Space instrumentation ASEN/ASTR/GEOL 6050

An instrument scientist's point of view

Zoltan Sternovsky Associate Professor

Laboratory for Atmospheric and Space Physics (LASP)

&

Smead Aerospace Eng. Sciences University of Colorado

Outline

- My background
- Space physics and planetary sciences at the University of Colorado
- The initial challenges starting a course
- The ASEN/ASTR/PHYS 6050 class
 - Curriculum
 - Sample slides
- Current and future challenges
- Questions? Suggestions?

Introduction

- Zoltan Sternovsky, PhD in Physics (2001)
- Professor since 2009
- Early experiences:
 - Starting out as an experimental plasma physicist
 - Two sounding rocket campaign
 - Instrument development through NASA's PIDD program
- Instrument scientist for flight instruments:
 - LADEE/LDEX (operated 9/2013 4/2014)
 - Europa Clipper/SUDA (launch in 2025)
 - IMAP/IDEX (launch in 2024)

The distribution of teaching faculty at CU space physics, heliophysics, and planetary sciences

Initial challenges starting a course

- The original attempt in 2009 was establishing a graduate certificate in lunar and physical sciences (group effort)
- Motivation:
 - NASA actively supported education activities (~0.5% of total budget)
 - Connected to our NLSI (NASA Lunar Science institute) proposal
 - Young faculty was encouraged to develop their own graduate-level class
 - Need from the space industry hiring graduates with space/lab experience
- 3 new courses were to be developed and offered (by ~4 faculty)
 - 1. Introduction to dusty plasmas and dust dynamic
 - 2. Space instrumentation
 - **3.** Hands-on laboratory experiments (vacuum technology, plasma diagnostics, electronics, detector readout, data acquisition, etc.)
- Insufficient support from the relevant departments for a new certificate
- Insufficient support for establishing the hands-on lab class

ASEN 6050 – Space instrumentation

- First taught in S'2014 as a special topics course
 - 12 students (half from engineering, half from science)
- Constructed from scratch
- Paperwork filed for establishing a regular course later in 2014
- Cross-listed between several departments
 - ASEN/ASTR/GEOL 6050
- Taught the second time in F'2018
 - 12 students (all engineering)
- There is an agreement to offer the class every second year from here on (next in F'2020)
- Established at a 6000 level
 - Aerospace eng. curriculum short on 6000 level courses
 - Must have a 5000 level prerequisite (usually waived)

ASEN 6050 — what is this class about

- Instrument scientists' perspective (linking science and engineering)
 - Teaching faculty expertise
 - University requirements is >= 10 student in a class (need both types of students)
- Space hardware is optimized for maximum science return within a complex frame of constraints (mass, power, data rate, cost, schedule)
 - Requirements & Science Traceability Matrix

Three key elements to the class

- 1. Understanding the **space environment** and how it affects the design, performance and testing of the instruments
- 2. Detector basics the continual advancement of detector technology enable new measurements. Capabilities and limitation.
- 3. Familiarity with the science and the operation principle of state-of-theart of instruments, and their capabilities.

ASEN 6050 - Content

Space environment (~4 weeks)

- Vacuum (very low pressure)
- Thermal environment and thermal design
- Solar spectrum and its effects
- Other sources of radiation
 - Galactic background
- Radiation environment
- Plasma and charged particle environment
- Meteoroid environment
- Review of relevant processes:
 - SEE, Ion surface interactions, Photoemission, Ionization, Particle and photon scattering

Materials (1 week)

 CTE, outgassing, mass loss, radiation damage, surface properties

Detectors (2 weeks)

- Photon/light detectors
- Particle detectors

Electronics basics (1 week)

- Front end electronics
- Voltage/current/charge measurements
- Practical limitations

Instruments (8 weeks)

- Dust detectors and analyzers
- Magnetometers
- UV spectrometers
- IR instruments (thermal imaging)
- IR instruments (spectrometers)
- Imaging/cameras
- Neutral/ion mass spectrometers
- Plasma instruments
 - FC
 - Solar wind analyzers
 - Energetic particles
- Neutral particle detectors (high and low energy)

ASEN 6050 - Instruments covered

- Subjective list
- Optical instruments covered only at the very basics (there are classes in the astrophysics program that teach optics design)
- **2014:** List inspired by the instruments on *Cassini*
- **2018:** List inspired by the instruments on *Europa Clipper* and *IMAP*

- Instruments (8 weeks)
 - Dust detectors and analyzers
 - Magnetometers
 - UV spectrometers
 - IR instruments (thermal imaging)
 - IR instruments (spectrometers)
 - Imaging/cameras
 - Neutral/ion mass spectrometers
 - · Plasma instruments
 - FC
 - Solar wind analyzers
 - Energetic particles
 - Neutral particle detectors (high and low energy)

ASEN 6050 – the typical outline of material for each instrument

- Review of the relevant science and open questions
- Physical principle of the measurement
- Basic/typical parameters of instruments and their relation to requirements
- Overview of past and current instruments (design, parameters, capabilities, etc.)

Snapshots from the lecture on magnetometers (4 out of about a total of 50 slides)

Lunar crustal magnetic fields

- The Moon has no global field, only localized crustal magnetic fields
- Generation of mini-magnetospheres with SW interactions
- Related to impact craters

Reiner Gamma

. Heips to understand the early history and thermal development

Luner "Swirls" — optical features on the luner surface related to magnetic anomalies

Search coil (or induction coil) magnetometers

- As the name implies this is a coil
- Operation based on electromagnetic induction (Faraday's law):
 - · Electromotive force:
 - $emf(t) = -\frac{d\Phi}{dt} = -\mu_0 \mu_r nA \frac{dH(t)}{dt}$
- \circ Number of turns n_i cross sectional area A

- Helps to make the measurement with a coil wound over a soft ferromagnetic material
 - Explain why
 - This is a vector magnetometer with a principal axis aligned with the cylinder

Magnetic field basics

- There are no magnetic charges:
 - $\nabla \cdot \vec{B} = 0$ which is equivalent to: $\oint_{S}^{|\vec{x}|} \vec{B} \cdot d\vec{S} = 0$
- The magnetic field is defined through the effect is has on the environment (i.e. charged particles)
 - Lorentz force: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$
 - Or as a torque on magnetic dipoles (e.g., compass)
- There are three relevant quantities:
 - H magnetic field the most basic quantity unit is [A/m]
 - B magnetic field intensity [T] = Tesla
 - Φ magnetic flux [Wb] = Weber
 - $\Phi = \vec{B} \cdot \vec{S}$

- Biot-Savart law:
- Permeability of vacuum $\mu_0 = 4\pi * 10^{-7}$ m kg s⁻²A⁻²

$$\mathbf{B}(\mathbf{r}) = rac{\mu_0}{4\pi} \int_C rac{Idoldsymbol{\ell} imes \mathbf{r}'}{\left|\mathbf{r}'
ight|^3}$$

FM – measurement concept – null detector

Components:

- Primary driving signal and coil
- Secondary sensing coil
- The useful part of the sensed signal is that at 2f₀ frequency
 - This signal could be directly measured using a lock-in amplifier (mixing the signal with a 2f₀ sinusoid and measuring the amplitude)
- But there is a better method:
 - Apply a DC field to the core using the feedback coil, until there is second harmonic is zeroed out
 - The current needed is proportional to the external field
 - · This is called the null detector

ASEN 6050 – Current and future challenges

- Class currently to a single teaching faculty
 - Non-standard curriculum with no textbooks
 - Not eligible as a topic for a comprehensive examination
 - There may be volunteers to help teaching it (and expend upon)
- Demanding to teach!
 - Developed from scratch
 - Requires substantial updating each time (instruments evolve)
- Lack of resources (books, review articles, websites)
- Finding good homework/exam problems is non-trivial
- May be cancelled if enrollment falls under 10 students

Summary

 There is a new graduate-level space instrumentation class offered at the University of Colorado

- Questions?
- Suggestions?