which results in a
heavy loss of Neptune’s Trojans during the migration epoch.

Neptune’s Trojans are of interest since they might place
constraints on some models of the early evolution of the outer
solar system. For example, Thommes et al. (1999, 2002) pos-
tulate that Neptune originally formed in the vicinity of Jupiter
and Saturn and was tossed outward after scattering off the larger
planets. But the existence of 2001 QR3,, and 2004 UP,, might
cast doubt on this scenario, since Trojans seem unlikely to per-
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Fic. 11.—Longitudes offive simulated Trojans vs. their semimajor axes (black
circles), all relative to Neptune’s and sampled every 10® yr during the entire sim-
ulation. Neptune lies at the plus sign. Small squares show the final positions of
these Trojans, indicating that two Trojans lie at the leading Lagrange point, with
three trailing. Red circles indicate three nearby “field” KBOs, as well as Neptune’s
two known Trojans, 2001 QR3y, and 2004 UP;,.

severe at Neptune’s Lagrange points during such a scattering
event. However, it has since been shown that a recently scat-
tered Neptune can still acquire its Trojans later as its orbit is
circularized by a dense Kuiper Belt (H. F. Levison 2005, private
communication). It is also conceivable that Neptune may have
captured its Trojan from a heliocentric orbit affer Neptune’s
orbit had settled down. Although Kortenkamp et al. (2004)
show that the direct capture of Trojans from heliocentric space
is rare and results in only transient Trojans, Chiang & Lithwick
(2005) show that mutual collisions can insert small bodies into
stable orbits at Neptune’s Lagrange points.

10. THE EXTENDED SCATTERED DISK

Figure 12 shows the orbits of those scattered particles that
have been tossed into very wide orbits about the Sun. Most of the
simulated scattered particles have perihelia between 30 and 40 AU,
as do most of the observed scattered KBOs. However, there are
two exceptions to this rule, namely, 2000 CR (s and 2003 VB,
(also known as Sedna), which have respective perihelia of ¢ =
44.14 £ 0.02 (Gladman etal. 2002) and ¢ = 76 £+ 4 AU (Brown
et al. 2004). Gladman et al. (2002) classify those Scattered Disk
KBOs having perihelia higher than ¢ ~ 40 AU as members of
the so-called Extended Scattered Disk. Sedna’s large radius of
R ~ 1000 km makes this object a particular curiosity, since its
discovery circumstances suggest that there may be a few hundred
other unseen Sedna-sized objects (Brown et al. 2004). Since
Sedna has a mass of ~1073 M, the implied mass that might be
hidden in the Extended Scattered Disk is a few tenths of an Earth
mass. Thus, Sedna by itself may represent an enormous reservoir
of unseen mass that is comparable to the “conventional” Kuiper
Belt (see § 11).

The Extended Scattered Disk is also of dynamical interest
since, as Gladman et al. (2002) note, many dynamical models of
the Kuiper Belt (including this one) generally produce Scattered



No. 5, 2005

1.0[

0.8

o
o)

o
~

eccentricity e

0.2

0.0l . . .

25 50 100 200 400
semimajor axis a  (AU)

Fic. 12.—Eccentricities e vs. a on a logarithmic axis for the particles of
Fig. 3. Red circles show the KBOs observed over multiple oppositions, and the
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VB,, are also indicated. Crosses indicate particles resonantly trapped at the 3:1,
7:2, and 4:1 resonances. The large black circle indicates the only simulated
particle that was scattered into a high-perihelion orbit (¢ = 43.5 AU), resem-
bling that of 2000 CR¢s.

Disk objects in lower perihelia orbits having ¢ <40 AU.
Gladman et al. (2002) review a number of scenarios that might
explain how a KBO might get promoted from a nearly circular
orbit into a wide, eccentric orbit having g = 40 AU; these include
(1) chaotic diffusion of scattered bodies, (2) gravitational scat-
tering by long-gone massive protoplanets, (3) scattering by an
undiscovered distant planet, and (4) scattering by a single star
that passes within ~100 AU of the Sun. However, all these sce-
narios are problematic. For instance, billion-year integrations
of ~10* particles in chaotic Neptune-scattered orbits fail to dif-
fuse into orbits having perihelia as high as that of 2000 CR s
(Gladman et al. 2002). Morbidelli et al. (2002) also cast doubt on
scenarios 2 and 3 by showing that ~20% of any distant popu-
lation of protoplanets would have persisted over the age of the
solar system, and that some fraction of these large bodies should
already have been discovered by one of the various wide-angle
Kuiper Belt surveys. Scenario 4 is also in doubt, since simula-
tions of a close encounter with a single star generally produce dis-
turbances in the outer Kuiper Belt that are quite unlike that seen
in the observed Belt (e.g., Ida et al. 2000). However, Fernandez
& Brunini (2000) have shown that repeated encounters with more
distant stars can produce Sedna-like orbits. This may have oc-
curred early, while the Sun was still a member of the open cluster
from which it presumably formed. In this scenario, the giant plan-
ets scatter small bodies into wide orbits of a ~100-1000 AU,
which the nearby cluster stars then perturb into Sedna-like orbits
having higher perihelia. Scattering by a passing star was recently
reexamined by Morbidelli & Levison (2004), and their simula-
tions also support this scenario.

Although our simulations did not produce any Sedna-like
objects in orbits that are well decoupled from the giant planets,
we did find a single scattered object in a 2000 CRs—like orbit in
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the Extended Scattered Disk with a semimajor axis of @ = 92 AU
and a perihelion of ¢ = 43.5 AU (Fig. 12, large black circle).
The orbital history of this scattered particle is shown in Figure 13,
which shows that as the particle inhabited Neptune’s 16:3 reso-
nance during 2 Gyr < ¢ < 3 Gyr, some process raised this Scat-
tered Disk particle’s perihelion up and into the Extended Scattered
Disk on a billion-year timescale. This kind of behavior was first
reported in Levison & Duncan (1997) and Duncan & Levison
(1997), whose simulations also show that some scattered particles
can achieve high perihelia orbits while in or near mean-motion
resonances.

However, we have not identified any particular resonance
as being responsible for raising the perihelia of our one CR5
candidate shown in Figure 13. For instance, a Kozai resonance
is not implicated since the argument of perihelion w does not
librate. The possibility of other Pluto-like “super-resonances” (e.g.,
Malhotra & Williams 1997) was also examined; this is the libra-
tion of a resonance angle of the form ¢ = j(w — wn) — £(Q —
QN), where (2 is the particle’s longitude of the ascending node
and the “N”’ subscript refers to Neptune’s orbital elements. An-
gles having 0 < | j|, |k| < 10 were examined, and although the
angle ¢y = 5(2 — (dy) did in fact librate for about 1 Gyr, that
occurred well after the time when the particle’s ¢ was raised. A
resonance involving interactions with multiple planets is also
unlikely, since the particle’s Tisserand parameter 7' (which is sim-
ply its Jacobi integral sans the interaction energy due to Neptune)
was well preserved during these times. Although the particular
mechanism that drove this particle into the Extended Scattered
Disk is not understood, this particle does demonstrate that it is
indeed possible for Scattered Disk particles to diffuse into the
Extended Scattered Disk via planetary perturbations alone, with
other external agents (such as stellar encounters) being absent.
This transport from the Scattered Disk to the Extended Scattered
Disk via mean-motion resonances is also evident in the simu-
lations of Levison & Duncan (1997) and Duncan & Levison
(1997). However, this transport has an extremely low flux, since
only one of the ~5 x 103 particles initially in the Scattered Disk
did manage to enter the Extended Scattered Disk and persist over
the age of the solar system. External perturbations from passing
stars (Fernandez & Brunini 2000; Morbidelli & Levison 2004)
may indeed be more effective at producing members of the Ex-
tended Scattered Disk.

Note also the simulated particles represented by crosses in
Figure 12. Even though their perihelia 0f 42 AU < ¢ < 54 AU
might suggest that they also inhabit the domain of the Extended
Scattered Disk, they are in fact resonant particles that were
trapped atthe 3:1, 7:2, and 4:1 resonances during the migration
epoch. Most of these particles have libration amplitudes less
than |A¢;| < 90°. These particles also had initial semimajor
axes of @ > 47 AU, which is noteworthy since, if any resonant
KBOs are ever discovered in these orbits, they could be in-
terpreted as evidence that the outer edge of the solar system lies
beyond a > 47 AU. However, that interpretation would still be
ambiguous, since Neptune-scattered evaders, which originated
from smaller semimajor axes, can also settle into these same
resonances (see Fig. 18 of Gomes [2003] for an example).

10.1. The Scattered Disk

Figure 14 shows the apparent abundance of so-called Scattered
Disk (SD) objects relative to the Main Belt, as predicted by the
N-body/Monte Carlo model. There are Nsp = 1.9 x 10* Monte
Carlo bodies in orbits having 50 AU < a < 150 AU and peri-
helia 28 AU < g < 40 AU, while Nyg = 1.0 x 10° Monte Carlo
particles survive in the Main Belt, so the model predicts an
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intrinsic SD/MB ratio of rsp/mM = Nsp/Nms = 0.19. The ap-
parent ratio of these two populations is ~0.1, also shown in
Figure 14. Note that the intrinsic SD/MB ratio inferred here is
about one-fourth that reported in Trujillo et al. (2001).

11. CALIBRATION

The ecliptic luminosity function of Bernstein et al. (2004)
is shown in Figure 15, and its bright end varies as X (mp) =
1020m=m) deg=2 where a = 0.88 and my = 23.1 for magni-
tudes mp < myp, = 24. This luminosity function gives the number
density of KBOs near the ecliptic that are brighter than magni-
tude my. Since this curve scales with the total number of KBOs,
it can be used to calibrate the simulation to determine the total
number of objects in the Kuiper Belt.

Sections 6 and 7 show that the observed 3:2 and 2:1 pop-
ulations are severely depleted relative to model predictions and
that bodies in the Outer Belt beyond the 2: 1 resonance are either
absent or too faint to be seen. To account for these depletions,
a truncated Kuiper Belt similar to that of § 7 is adopted; this
Belt is formed by discarding any bodies orbiting beyond the 2: 1
resonance, as well as all bodies orbiting within Aa = 0.6 AU
of Neptune’s 3:2 and 2:1 resonances. There are Ny-pogy = 587
N-body particles in this truncated Kuiper Belt, and they are rep-
licated Nyeps = 10* times with sizes and magnitudes assigned to
them according to the Monte Carlo method of § 6, with Q = 4.4
and Ry, = 20 km.

_ The simulation’s median inclination is low (e.g., § 5), only
Iim = 2°7, which is much lower than the median inclination
iobs = 15°6 that is inferred from the debiased KBO inclination
distribution reported by Brown (2001). Due to these low in-
clinations, the simulation’s ecliptic luminosity function would
thus be artificially overdense by a factor f; = iops/isim =~ 5.8,
so itis revised downward by this factor to compensate. The sim-
ulation’s X (myp) is then multiplied by a factor f5; = 3.5 to fit it
to the bright end of the observed luminosity function; this ac-
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Fic. 15.—Kuiper Belt’s observed ecliptic luminosity function >(mg) (smooth
black curve), obtained by integrating the differential luminosity function d¥.(mp)/
dmp, reported in Bernstein et al. (2004). Note that it breaks to a shallower slope at
magnitudes my, =~ 24. The circles give the simulation’s ecliptic luminosity func-
tion for particles in a truncated Kuiper Belt (see § 11) with latitudes within 0°5 of
the ecliptic. Error bars are for Poisson counting statistics.

counts for the different populations in the simulated and ob-
served Kuiper Belts and results in the curve shown in Figure 15.
The size distribution adopted here is valid down to a radius of
about R, = 65 km (see § 6), so the inferred number of KBOs
larger than Ry, is

Ny = NN-boderepst(Rbr/Rmin)7Q ~1.1x 105-

To estimate the total number of KBOs larger than the fiducial
radius of Rsy = 50 km, note that the faint end of the observed
luminosity function has a logarithmic slope of aine = 0.32
(Bernstein et al. 2004), which implies a power-law index of
Ofint = Sapine = 1.6 for bodies having radii R < Ry,. The total
number of bodies larger than Rs is thus

Nso = Nor(Rso/Ror) 25m ~ 1.7 x 10°.

The total mass of these bodies is obtained from their cumu-
lative size distribution, which for the large bodies with R > Ry,
can be written N(R) = Nu:(R/Ry;) 2. The differential size dis-
tribution is then dN(R) = |dN/dR| dR, and if M(R) is the mass of
abody having a radius R, the total mass of bodies having radii in
the interval Ry, < R < Rpax 18

Rmax
M(R > Ry) = M(R/) dN(R’)
Ryr
Ry \¢7°
() o
where
My, = M(Rbr)

-3/2
~12x102 (2P P g
1 gem3 ) \0.04 ’



2408 HAHN & MALHOTRA

which is the mass of a body of radius Ry, = 65 km assuming it
has a density p and albedo p. The total mass of KBOs larger than
Ry, with semimajor axes inside Neptune’s 2: 1 resonance is thus

P p\ "
M(R > Ry;) ~ 0.07 M
(R> Rer) (1gcm3> (0.04) ©

for a QO = 4.4 size distribution that extends to radii as large as
Rimax = 1000 km. To get the total mass of bodies at the fiducial
size R = Rsp, add to the above the mass of bodies in the size
interval Rsyp < R < Ry, whichisroughly AM ~ (Ns5g — Ny )My,
The total mass of bodies larger than Rsy = 50 km is then

Mot = M(R > Ry) + AM

p p\
~ 0.08 M.
(1 g cm3> (0.04) ¢

Note that the 0.08 My, prefactor is a consequence of adopting
the oft-employed Halley albedo of p =0.04. However, recent
observations indicate that KBOs have an average albedo of
p =~ 0.1 (Altenhoff et al. 2004; Grundy et al. 2005), which in turn
lowers the Kuiper Belt mass to M.t ~ 0.02 My, assuming they
have a unit density.

This population estimate is comparable to, but a bit higher
than, previous estimates that rely on far simpler models of the
Kuiper Belt. For instance, Trujillo et al. (2001) report a Main Belt
population of 3.8 x 10* objects of mass 0.03 M., among bodies
having radii R > 50 km. They also estimate the Belt’s total pop-
ulation to be 1.9 times the Main Belt population, so a total pop-
ulation of N5y ~ 7.2 x 10* bodies larger than Rs, having mass
Mot > 0.06 M, is inferred. A similar estimate is also inferred
from the HSTsurvey by Bernstein et al. (2004); according to their
Figure 8, the sky-plane number density of KBOs larger than Rs,
is 2(R > Rsp) ~ 13 deg™2. Since the Kuiper Belt subtends a
total solid angle of AQ ~ 8100 deg? (Brown 2001), the total
number of KBOs larger than Rsg is Nsg = S(R > Rs0)AQr =~
1.1x 10°, with a total mass of My =~ 0.05 M,

Sections 6—10 show that the simulated Belt’s various dy-
namical classes have abundances of r5.;,mp = 0.041, r3.0mMB =
0.021, royme < 6.2 % 10_4, royme < 8.8 % 10_3, and 7SD/MB =
0.19 relative to the Main Belt, so the Main Belt fraction is
Sus =1—>",r/mp =~ 0.74; thus, there are Nyg(R > 50 km) =
fusNso ~ 1.3 x10° Main Belt KBOs having radii R > 50 km.
The numerical abundance of the ith dynamical class is N;(R >
50 km) = r;/mB fMBNso, and its mass is M;(R > 50 km) =
7i/MB.fMB Mot Where My = 0.08 M, assuming p = 1 g cm ™3
and p = 0.04; these abundances and masses are listed in Table 1.
The exception is the 3:2 mass estimate, which adopts the O =
2.7 power-law size distribution described in § 6; if this subgroup
really does have such a flat size distribution, then equation (7)
must be used to calculate its mass.®

Note also that the preceding ratios assume that the Main
Belt terminates just inward of the 2: 1 resonance ata = 47.2 AU.
If, however, one wishes to adopt an outer edge at a = 45 AU,
then § 6 shows that this reduces the Main Belt population by
40%, so that the ratios » quoted above should then be raised by
a factor of 1.7. The exception to this rule is the bodies at the
2:1 resonance; their abundance relative to the Main Belt is un-
changed. However, the fofal number of KBOs reported here is

¢ With the quantities Ry, Ny, and M, replaced by Rsy, 73.0/ms Nus» and
M(R = 50 km).
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TABLE 1
ABUNDANCE AND Mass oF KBOs witH Rapir From 50 to 1000 km

Site Mass
Dynamical Class (AU) Population (M)
Centaurs .............. a<an <80 <4x107°
Trojans................. a=an <1.1x10®>  <5x107*
312 s a=395 27x10°  3.1x1073
Main Belt............ 401 <a <472 1.3x10° 0.059
2] e a=478 53x10°  2.4x1073

Scattered Disk..... 50 < a < 150,28 < q <40 2.5x10* 0.011

Note.—Assuming density p = 1 g cm™ and albedo p = 0.04.

still insensitive to the detailed location of the Main Belt’s outer
edge, since that number is obtained by fitting the simulated KBOs’
luminosity function to the observed X(my), which is quite in-
sensitive to the detailed location of the Main Belt’s outer edge.

It should also be noted that this study employed an initial
o(a) < a=? disk surface density, but our findings are readily
adapted for an alternate surface density law. For instance, if the
canonical o(a) < a~'° law were instead desired, then this shal-
lower power law would result in fewer objects trapped in the 3:2
resonance relative to the Main Belt population. Since the 3:2
objects are drawn from the a3, ~ 32 AU part of the disk, while
the Main Belt objects form at ayp ~ 44 AU, this revised surface
density law would reduce the 3:2/MB ratio reported here by
a factor (a3;2/aMB)0'5 ~ 0.85, which is a 15% change in relative
abundance. Of course, the 2: 1/MB ratio would remain unchanged,
since the source populations are the same.

Also, we conservatively interpret the abundance of Neptune’s
Trojans reported in Table 1 as an upper limit on their real abun-
dance. It was argued in § 6 that other unmodeled processes,
possibly the scattering of planetesimals by Neptune or among
themselves, would reduce the trapping efficiency of the 3:2 and
2:1 resonances by factors of ~10. Thus, it is possible that the
same unmodeled phenomena might also have destabilized or-
bits at Neptune’s 1:1 resonance, so the actual number of Trojan
survivors may be smaller than that reported in § 11.

Finally, upper limits on the abundance of KBOs inhabiting a
hypothetical Outer Belt are reported for the 50 AU < a <
80 AU zone assuming these bodies have the shallowest possi-
ble size distribution, namely, Q = 6.0 down to Ry, = 20 km
(see § 7). In this case, there are at most Nog = 1.3 x 10* bodies
in the Outer Belt having 50 km < R < 250 km and a total mass
of Mog ~ 0.008 M, assuming a density of p = 1 g cm™> and
an albedo p = 0.04.

12. EFFECTS NOT MODELED

It should be noted that the model used here only accounts for
the Belt’s dynamical erosion that is a consequence of Neptune’s
gravitational perturbations; it does not account for the collisional
erosion of the Kuiper Belt that is often invoked to account for
the Belt’s depleted appearance (e.g., Stern 1996; Kenyon & Luu
1999). In particular, models of KBO accretion, as well as the
self-consistent N-body simulations of Neptune’s migration, all
suggest that the Kuiper Belt’s primordial mass was of order
~30 My, (Stern 1996; Kenyon & Luu 1999; Hahn & Malhotra
1999; Gomes et al. 2004), which is at least ~400 times more
than the current mass. However, the model used here, which
only accounts for the dynamical erosion, results in a depletion
by a factor of about 3 in the 30 AU < a < 48 AU zone of Fig-
ure 3. This suggests that collisional erosion, which is not mod-
eled here, may have been responsible for reducing the Belt’s mass



No. 5, 2005

by an additional factor’ of ~100. Nonetheless, the abundance and
mass estimates obtained here should still be reliable provided the
Belt’s collisional erosion was relatively uniform across the ob-
servable 35 AU < a < 50 AU zone. If, however, collisional ero-
sion was more vigorous in some parts of the Belt, and less so in
other parts, then the estimates obtained above are only accurate in
an order-of-magnitude sense.

A comparable problem also occurs with the model’s in-
clinations. Section 11 shows that the simulated Kuiper Belt is
too thin by a factor f; ~ 6. This is compensated for by reduc-
ing the simulation’s luminosity function Y(mp) by the factor f;,
which is equivalent to increasing each particles’ inclination by
this factor. Again, this crude treatment should still yield a re-
liable estimate of the KBO population provided the factor f;
is uniform everywhere and independent of semimajor axis a. If,
however, f; were not independent of a, then this would result
in errors in the relative abundances of the Belt’s various sub-
populations reported in Table 1.

We also note that the relative abundances of the Belt’s vari-
ous subpopulations are determined by a model that invokes
a smooth outward migration by Neptune by Aany ~ 9 AU,
with the results reported in Figure 6. That figure shows that the
smooth migration scenario predicts a combined 3:2+2:1 pop-
ulation that is comparable to the Main Belt population. This is
because smooth migration is very efficient at trapping particles
at Neptune’s resonances, and this results in densely populated
resonances. However, a detailed comparison of the model pre-
dictions to the observed abundances indicates that the resonant
KBO population is really only about 5% of the Main Belt pop-
ulation (see § 6, Table 1). The seemingly low abundance of
resonant KBOs is likely due to unmodeled effects that may have
occurred during the migration epoch, possibly due to the mutual
scattering that might occur among bodies trapped at resonance,
or perhaps due to the gravitational scattering of large planetesimals
by Neptune (e.g., Zhou et al. 2002).

There is also evidence indicating that a wide swath of the
early Kuiper Belt was stirred up prior to the onset of Neptune’s
migration. Recall that simulations of Neptune’s outward mi-
gration into a dynamically cold Kuiper Belt are unable to ac-
count for the eccentricities of e ~ 0.1 observed among Main
Belt KBOs (§ 2). This suggests that the Belt was stirred up,
either prior to or after the onset of Neptune’s migration. How-
ever, § 3 shows that this stirring event likely occurred prior to
migration; migration into a stirred-up Kuiper Belt facilitates trap-
ping at a multitude of weak, high-order mean-motion resonances,
which, as Chiang et al. (2003) point out, is consistent with the
detection of seven KBOs now known to librate at Neptune’s 5:2
resonance.

It is then natural to ask what mechanism might be responsible
for stirring up a broad swath of the Kuiper Belt, particularly
since accretion models tell us that KBOs must have formed in a
dynamically cold environment, i.e., the particles’ initial e- and
i-values were <1073 (Stern 1996; Kenyon & Luu 1999). Note
that this disturbance was probably not due to gravitational stir-
ring by a number of long-gone protoplanets since, as Morbidelli
et al. (2002) point out, a sizable fraction of such bodies would
still persist in the Kuiper Belt and would likely have been dis-
covered by now.

7 Only a “conventional” Kuiper Belt model, such as the one explored here,
need invoke additional erosion to reduce the Kuiper Belt mass by another factor
of ~100. This is distinct from the push-out model, which need not rely on any
collisional depletion of the Kuiper Belt (Levison & Morbidelli 2003).
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Note that this stirring mechanism must also have had a large
reach, since it must have afflicted KBOs across the entire Main
Belt, at least out to Neptune’s 2:1 resonance. One mechanism
that comes to mind is secular resonance sweeping, which is the
only mechanism known to us that might stir eccentricities in the
Belt up to e ~ 0.1 across its entire width (Nagasawa & Ida
2000). Secular resonance sweeping is a consequence of the dis-
persal of the solar nebula gas; the removal of that gas alters the
giant planets’ precession rates, which in turn shifts the location
of secular resonances (Ward 1981). The magnitude of the dis-
turbance caused by a sweeping secular resonance depends on
the timescale over which the nebula is depleted; longer deple-
tion timescales 74, result in larger eccentricity pumping. The
simulations of nebula dispersal by Nagasawa & Ida (2000)
show that a disturbance of e ~ 0.1 across much of the Kuiper
Belt requires a nebula depletion timescale of 10° yr < 7gep <
107 yr (but see also Hahn & Ward 2002).

13. DISCUSSION

One of the goals of this study is to determine how the adoption
of a particular Kuiper Belt model might affect an assessment of
the Belt’s total population and mass. Note that some models of
the Belt assume that the KBOs are distributed according to a
primordial surface density distribution that might vary with dis-
tance at o(r) o< #~2 or so (e.g., Jewitt & Luu 1995; Trujillo et al.
2001), while the KBOs in other models are essentially equidis-
tant (Bernstein et al. 2004). However, Figure 8 shows that a
realistic Kuiper Belt would have been eroded from the inside out
by the giant planets’ gravitational perturbations, which suggests
that the earlier models might not apply. However, it turns out
that an estimate of the total KBO population does not depend
strongly on a particular model’s radial variation. As § 11 shows,
all three models yield population estimates that are within a fac-
tor of ~2 of each other. This is because the observable KBOs
really do inhabit a relatively narrow Belt centered on » ~ 45 AU,
with a radial half-width that is only Ar ~ 4 AU (see Fig. 8), so
the assumption of equidistant KBOs (e.g., Bernstein et al. 2004)
appears to be good enough.

It should also be noted that the magnitude interval over
which a model Kuiper Belt can be compared to the observed
Belt is given by the brightness of those KBOs having reliable
orbits, and this sample is currently dominated by bodies having
arelatively limited magnitude range of only 21 < mp < 24. Fur-
ther testing of this model, as well as the development of alter-
native models of the Belt, would be greatly facilitated if they
could be compared to a larger sample of multiopposition KBOs
having reliable orbits and also exhibiting a broader range of
apparent magnitudes and sizes. This larger KBO sample would
be very useful in many ways. For example, it could be used to
test the possibility that the various Kuiper Belt subpopulations
do exhibit variations in their size distributions (e.g., § 6). This
larger sample might also permit a better understanding of certain
rare and unusual KBOs, such as those that inhabit the Extended
Scattered Disk (§ 10). A deeper understanding of the Kuiper Belt,
and what the Belt tells us about the early evolution of the outer
solar system, would be facilitated by deeper KBO surveys over
larger portions of the sky in a systematic way, which would lead
to efficient KBO recoveries and reliable orbit determinations.

13.1. Summary of Findings

1. Accretion models have shown that Kuiper Belt objects
must have formed in a dynamically cold environment where the
initial KBO seeds had nearly circular and coplanar orbits with
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eccentricities and inclinations <0.001 (Stern 1996; Kenyon &
Luu 1999). Simulations of Neptune’s outward migration into a
dynamically cold Kuiper Belt, described in § 3, show that the
survivors in the Main Belt still maintain low eccentricities and
inclinations. However, this conflicts with the Main Belt’s ob-
served e and sini values of ~0.1. This discrepancy suggests
that some other process has also stirred up the Kuiper Belt. This
stirring event could have occurred prior to or after the onset of
planet migration.

2. The existence of several KBOs librating at Neptune’s 5:2
resonance suggests that this stirring event occurred prior to the
onset of planet migration. Simulations by Chiang et al. (2003)
have shown that if Neptune migrates into a stirred-up Kuiper
Belt having eccentricities of e ~ 0.1, then trapping at Neptune’s
higher order resonances, such as 5:2, becomes more efficient.
This result is confirmed by the higher resolution study of this
phenomena described in § 4, which reveals that additional trap-
ping also occurs at a number of exotic mean-motion resonances
such as 11:6, 13:7, 13:6, 9:4, 7:3, 12:5, 8:3,3:1,7:2,and 4:1;
such resonances are not populated when Neptune migrates into
a dynamically cold disk. Not surprisingly, Neptune’s migration
into a previously stirred-up Kuiper Belt also accounts for the
eccentricities of e ~ 0.1 observed in the Main Belt.

3. However, the planet-migration scenario investigated
here does not account for the observed KBOs with inclinations
above i ~ 15° (§ 5), which is the main deficiency of this model.
This is a serious discrepancy, since half of all KBOs have in-
clinations i > 15° according to the debiased inclination distri-
bution reported by Brown (2001).

4. Neptune’s migration into a stirred-up Kuiper Belt traps
particles in eccentric orbits at a number of resonances beyond
a = 50 AU, the most prominent of these being the 5:2 and 3:1
resonances. Many of these distant particles that are trapped at
semimajor axes a > 50 AU also have perihelia 30 AU< g <
40 AU, which is the domain conventionally known as the Scat-
tered Disk. However, § 4 shows that only about 10% of the sim-
ulated particles that inhabit the Scattered Disk or the Extended
Scattered Disk (such as the gray zone in Fig. 4, where 50 AU <
a < 80 AU and e > 0.25) are truly scattered particles. The vast
majority of these particles never had a close encounter with
Neptune; rather, they were placed in these wide, eccentric orbits
by Neptune’s sweeping mean-motion resonances. Note that the
origin of these bodies being due to resonant trapping is very dis-
tinct from the scattering scenario originally suggested by Duncan
& Levison (1997).

5. Of the 10* particles simulated here, only 1 managed to
persist over the age of the solar system in the Extended Scat-
tered Disk, which is loosely defined as scattered orbits having
perihelia g 2 40 AU. This particle’s orbit is qualitatively similar
to that of 2000 CR s, which has a perihelion of ¢ = 44 AU.
However, our simulations did not produce any extreme mem-
bers of the Extended Scattered Disk that were similar to 2003
VB, (Sedna), which has a perihelion of ¢ = 76 AU.

6. The output of the N-body model is coupled to a Monte
Carlo model that assigns radii R to the simulated particles ac-
cording to a power-law cumulative size distribution that varies
as N(R) o< R~2. Magnitudes are computed for the simulation’s
particles, which then allows us to directly compare the simu-
lated Belt to the observed Belt in a manner that accounts for
telescopic selection effects. Section 6 compares the observed
abundance of 2:1 objects to known Main Belt objects, and it is
shown that the observed 2:1 population is underdense by a fac-
tor of 20 relative to model predictions. Similarly, the observed
3:2 population is also depleted relative to model expectations.

Vol. 130

Another curious feature of the 3:2 population is its lower than
expected abundance (relative to the Main Belt KBOs) of fainter
KBOs having magnitudes my = 23.5. Section 6 shows that this
dearth of fainter KBOs at the 3:2 resonance can be interpreted
as a dearth of small bodies, which implies that the 3:2 popula-
tion has a O ~ 2.7 size distribution that is substantially shal-
lower than the canonical O = 4.4 power law that holds for the
larger members of the Main Belt.

7. The simulated Centaurs are quite sparse owing to their
short dynamical lifetimes; only seven Centaurs were detected
in the simulation during its final 2 Gyr. Interestingly, all seven
originated at or near Neptune’s mean-motion resonances in the
Kuiper Belt (§ 8). The model puts an upper limit of N¢ < 80
Centaurs having radii larger than R = 50 km, assuming they
have a material density p = 1 gcm ™3 and an albedo p = 0.04. It
should be noted that all the simulated Centaurs inhabit heliocen-
tric distances of » > 22 AU, while the three Centaurs reported in
Sheppard et al. (2000) were detected at » < 19 AU. If the simu-
lated Centaurs are representative of reality, then this discrepancy
in their heliocentric distances may indicate that Centaurs can
break up and spawn additional Centaurs (e.g., Pittich & Rickman
1994) after evolving inward from the Kuiper Belt.

8. This model also estimates that there are at most Nt ~
1100 Trojans larger than R = 50 km having a total mass of Mt ~
5x10~* M, orbiting at Neptune’s triangular Lagrange points,
assuming the usual p = 1 gcm™3 and p = 0.04.

9. The absence of any distant KBOs having low eccentrici-
ties at a > 50 AU places tight upper limits on the abundances
of any KBOs that might inhabit a hypothetical Outer Belt.
Several possible upper limits are inferred from this null result:
(1) the primordial density of Outer Belt objects beyond 50 AU
may be smaller than the primordial Main Belt density by a fac-
tor f 2 100, (2) these distant KBOs may be fainter than m* ~
24.5 and thus have radii smaller than R ~ 80( p/0.04)"" km,
(3) the cumulative size distribution of Outer Belt objects may
be steep, having a power-law index of Q > 6.0, or (4) some
combination of the above.

10. The luminosity function of the N-body/Monte Carlo
model is fitted to the KBOs’ observed luminosity function, which
then yields an estimate of the Belt’s total population of N ~
1.7 x 10° KBOs larger than R ~ 50( p/0.04)~ 12 km with a total
mass of My ~ 0.08(p/1 g cm™>)(p/0.04)>? M. The popu-
lation and mass of the Belt’s various subclasses (e.g., Centaurs,
Neptune Trojans, 3:2 and 2:1 populations, the Main Belt, and
the Scattered Disk) are also assessed in § 11 and listed in Table 1.
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APPENDIX A

Consider the orbital evolution of a particle trapped by a mi-
grating planet’s j + k : j mean-motion resonance. The planet’s
disturbing function contains the resonant term Ries = Ryes(,
e, ¢jr), where o is the planet/particle semimajor axis ratio for a
particle having an eccentricity e and a resonance angle with the
form

i = (j+k)A —jh, — ko, (A1)

where / and 4, are the particle and planet’s mean longitude and
@ is the particle’s longitude of periapse (Murray & Dermott
1999). The relevant Lagrange planetary equations are

da_ 2 0
dt  na 9¢’

de V1-—e? OR OR

R _ _p2\ -

dt na*e {(1 e ) Oe * 8&] (42)

where e = A — nt is the particle’s mean longitude at epoch, # is
the particle’s mean motion, ¢ is the time, and coplanar orbits are
assumed. According to the averaging principle, the nonresonant
terms in the planet’s disturbing function are of high frequency
and average out during the particle’s libration period, and the
planet’s disturbing function is simply R = R.;. The derivatives
of R are

aR aRres aR aRre S

(A3)

With these, the planetary equations (A2) can be combined into a
single differential equation,

d V1—e? j 1d
e__ Yo L _yi—e)-X (a4
dt 2e jt+k a dt
It is convenient to replace e with the variable E = (1 — e2)"?;
since ede = —FE dE, the above equation can then be recast as
d 2dE
2 (A3)
a ~y—F

where v = j/(j + k). This differential equation is now easily
integrated and yields Ina = —2 In (y — E') 4 In B, where the in-
tegration constant B can also be expressed as

. 2
B:a< 1—e2—jik) (A6)

(e.g., Hahn & Ward 1995). The earliest derivation of this inte-
gral of the motion known to us is given in Brouwer (1963).
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Brouwer originally used this integral to consider the motion
of a particle being perturbed by a planet in a static orbit. How-
ever, Yu & Tremaine (1999) recognized that this integral is pre-
served even when the planet is migrating, which means that
equation (A6) can be used to predict the particle’s eccentricity
as its orbit is expanded by the planet’s resonance:

2
_ J /B
ez(a)1<j+k+\/;>. (A7)

If, prior to capture, the particle is in a circular orbit with an
initial semimajor axis ag, then B = aol[k/(j + k)],

ea)y=1- (ji+k ag/a> ; (AR)

j+k

and the particle’s eccentricity grows as the particle’s orbit ex-
pands. An approximate form of this expression is also derived
in Malhotra (1993b). Thus, if Neptune’s orbital expansion is
indeed responsible for the KBOs seen at Neptune’s 3:2 reso-
nance at a = 39.4 AU with eccentricities as high as e ~ 0.32
(see Fig. 2), equation (AS8) indicates they must first have been
orbiting at ag = 28.0 AU at the time of capture and that Neptune
was initially orbiting at ay = apy?? = 21.4 AU, and hence mi-
grated a distance Ay = 8.7 AU.

APPENDIX B

The following shows that the ratio of the observed abundance
of any two dynamical classes of KBOs is approximately equal
to the ratio of the absolute abundances of the much larger un-
seen populations. Begin by letting Nfbs(m) be the number of
observed KBOs that inhabit some dynamical class x that are
brighter than apparent magnitude m, where x might represent,
for instance, the 3:2 population. Also assume that all KBOs
have the same heliocentric distance », which is a common assump-
tion (e.g., Irwin et al. 1995; Bernstein et al. 2004) that simplifies
this analysis considerably and is actually not a bad assumption,
since Figure 8 shows that most of the observed multiopposition
KBOs considered here do indeed inhabit a rather narrow belt,
with more than half found at heliocentric distances within 3 AU
of r =42 AU. We also assume that the Kuiper Belt has azi-
muthal symmetry, which is justified further in Appendix C. We
also assume that all KBO astronomers are observing this Belt
largely along the ecliptic, which also is not a bad assumption,
since 72% of the multiopposition KBOs studied here have lat-
itudes of | 3| < 3°, which is the typical inclination of the Belt’s
low-i component (Brown 2001). This indicates that the astron-
omers who discovered most of the KBOs in this sample (Fig. 3,
red circles) were observing largely along the Belt’s midplane. So,
although these assumptions are not rigorously correct in detail,
they are good enough to allow us to assess qualitatively the rela-
tive abundances of the various KBO populations.

Let X, (m) represent the sky-plane number density of class x
KBOs (i.e., the cumulative luminosity function of class x KBOs),
while X! (m) = d%,/dm is the differential luminosity function
for class x. Then the number of observed KBOs brighter than
magnitude m is (Bernstein et al. 2004)

NS (m) = / 5 (m) Qs (m) dm, (B1)
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where €)(m) is the total solid angle that has been surveyed by all
KBO astronomers to a limiting magnitude m, and 7,(m) is the
efficiency at which a KBO of class x and magnitude m is detected.
Thus, the number of observed class x KBOs with magnitudes in
the interval m = Am/2 is

obs

dN % (m) = dg;n Am = X (m)Qm)n(m)Am.  (B2)

If we were to compare class x KBOs to, for instance, class y
KBOs, then the ratio of their observed abundances would be

dN™(m) X (m)
AN (m) — Zl(m)’

Fr:y(m) = (B3)

where it is assumed that the KBO detection efficiency is insen-
sitive to dynamical class, i.e., n(m) ~ 7),(m). Note that this ra-
tio depends only on the KBOs’ differential luminosity functions
3'(m) and that it is insensitive to their discovery details, such as
the total solid angle Q(m) that the KBO astronomers have sur-
veyed to depth m.

The cumulative luminosity function for class x can be written
as X,(m) = Ny(m)/Qo, where Qi is the Kuiper Belt’s total
solid angle and N,(m) is the cumulative magnitude distribution
for class x, i.e., the total number of KBOs in class x that are
brighter than magnitude m. Thus,

1 [dN, 1 [dN, dR
2/ e * = il —_— B4
M =0 (dm) Qo ( dR ) (dm>’ (B4)
since a body’s magnitude m is a function of its radius R via equa-
tion (6), for which

dlvx _QNx,tot < R >(Q+1)

= B5
dR Rmin Rmin ( )

is the differential size distribution for class x, which has a total
of N, 1ot bodies with radii in the interval Ryis < R < Rpax (se€€
eq. [4]). Furthermore, since dR/dm = —R/5 (see eq. [6]), the
differential luminosity function can be written

Nxtot R e
iy = 25 () (B6)

Thus, if any two KBO classes x and y have the same size dis-
tribution Q, then the ratio of their observed abundances is simply
E;(m) ~ Nx,tot

E)’/(m) B N, tot -

rx:y(m) = (B7)

In other words, the ratio of the observed abundance of any two
classes of KBOs is approximately equal to the ratio of their
intrinsic abundances, provided all bodies have the same size
distribution Q. But if populations x and y have different size
distributions, then 7., (m) varies with m (see § 6).

APPENDIX C

The Monte Carlo model of § 6 replicates each N-body sur-
vivor seen in Figure 3 10* times by randomizing the particles’
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mean anomalies, which results in a model Kuiper Belt with
azimuthal symmetry. Thus, the model implicitly assumes that
the Kuiper Belt has this same symmetry. However, one might
question this assumption, since it is well known that a planet’s
resonant perturbations can rearrange the longitudes of a small-
body population. For instance, particles at Neptune’s 3:2 res-
onance tend to approach perihelion at longitudes that are ~90°
away from the planet (Malhotra 1995). This is illustrated in
Figure 16 (top left), which shows the ecliptic coordinates of all
simulated particles that are in or very near Neptune’s 3:2 res-
onance. This figure shows that Neptune tends to arrange the
3:2 bodies preferentially away from the Sun-Neptune line, caus-
ing regions that lead/trail Neptune by +90° to be more densely
populated, termed “‘sweet spots” in Chiang & Jordan (2002).
Figure 16 shows that resonant shepherding also occurs at Neptune’s
2:1 resonance, again similar to that seen in Chiang & Jordan
(2002). Red circles indicate the positions of the multiopposi-
tion KBOs considered here, which shows that KBOs in or near
the 3:2 resonance tend to be discovered at longitudes that are
roughly 290° away from Neptune, as expected.

It is thus possible that Neptune’s rearrangement of the
Belt might skew our estimate of the resonant populations. If, for
example, KBO astronomers were preferentially surveying the
Belt along longitudes that are £90° away from Neptune, they
would detect a rather high sky-plane number density of KBOs
in the 3:2 resonance. If we then assumed that this 3:2 number
density were uniform about the entire ecliptic, we would over-
estimate the total 3:2 population. Similarly, if astronomers sys-
tematically observed the Belt toward Neptune or 180° away, we
would underestimate the 3:2 population’s average sky-plane den-
sity and undercount its total population. But if astronomers sur-
veyed all longitudes with equal frequency, then these competing
effects—due to Neptune pushing KBOs away from certain lon-
gitudes and toward other longitudes—should wash out, result-
ing in an estimate of the 3:2 population that is approximately
reliable.

Figure 16 (top right) shows the ecliptic coordinates of the
observed multiopposition Main Belt KBOs. Since the Main
Belt population is likely azimuthally symmetric, these red cir-
cles should be a good indicator of where astronomers are looking
for KBOs. It is quite clear from this figure that these astron-
omers’ lines of sight are not distributed uniformly about the
ecliptic. For instance, these KBO hunters tend to avoid the Ga-
lactic plane, which passes through the ecliptic along the dashed
line. The Main Belt figure also shows that astronomers have
avoided a narrow portion of the 3:2 population’s sweet spot that
leads Neptune by about 90°. But it is also quite clear that these
same astronomers are not systematically staring at the 3:2 res-
onance’s sweet spots, nor are they systematically avoiding them.
Consequently, our simple visual inspection of this KBO sample
indicates that our estimate of the 3:2 population is not signifi-
cantly biased toward under- or overcounting the 3:2 population,
and that the 3:2 abundance reported in § 11 is indeed represen-
tative. A similar conclusion is also drawn for the much sparser
2:1 population.

Of course, this treatment succeeds only if the Monte Carlo
method of § 6 does not alter the particles’ radial distribution as
they have their mean anomalies randomized by the replication
process. However, it is straightforward to show that this is in-
deed the case. For instance, randomizing the mean anomalies
of the 3:2 population seen in Figure 16 does not change their
radial distribution in any significant way.
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Fic. 16.—Positions of all simulated particles relative to Neptune recorded at all times later than ¢t = 3 Gyr (black dots). Red circles indicate the ecliptic coordinates of
the observed multiopposition KBOs, shown for 2000 July 1, which is the date by which half of the sample considered here had been discovered. The blue circle is
Neptune’s position on this date, and the dashed line shows where the Galactic plane penetrates the ecliptic x-y plane. The particles and KBOs are sorted by their
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right) with perihelia 30 AU < ¢ < 40 AU and a > 48.4 AU.
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