Abstract
This paper investigates kerogen carbon isotopes, the difference between carbonate and kerogen carbon isotopes (Δ13Ccarb-kero = δ 13Ccarb − δ 13Ckero) and the difference between carbonate and n-C19 alkane compound-specific carbon isotopes (Δ13Ccarb-n-C19 = δ 13Ccarb − δ 13Cn-C19) during the Permian–Triassic transition at Meishan, South China. The results show that kerogen carbon isotopes underwent both gradual and sharp shifts in beds 23–25 and 26–29, respectively. The differences between carbonate and organic carbon isotopes, both the Δ13Ccarb-kero and Δ13Ccarb-n-C19, which are mainly affected by CO2-fixing enzyme and pCO2, oscillated frequently during the Permian–Triassic transition. Both the variations of Δ13Ccarb-n-C19 and Δ13Ccarb-kero coupled with the alternation between cyanobacteria and green sulfur bacteria indicated by biomarkers. The episodic low values of Δ13Ccarb-n-C19 corresponded to episodic blooms of green sulfur bacteria, while the episodic high values of Δ13Ccarb-n-C19 corresponded to episodic blooms of cyanobacteria. The relationships between the variation of carbon isotopes and biota show that the microbes which flourished after the extinction of macroorganism affected the carbon isotope fractionation greatly. Combining the carbon isotope compositions and the pattern of size variation of the conodont Neogondolella, this paper supposes that anoxia of the photic zone at bed 24 was episodic and it would be caused by the degradation of terrigenous organic matters by sulfate reducing bacteria in the upper water column. Considered together with results from previous research, the high resolution variation of the biogeochemistry presents the sequence of the important geo-events during the Permian–Triassic crisis.




Similar content being viewed by others
References
Arthur MA, Dean WE, Claypool GE (1985) Anomalous 13C enrichment in modern marine organic carbon. Nature 315:216–218. doi:10.1038/315216a0
Baud A, Magaritz M, Holser WT (1989) Permian–Triassic of the Tethys: carbon isotope studies. Geol Rundsch 78:649–677. doi:10.1007/BF01776196
Benton MJ (1988) Mass extinctions in the fossil record of reptiles: paraphyly, pathchiness, and periodicity. In: Larwood GP (ed) Extinction and survival in the fossil record. Systematics Association Special Volume 34. Clarendon Press, Oxford, pp 269–294
Berner RA (2002) Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc Natl Acad Sci USA 99:4172–4177. doi:10.1073/pnas.032095199
Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:124–182. doi:10.2475/ajs.301.2.182
Bidigare RR, Fluegge A, Freeman KH, Hanson KL, Hayes JM, Hollander D et al (1997) Consistent fractionation of 13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Global Biogeochem Cycles 11:279–292. doi:10.1029/96GB03939
Cao CQ, Wang W, Jin YG (2002) The change of carbon isotope during the Permian–Triassic boundary in Meishan, Zhejiang province. China Sci Bull 47:302–306. doi:10.1360/02tb9072
Courtillot VE, Renne PR (2003) On the ages of flood basalt events. C R Geosci 335:431–441
de Wit MJ, Gosh JG, de Villiers S, Rakotosolofo N, Alexander J, Tripathi A et al (2002) Multiple organic carbon isotope reversals across the Permian/Triassic boundary of terrestrial Gondwana sequences: clues to extinction patterns and delayed ecosystem response. J Geol 110:227–240. doi:10.1086/338411
Erwin DH (1993) The great Paleozoic crisis: life and death in the Permian, Columbia, New York
Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton, p 306
Fang ZJ (2004a) The pattern of the mass extinction and the change of the global ecosystem and its causes during the Permian–Triassic transition. In: Rong JY, Fang ZJ (eds) Mass extinction and recovery—evidence from the Palaeozoic and Triassic of South China. China University of Science and Technology press, Hefei, pp 785–928 (in Chinese with English abstract)
Fang ZJ (2004b) Exploration on the pattern of the extinction of bivalve of South China. In: Rong JY, Fang ZJ (eds) Mass extinction and recovery—evidence from the Paleozoic and Triassic of South China. China University of Science and Technology press, Hefei, pp 571–646 (in Chinese with English abstract)
Grard A, François LM, Dessert C, Dupré B, Goddéris Y (2005) Basaltic volcanism and mass extinction at the Permo-Triassic boundary: environmental impact and modeling of the global carbon cycle. Earth Planet Sci Lett 234:207–221. doi:10.1016/j.epsl.2005.02.027
Grice K, Cao CQ, Love GD, Böttcher ME, Twitchett RJ, Grosjean E et al (2005) Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307:706–709. doi:10.1126/science.1104323
Haas J, Demény A, Hips K, Zajzon N, Weiszburg TG, Sudar M et al (2007) Biotic and environmental changes in the Permian–Triassic boundary interval recorded on a western Tethyan ramp in the Bukk Mountains, Hungary. Global Planet Change 55:136–154. doi:10.1016/j.gloplacha.2006.06.010
Hayes JM, Strauss H, Kaufman AJ (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol 161:103–125. doi:10.1016/S0009-2541(99)00083-2
Hinga KR, Arthur MA, Pilson MEQ, Whitaker D (1994) Carbon isotope fractionation by marine phytoplankton in culture: the effects of CO2 concentration, pH, temperature, and species. Global Biogeochem Cycles 8:91–102. doi:10.1029/93GB03393
Holser WT, Schönlaub H-P, Attrep M, Boeckelmann K, Klein P, Magaritz M et al (1989) A unique geochemical record at the Permian/Triassic boundary. Nature 337:39–44. doi:10.1038/337039a0
Huang JH, Luo GM, Bai X, Tang XY (2007a) The organic fraction of the total carbon burial flux deduced from carbon isotopes across the Permo-Triassic boundary at Meishan, Zhejiang Province. Earth Sci J China Univ Geosci 32:763–767
Huang XY, Jiao D, Lu LQ, Xie SC, Huang JH, Wang YB et al (2007b) The fluctuating environment associated with the episodic biotic crisis during the Permo/Triassic transition: evidence from microbial biomarkers in Changxing, Zhejiang Province. Sci China Ser D 50:1052–1059. doi:10.1007/s11430-007-0024-x
Isozaki Y (1997) Permo-Triassic superanoxia and stratified superocean: records from lost deep sea. Science 276:235–238. doi:10.1126/science.276.5310.235
Jiang H, Lai X, Luo G, Aldridge R, Zhang K, Wignall P (2007a) Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. Global Planet Change 55:39–55. doi:10.1016/j.gloplacha.2006.06.007
Jiang H, Lai X, Luo G, Aldridge R, Zhang K, Wignall P (2007b) Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. Global Planet Change 55(1–3):39–55. doi:10.1016/j.gloplacha.2006.06.007
Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH (2000) Pattern of marine mass extinction near the Permian–Triassic boundary in south China. Science 289:432–436. doi:10.1126/science.289.5478.432
Killops S, Killops V (2005) Introduction to organic geochemistry. Blackwell, Oxford, pp 1–393
King GM (1991) Terrestrial tetrapods and the end Permian event: a comparison of analyses. Hist Biol 5:239–255
Knoll AH, Bambach RK, Canfield DE, Grotzinger JP (1996) Comparative earth history and Late Permian mass extinction. Science 273:452–457. doi:10.1126/science.273.5274.452
Korte C, Kozur HW, Mohtat-Aghai P (2004) Dzhulfian to lowermost Triassic δ 13C record at the Permian/Triassic boundary section at Shahreza Central Iran. Hallesches Jahrb Geowiss Reihe B 18:73–78
Kozur HW (1998) Some aspects of the Permian–Triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary. Palaeogeogr Palaeoclimatol Palaeoecol 143:227–272. doi:10.1016/S0031-0182(98)00113-8
Krull ES, Retallack GJ (2000) δ13C depth profiles from the paleosols across the Permian–Triassic boundary: evidence for methane release. Geol Soc Am Bull 112:1459–1472
Krull ES, Lehrmann DJ, Druke D, Kessel B, Yu Y, Li R (2004) Stable carbon isotope stratigraphy across the Permian–Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeogr Palaeoclimatol Palaeoecol 204:297–315. doi:10.1016/S0031-0182(03)00732-6
Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181–198. doi:10.1016/S0009-2541(99)00086-8
Lai XL, Wignall PB, Zhang KX (2001) Palaeoecology of the conodonts Hindeodus and Clarkina during the Permian–Triassic transitional period. Palaeogeogr Palaeoclimatol Palaeoecol 171:63–72. doi:10.1016/S0031-0182(01)00269-3
Logan GA, Hayes JM, Hieshima GB, Summons RE (1995) Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:53–56. doi:10.1038/376053a0
Luo GM, Lai XL, Jiang HS, Zhang KX (2006) Size variation of the end Permian conodont Neogondolella at Meishan Section, Changxing, Zhejiang and its significance. Sci China Ser D 49:337–347. doi:10.1007/s11430-006-0337-1
Magaritz M, Bart R, Baud A, Holser WT (1988) The carbon-isotope shift at the Permian/Triassic boundary in the southern Alps is gradual. Nature 331:337–339. doi:10.1038/331337a0
Magaritz M, Krishnamurthy RV, Holser WT (1992) The Parallel trend of organic and inorganic carbon isotope in Atps. Am J Sci 292:727–739
Musashi M, Isozaki Y, Koike T, Kreulen R (2001) Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the Permo-Triassic boundary: evidence for 13C-depleted superocean. Earth Planet Sci Lett 191:9–20. doi:10.1016/S0012-821X(01)00398-3
Orphan VJ, Hinrichs KU, Ussler W III, Paull CK, Taylor LT, Sylva SP et al (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934. doi:10.1128/AEM.67.4.1922-1934.2001
Payne JL, Kump LR (2007) Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet Sci Lett 256:264–277. doi:10.1016/j.epsl.2007.01.034
Payne JL, Lehrmann DJ, Wei JY, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509. doi:10.1126/science.1097023
Quirk MM, Wardroper AMK, Wheatley RE, Maxwell JR (1984) Extended hopanoids in peat environments. Chem Geol 42(1–4):25–43. doi:10.1016/0009-2541(84)90003-2
Rampino MR, Caldeira K (2005) Major perturbation of ocean chemistry and a ‘Strangelove Ocean’ after the end-Permian mass extinction. Terra Nova 17:554–559. doi:10.1111/j.1365-3121.2005.00648.x
Rau GH, Takahashi T, Des Marais DJ, Repeta DJ, Martin JH (1992) The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56:1413–1419. doi:10.1016/0016-7037(92)90073-R
Rau GH, Riebesell U, Wolf-Gladrow D (1997) CO2, aq-dependent photosynthetic 13C fractionation in the ocean: a model versus measurements. Global Biogeochem Cycles 11:267–278. doi:10.1029/97GB00328
Renne PR, Black MT, Zhang ZC, Richards MA, Basu AR (1995) Synchrony and causal relations between Permian–Triassic boundary crises and Siberian flood volcanism. Science 169:1413–1416. doi:10.1126/science.269.5229.1413
Riccardi A, Kump LR, Arthur MA, D’Hondt S (2007) Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeogr Palaeoclimatol Palaeoecol 248:73–81. doi:10.1016/j.palaeo.2006.11.010
Schonlaub HP (1991) The Permian–Triassic of the Gartnerkofel-1 core (Carnic Alps, Austria): conodont biostratigraphy. In: Holser WT, Schonlaub GP (eds) The Permian–Triassic boundary in the Carnic Alps of Austria (Gartnerkofel region). Band, pp 79–98
Schwab V, Spangenberg JE (2004) Organic geochemistry across the Permian–Triassic transition at the Idrijca Valley, Western Slovenia. Appl Geochem 19:55–72. doi:10.1016/S0883-2927(03)00127-6
Schwark L, Frimmel A (2004) Chemostratigraphy of the Posidonia black shale, SW-Germany: II. Assessment of extent and persistence of photic-zone anoxia using aryl isoprenoid distributions. Chem Geol 206(3–4):231–248. doi:10.1016/j.chemgeo.2003.12.008
Svensen H, Planke S, Malthe-Sorenssen A, Jamtveit B, Myklebust R, Rasmussen Eidem T et al (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542–545. doi:10.1038/nature02566
van Breugel Y, Schouten S, Paetzel M, Ossebaar J, Sinninghe Damsté JS (2005) Reconstruction of δ 13C of chemocline CO2 (aq) in past oceans and lakes using the δ 13C of fossil isorenieratene. Earth Planet Sci Lett 235(1–2):421–434. doi:10.1016/j.epsl.2005.04.017
Wang C (2007) Anomalous hopane distributions at the Permian–Triassic boundary, Meishan, China—evidence for the end-Permian marine ecosystem collapse. Org Geochem 38(1):52–66. doi:10.1016/j.orggeochem.2006.08.014
Wang Y, Cao CQ (2004) Overview the research on mass extinction during Paleozoic–Mesozoic transition of South China. In: Rong JY, Fang ZJ (eds) Mass extinction and recovery—evidence from the Paleozoic and Triassic of South China. China University of Science and Technology press, Hefei, pp 749–772 (in Chinese with English abstract)
Wang CJ, Liu YM, Liu HX, Zhu L, Shi Q (2005) Geochemical significance of the relative enrichment of Pristane and the negative excursion of δ 13CPr across the Permian–Triassic boundary at Meishan, China. China Sci Bull 50:2213–2225. doi:10.1360/04wd0262
Wignall PB (2001) Large igneous provinces and mass extinction. Earth Sci Rev 53:1–33. doi:10.1016/S0012-8252(00)00037-4
Wignall PB, Hallam A (1993) Gresbachian (earliest Triassic) palaeoenvironmental changes in the salt range, Pakistan and South China and their bearing on the Permo-Triassic mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 102:215–237. doi:10.1016/0031-0182(93)90068-T
Wignall PB, Twitchett RJ (1996) Oceanic anoxic and the end Permian mass extinction. Science 272:1155–1158. doi:10.1126/science.272.5265.1155
Wu SB, Liu JH (1991) The transgression and regression events from Changxingian to Griesbachian in South China. In: Yang ZY, Wu SB, Yin HF, Zhang KX (eds) Geological events during Permian–Triassic in South China. Geological Publishing House, Beijing, pp 3–14 (in Chinese with English abstract)
Xie SC, Pancost RD, Yin HF, Wang HM, Evershed RP (2005) Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434:494–497. doi:10.1038/nature03396
Xie SC, Pancost RD, Huang JH, Wignall PB, Yu JX, Tang XY et al (2007a) Changes in the global carbon cycle occurred as two episodes during the Permian–Triassic crisis. Geology 35:1083–1086. doi:10.1130/G24224A.1
Xie SC, Pancost RD, Huang XY, Jiao D, Lu LQ, Huang JH et al (2007b) Molecular and isotopic evidence for episodic environment change across the Permo/Triassic boundary at Meishan in South China. Global Planet Change 55:56–65. doi:10.1016/j.gloplacha.2006.06.016
Xu DY, Yan Z (1993) Carbon isotope and iridium event markers near the Permian/Triassic boundary in the Meishan Section, Zhejiang Province, China. Palaeogeogr Palaeoclimatol Palaeoecol 104:171–175. doi:10.1016/0031-0182(93)90128-6
Yin H, Tong J (1998) Multidisciplinary high-resolution correlation of the Permian–Triassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 143:199–212. doi:10.1016/S0031-0182(98)00111-4
Yin H, Feng Q, Lai X, Baud A, Tong J (2007a) The protracted Permo-Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Global Planet Change 55:1–20. doi:10.1016/j.gloplacha.2006.06.005
Yin HF, Feng QL, Baud A, Xie SC, Benton MJ, Lai XL et al (2007b) The prelude of the end-Permian mass extinction predates a postulated bolide impact. Int J Earth Sci 96:903–909. doi:10.1007/s00531-006-0135-1
Zhang CL, Li YL, Wall JD, Larsen L, Sassen R, Huang YS, Wang Y, Peacock A, White DC, Horita J, Cole DR (2002) Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology 30:239–242
Zhang F, Feng QL, He WH, Meng YY, Gu SZ (2006) Multidisciplinary stratigraphy across the Permian–Triassic boundary in deep-water environment of the Dongpan section, south China. Nor J Geol 86:125–131
Acknowledgments
The authors would like to thank Prof. Xulong Lai for his suggestions on the study of conodont. And the thanks were also sent to Dr. Michael M. Joachimski for his constructive suggestions on the oceanic carbon cycle. Two anonymous reviewers are greatly acknowledged for comments and suggestions that substantially improved the manuscript. This work was supported by National Natural Science Foundation (grants no. 40730209, 40525008), the 111 project and the SinoPec project of the China Petroleum and Chemical Corporation (G0800-06-ZS-319).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Luo, G., Huang, J., Xie, S. et al. Relationships between carbon isotope evolution and variation of microbes during the Permian–Triassic transition at Meishan Section, South China. Int J Earth Sci (Geol Rundsch) 99, 775–784 (2010). https://doi.org/10.1007/s00531-009-0421-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00531-009-0421-9