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Abstract

In this paper, we study individual incentives to report preferences truth-
fully for the special case when individuals have dichotomous preferences
on the set of alternatives and preferences are aggregated in form of scoring
rules. In particular, we show that (a) the Borda Count coincides with Ap-
proval Voting on the dichotomous preference domain, (b) the Borda Count
is the only strategy-proof scoring rule on the dichotomous preference do-
main, and (c) if at least three individuals participate in the election, then
the dichotomous preference domain is the unique maximal rich domain

under which the Borda Count is strategy-proof.
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1 Introduction

The objective of this paper is to analyze the aggregation of preferences in form of
positional voting methods or scoring rules when individuals have dichotomous
preferences on the set of alternatives (there are just two indifference classes,
the set of good alternatives and the set of bad alternatives). In particular, we
are interested in strategy-proof scoring rules, that is we look for social choice
functions belonging to the class of scoring rules that give individuals incentives

to report preferences truthfully. Our main results are that the Borda Count
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is equivalent to Approval Voting on the dichotomous preference domains and
that the Borda Count is the unique non-manipulable scoring rule.

In a series of papers Saari and van Newenhizen [12] and [13] and Brams
et al. [5] discuss the advantages and disadvantages of Approval Voting versus
scoring rules in general and versus the Borda Count in particular. Saari and van
Newenhizen [12] and [13] argue that Approval Voting is highly indeterminate for
a lot of preference profiles (many different alternatives can be selected for a given
preference profile) and suggest the Borda Count as an alternative to the widely
established Plurality Rule. But according to Brams et al. [5] the indeterminacy
of Approval Voting is rather a virtue, because it eliminates the voter’s incentives
not to vote sincerely whereas scoring rules are highly manipulable.!

One way how to contribute to this discussion is to compare scoring rules with
Approval Voting on different preference domains.? But this task is generally not
an easy one, because scoring rules and Approval Voting aggregate preferences
in a rather different way. To see this consider at first the following definition
of the Borda Count: Given a strict preference relation for some individual and
a pair of alternatives, assign one point to the preferred alternative and zero
points to the other alternative. Repeat this process for all possible pairs of
alternatives in order to finish the point assignment process for this particular
individual. Hence, the individual gives 0 points to her/his worst alternative, 1
point to her/his second worst alternative, and so on. The set of Borda Winners
is defined to be the set of alternatives that obtain the highest amount of points
after aggregating preferences over all individuals participating in the election.

The Borda Count is the most intuitive scoring rule, because, given a strict
preference relation, the points assigned to a particular alternative, say x, is sim-
ply the number of alternatives that are worse than z according to the considered

preference relation. For a generic scoring rule the point assignment process is

! Among others Saari [11], Dummett [7] and Smith [14] document the manipulability of
scoring rules.

2See a recent work of Regenwetter and Tsetlin [10] who take an alternative approach by
comparing Approval Voting and scoring rules according to an inference based model. They
analyze the data from the Society of Social Choice and Welfare election and find strong
similarities between Approval Voting and the Borda Count whenever the data allows for a
solid statistical analysis.



more complicate: Given a strict preference relation, the worst alternative gets
0 points. Let m > 1 and suppose that the points have already been assigned to
all of the m worst alternatives according to the considered preference relation.
Then, the (m + 1)’th worst alternative receives at least as many points as the
m’th worst alternative (notice that the process is anonymous and neutral, that
is the amount of points assigned to the (m + 1)’th worst alternative is inde-
pendent of the individual and the alternative). The last requirement to be met
is that the top alternative gets strictly more points than the worst alternative,
because otherwise one does not distinguish among alternatives and no mean-
ingful decision could be taken. After summing the points up over all individuals
society selects again the set of alternatives with the highest amount of points.

While scoring rules are social choice functions and thus take into account
the whole preference structure, Approval Voting is a truncated voting rule that
endows individuals with the right to vote for as many alternatives as they wish
to and selects the alternatives with the largest support. Therefore, the level
of information available about individual preferences is generally lower under
Approval Voting. Yet, the indeterminacy of Approval Voting disappears when
preferences are restricted to be dichotomous, because if we interpret the voting
decisions as the set of good alternatives of the individuals, then it is possible to
recover the preferences completely from the observed voting decisions. Hence,
Approval Voting becomes a social choice function on the domain of dichotomous
preferences. Since this is not true any more for larger preference domain, the di-
chotomous preference domain constitutes an ideal starting point for comparing
scoring rules with Approval Voting.

So far scoring rules have only been defined for strict preference domains, and
therefore, we still miss to generalize the point assignment process for situations
when individuals have weak preferences. Perhaps the most natural way to do
this is to assign to all alternatives belonging to the same indifference class the
same amount of points. For the Borda Count this implies that, given a weak
preference relation and a pair of alternatives, both alternative receive half a

point whenever an individual is indifferent between the two alternatives. On



the other hand, if the preferences between the two alternative are strict, then,
as before, the preferred alternative gets the point (this extension is mentioned
by Sarri and van Newenhizen [12]). Our contribution to the former discussion is
to show that if the Borda Count is generalized to weak preferences as described
above, then it is an affine transformation of Approval Voting on the domain of
dichotomous preferences (Proposition 1). Thus, the two social choice functions
are equivalent on this preference domain.

Until now we have justified the assumption of dichotomous preferences be-
cause of its technical suitability, but we can also identify voting environments
where individual preferences on the set of alternatives are reasonably assumed
to be dichotomous. Consider a group of individuals that has to select one al-
ternative from a large set of alternatives by voting, for example a recruitment
committee has to choose a candidate for a new position in an economic de-
partment. Rather than determining the winning alternative immediately, the
decision process is very often such that a subset of alternatives is pre-selected
and afterwards the winning alternative is chosen from the set of pre-selected
alternatives. Since in the first step of the two-step decision process individuals
have very few information about the characteristics of the alternatives and it has
to be decided whether an alternative should be pre-selected or not, individual
preferences on the set of alternatives are naturally assumed to be dichotomous.
That is, an individual just determines whether an alternative should be pre-
selected or not according to his opinion. Using the example mentioned above
one can think of the set of pre-selected alternatives as the group of candidates
that is invited to give a seminar. The impression obtained in the seminar and
the personal interviews held afterwards help the committee members to refine
and revise their preferences in order to identify the candidate, which fits best
into the department. Qur concern is to identify strategy-proof scoring rules
that can be applied in the first step of the two-step decision process whenever
individuals believe that all pre-selected alternatives have the same chance of
being finally chosen. Thus, we do not model explicitly how individuals refine

their dichotomous preferences and how the final decision is taken, rather we



make a simplifying assumption on the individual beliefs.

Since scoring rules and Approval Voting are set-valued social choice func-
tions (for some preference profiles more than one alternative is chosen) and
individuals have preferences on the set of alternatives and not on the non-
empty family of its subsets, one has to make assumptions on how individuals
order non-empty subsets of alternatives in order to have a well-defined notion of
strategy-proofness. The cohesive preference extension we propose is such that,
given a weak preference relation and two non-empty subsets of alternatives, in-
dividuals strictly prefer the set of alternatives with the higher proportion of top
alternatives. If preferences are dichotomous and individuals attach to all pre-
selected alternatives the same chance of being finally chosen, then individuals
behave according to the cohesive preference extension as if they were expected
utility maximizers. This interpretation is the reason why we do not apply the
weaker preference extension of Brams and Fishburn [4] who show in their sem-
inal paper that Approval Voting is strategy-proof on their extended preference
domain when the underlying preferences are dichotomous and that Approval
Voting is equivalent to the Condorcet Rule on the domain of dichotomous pref-
erences.

The results of Brams and Fishburn [4] together with the first result of our
paper (the Borda Count and Approval Voting are equivalent on the domain
of dichotomous preferences) open at least two possible lines of research. First,
notice that three of the most well known aggregation rules coincide on the
dichotomous preference domain, but so far only Fishburn [8] and [9] has char-
acterized this rule by means of normative properties. This line of research is
not further followed here, but the interested reader can find additional char-
acterizations of Approval Voting on the domain of dichotomous preferences in
an accompanying paper [15]. Second, if we want to exclude the possibility of
manipulations in the pre-selection process, then one may wonder whether it is
possible to apply other scoring rules as well. Proposition 2 states that a scoring
rule is strategy-proof on the cohesive dichotomous domain if and only of it is

the Borda Count. That is, the Borda Count is characterized among all scoring



rules by means of strategy-proofness whenever preferences on alternatives are
dichotomous. Since the whole class of strategy-proof social choice functions on
the domain of dichotomous preferences is rather big, we need additional prop-
erties in order to characterize the Borda Count (Approval Voting) if we do not
restrict the set of social choice functions. To our best knowledge the only two
characterizations of Approval Voting on the domain of dichotomous preferences
that incorporate the property of strategy-proofness are due to [8] and Vorsatz
[15].

Although we have already identified voting environments where individuals
have dichotomous preferences, it is reasonable to think that in many other sit-
uations preferences are going to be richer. The last result of the paper deals
with the question of whether we can enlarge the underlying preference domain
without losing strategy-proofness for Borda Count. Barbie et al. [1] study
strategy-proof domains for the Borda Count under the assumptions that indi-
vidual preferences are strict and ties are broken in a non-neutral way. Basically,
they find that the Borda Count is non-manipulable on all domains which con-
tain one fixed preference relation and all its cyclic permutation. Since these
domains are rather small, their result confirms the common opinion that scor-
ing rules are highly manipulable. Proposition 3 points into the same direction,
because the dichotomous preference domain is the largest domain such that the
Borda Count is strategy-proof on the cohesive preference extension whenever
the number of individuals is greater than two.

The paper is organized as follows. In the next Section we introduce notation

and some basic definitions. Afterwards, we present our results.

2 Notation and Definitions

Let N be a group of individuals with preferences on the set K of alternatives.
The cardinalities of the two sets are finite and given by n > 2 and k& > 3.
We assume that k£ > 3, because otherwise all scoring rules are going to be
equal to the Borda Count as it will become clear from the definitions later on.

Elements of K are denoted by b, g, z, ¥y and z, and elements of N by %, j and



[. Let R; be the weak preference relation of individual ¢ on K. The set of
all weak preference relations on K is denoted by R. A domain R is a subset
of R. Given a domain R C R, a preference profile R = (Ry,...,R,) € RY
is a vector of individual preference relations. To stress the role of individual
i in the preference profile R € RY, we write R = (R;, R—;). The strict and
the indifference preference relations associated with R; are denoted by FP; and
I;, respectively. The preference relation R; is dichotomous if it consists of
up to two indifference classes, the set of good alternatives and the set of bad
alternatives. Given R; € R, define the set of good alternatives associated with
R; as G(R;) = {g € K : gRjyforally € K}. Similarly, let B(R;) = {b €
K : yR;bforally € K} be the set of bad alternatives corresponding to R;.
The cardinalities of the two sets are given by g(R;) and b(R;). Hence, the
preference relation R; € R is dichotomous if and only if G(R;) U B(R;) = K.
The domain of all dichotomous preferences is denoted by D C R. Let D; € D
be the generic dichotomous preference relation for individual ¢. Finally, given
a preference profile D = (Dy,...,D,) € DV and an alternative z € K, let
N.(D) = |{i € N : z € G(D;)}| be the support for = at D € DV.

A social choice function f : RN — 2%\ {0} selects for all preference profiles
R € RY a non-empty set of alternatives f(R) € 25\{0}.? Any social choice
function belonging to the class of scoring rules can be represented by a vector
s = (80,81,...,8k-1) € R¥ satisfying the conditions s;_1 < s; for all j =
1,...,k—1 and sg < sg_1. The range of s is normalized by assuming that s = 0
and sx_1 = k — 1. Scoring rules are typically applied to the domain of strict
preferences P on K. In this case, points are assigned to every alternative in
such a way that if alternative z is in the j’th position according to P;, then

alternative x receives pj(P;) = sx—; points from individual i. Given a preference

3Notice that scoring rules have multiple winning alternatives for certain preference profiles.
One way to deal with this problem is to study non-anonymous or non-neutral tie breaking rules
in order to assure a single-valued image. But instead of following this approach we leave the
tie breaking rule unspecified and assume that individuals believe that all winning alternatives
have the same chance of being finally selected. Thus, we interpret f(R) € 2%\{0} as the set
of pre-selected alternatives. Finally, we exclude the empty set from the image, because every
social choice function corresponding to a scoring rule has for any preference profile at least
one winning alternative.



profile P € PV and an alternative z € K, let p%(P) = Y1, p(P;) be the score
of z at P when the generic scoring rule s is applied. Finally, society selects for
all preference profiles the set of alternatives with the highest score.

However, if individual preferences are not strict, then the point assignment
process has to be generalized. One possibility is to give to every alternative of
the same indifference class the same amount of points, an extension which has
already been mentioned for the Borda Count in [12]. Formally, this is done as
follows: Let C'(R;) be the set of top alternatives for individual 4 when her/his
preference relation is R; € R. The cardinality of C'(R;) is ¢! (R;). Then every
alternative y € C'(R;) receives py(Ri) = m 251:({% ) sk—; points from indi-
vidual 7. Let m > 2 and suppose that the points have already been assigned to
all alternatives contained in the first m — 1 indifference classes of R;. Moreover,
denote the cardinality of the set of all alternatives contained in R;’s first m — 1

indifference classes by ¢™ !. Let C™(R;) be the set of alternatives belonging
to the m’th indifference class of R;. The cardinality of C™(R;) is ¢™(R;). Then

every alternative z € C™(R;) gets pi(R;) = cm(lRi) Z;ZgRi) S(k—gm—1_j) points
from individual i. Given a preference profile R € R and an alternative = € K,
let p5(R) = Y7, pi(R;i) be the score of alternative z at R when the generic
scoring rule s is applied. Now it is straightforward to define the social choice

function corresponding to the scoring rule s for all weak preference domains.

Definition 1 The social choice function fs : RY — 25\{()} associated to the
scoring rule s is such that for all R € RY, z € f(R) if and only if p%(R) > py(R)
for all y € K.

The most well known scoring rule is the Borda Count. It is given by s; = j
for all 5 = 0,...,k — 1. The social choice function corresponding to the Borda
Count is denoted by fp. With a slight abuse of notation we write p,(R;) and
pz(R) whenever the Borda Count is applied. Now, we repeat the intuition of
the generalized point assignment process for the Borda Count: Given R; € R,
compare alternative z with every alternative y € K\{z}. If 2Py, then assign

one point to z and zero points to y (give the point to y whenever yP;z). If Iy,



then split the point equally. The sum of the points alternative x obtains after
performing all possible pair-wise comparisons is equal to pg(R;)-

Among others The Mathematical Association of America, The Econometric
Society and The Society of Social Choice and Welfare apply Approval Voting

[4] in their elections.*

Its main novelty with respect to the Plurality Rule
is that Approval Voting endows individuals with the right to vote for not
just one but for as many alternatives as they wish to. That is, the map-
ping M; : R — 2K determines for all preference relations R; € R the set
of alternatives M;(R;) € 2% individual i votes for and the Approval Voting
function v : My (R1) x -+ x My (R,) — 2K\{0} aggregates the individual vot-
ing decisions by selecting the alternatives with the highest number of votes.
Hence, z € f(Mi(Ry),...,Mp(Ry)) if and only if |{i € N:z € M;(R;)}| >
{i € N:y € M;(R;)}| for all y € K. There are different probabilistic models
making assumptions on how the mappings (M;);en look like in order to com-
pare Approval Voting in expected terms to other social choice functions such as
the Condorcet Rule or the Borda Count (for a discussion of these probabilistic
models see [10]). But for the case of dichotomous preferences there is a simpler
way how to do this. If the mappings M; : D — 2K are defined such that for
all i € N and for all D; € D, M;(D;) = G(D;), then the voting decision reveals
the individual preferences completely. Hence, Approval Voting can be defined

as a social choice function on the dichotomous preference domain.

Definition 2 The social choice function f : DV — 2K\{()} is said to be Ap-
proval Voting if for all D € DV, z € f(D) if and only if N;(D) > N,(D) for
ally e K.

The social choice function corresponding to Approval Voting is denoted by
fa. If we consider the preference domain R D D, then Approval Voting is not a
social choice function any more, because, given the voting decision M;(R;) for a
particular preference relation R; € R that consists of at least three indifference

classes, we cannot recover the true preferences just by observing M;(R;). To

4See a recent article of Brams and Fishburn [3] where the success of Approval Voting in
different organizations is analyzed.



see this let the preference relation R; € R be such that z ¢ G(R;) U B(R;),
y € G(R;) and z € B(D;). In this case, we cannot infer from = € M;(R;) that
yP;x. Similarly, if z ¢ M;(R;), then we cannot deduce that zP;z.

3 Results

We have already seen that the dichotomous preference domain is a natural
starting point for a comparison of Approval Voting and scoring rules, because
it is the largest domain on which Approval Voting constitutes a well-defined so-
cial choice function. Proposition 1 states that the Borda Count is equivalent to
Approval Voting on the dichotomous preference domain, because, given a pref-
erence profile and an alternative, the score of the alternative under the Borda
Count is an affine transformation of the number of individuals who approve

that alternative.
Proposition 1 For all D € DV, f5(D) = fa(D).

Proof: Suppose that i’s preferences are represented by the dichotomous prefer-

ence relation D; and let the scoring rule s be such that forall j = 0,...,k—1, s; =

j. We deduce from the equation Z?Zl j= w that every alternative g €

S k=i _ 9Dk=I0Y 5 29(Di)k—g(Di)(9(Di)+1) _
9(Ds) 9(Ds) 29(D;)

points from individual 4. Similarly, this individual gives to all al-

. S0 k=g(Di) =i b(Di)(k—g(D:)) =570 j

ternatives b € B(D;), pp(D;) = == b(Dg( e gg(Dg ==

Qb(Di)(k*Q(Di)gfb(Di)(b(Di)Jrl) _ kfg(é)i)*l

D;

G(D;) receives py(D;) =
2k—g(Di)—1
2

points, where the last equation uses
that k — g(Dz) = b(DZ)
We complete the proof by showing that, given a preference profile D € DV

and an alternative z € K, the score p;(D) is an increasing function of Ny(D).

10



This is done as follows,

pz(D) = > D)+ > pe(Di)

i€N:z€G(D;) i€N:z¢G(D;)

_ 3 2k—g(Di)-1 | > k—g(Di)—1
i€EN:x€G(D;) 2 iEN:xgG(D;) ’

— D LS k—g(Di)—1
1€EN:zeG(D;) 2 iEN 2

= ENy(D)+3(k-1) - ¥ 4P

iEN

Hence, for all D € DY, N, (D) > N,(D) for all y € K if and only if p,(D) >
py(D) forally € K. m

One aim of the literature on social choice theory is to study normative
properties of social choice functions. Well known properties are for example
the ones of anonymity (all individuals have the same voting power), neutrality
(all alternatives are treated equally) and monotonicity (additional support does
not hurt an alternative). Since individuals may try to vote strategically, we
are especially interested in scoring rules that provide incentives to represent
preferences truthfully. Usually individual incentives are modelled with the help
of the notion of strategy-proofness, a property demanding that truth telling is a
dominant strategy in the direct revelation game.> Yet, whether or not a social
choice function is strategy-proof depends crucially on the preference domain on
which it operates, because for more restricted preference domains individuals
have less strategies, and, as a result, a social choice function is more likely to
be strategy-proof the stronger the domain restriction.

So far we cannot define strategy-proofness, because individuals have prefer-
ences on the set of alternatives, but they have to compare non-empty subsets
of alternatives as the image of a scoring rule is potentially set-valued. To deal
with this kind of problem one has to make assumptions on how individuals
order non-empty subsets of alternatives given an ordering on the set of alter-

natives. Brams and Fishburn [4] assume that the weak preference relation f\: R;

°In the direct revelation game individuals announce simultaneously and independently
from each other their preferences, and therefore, the individual set of strategies is equal to the
considered preference domain. Afterwards the announced preferences are aggregated according
to a social choice function, which is known to all individuals. Seen from this mechanism
design point of view strategy-proofness asks that a social choice function is implementable in
dominant strategies.

11



on 2X\{(} corresponding to the preference relation R; € R on K is as follows:
(a) {z}> g, {z,y}*r,{y} ifz € G(R;) and y € B(R;); (b) for all S, T € 2K\{p},
SzpT it T C B(R;) or S C G(R;) or [S\T C G(R;) and T\S C B(R;)].

The following example illustrates this preference extension when the under-

lying preferences on alternatives are dichotomous.

Example 1: If the preference relation D; € D is such that G(D;) = {z,y}
and B(D;) = {z}, then the preference relation = p, satisfies the following set
of conditions: First, {y}~p,{z,y}~p,{z}>p,{z,2}>p,;{z}. Second, it has to
be that {x,y}iDi{x,y,z}éDi{x,z} (at least one of the two weak relations
has to be strict), and finally, {x,y}iDi{x,y,z}iDi{y,z} (again at least one

weak relation has to be strict). Notice that the sets {z, z} and {y, 2} remain

unordered. m

We propose instead a preference extension after which the set S € 25\ {0}

is evaluated by calculating the percentage of good alternatives restricted to S.

Definition 3 The preference relation g, on 2K\ {0} is cohesive with respect
to R; € R whenever for all S,T € 2K\{0}, § =g, T if and only if [CEI0S] >

S|
% (Z g, is strict whenever the inequality is strict).

The reason why we suggest the cohesive preference extension is two-fold.
First, the cohesive extension can be rationalized in terms of expected utility
maximization if preferences on alternatives are dichotomous. To see this sup-
pose that the objective is to determine a unique winning alternative. Then, as
it has already been outlined, we can interpret the set f(D) € 2X\{(} as the
preliminary result of a two-step decision process. If the winning alternative is
finally determined by a lottery with support on f(D), then individuals care only
about the probability that a good alternative is chosen. That is, the lottery
with support on the set of pre-selected alternatives S is weakly preferred to the
lottery with support on 7' if and only if the probability that a good alternative
is selected is at least as high in the lottery with support on S as in the lottery
with support on 7T'. If, in addition, individuals attach to every pre-selected al-

ternative the same probability of being finally chosen, then it is easy to see that

12



the lottery with support on S is weakly preferred to the lottery with support
on T if and only if the percentage of good alternatives is at least as high in S as
in T, that is if and only if S 7Zp, T. Second, the cohesive preference extension
provides a complete weak ordering of all non-empty subsets of alternatives as
long as preferences on alternatives are dichotomous whereas the extension of
Brams and Fishburn [4] is incomplete as it has been shown in Example 1. This
is important, because otherwise the notion of strategy-proofness can become
vague as it will become particularly clear in Example 3 at the end of the paper.
The intuition is as follows: Consider a social choice function and suppose that,
given the preference relations for all individuals but ¢, individual ¢ can obtain
the set .S by telling the truth and the set T' by declaring some other preference
relation. If the sets S and T are incomparable, then, given this ambiguity,
1 cannot manipulate the social choice function at this preference profile, and
therefore, it is more likely that a social choice function is strategy-proof.

If the preference relation R; € R consists of more than two indifference
classes, then the cohesive preference extension is not appropriated any more as
it can be seen clearly in the next example. Nonetheless, we are going to discuss
at the end of the paper that only Proposition 3 changes slightly if we apply the

preference extension of Brams and Fishburn [4] instead.

Example 2: Let K = {z,y,z} and suppose that the dichotomous prefer-
ence relation D; is such that G(D;) = {z,y} and B(D;) = {z}. In this case,
the cohesive preference relation ~p, is equal to {z} ~p, {y} ~p, {z,y} > b,
{z,y,2} »p, {z,z} ~p, {y,2} »p, {z}. If the preference relation R; € R is
prescribed by the sets G(D;) = {z} and B(D;) = {z}, then {y, 2z} ~g, {z} and

{z} >g, {z,y}. Hence, alternative y is treated as if it was bad. m

Now we are ready to introduce the notion of strategy-proofness according
to which individuals do not have incentives to lie about their preferences inde-
pendently of the reported preferences of the others. Obviously this requirement
is rather strong, but its advantage is that strategy-proof social choice functions
predict the outcome of the preference aggregation process regardless of the in-

formation individuals have about the preferences of others. Formally, the social

13



choice function f : RN — 2K\ {0} is said to be manipulable by i on RY if for

some R € RN and R, € R, f(R!, R_;) =g, f(R).

Definition 4 The social choice function f : RY — 2K\{0} is said to be
strategy-proof on the cohesive R domain if f is not manipulable by any in-

dividual on RY.

Brams and Fishburn [4] show that if preferences on alternatives are di-
chotomous, then Approval Voting is strategy-proof on their extended prefer-
ence domain. The incompleteness of their extended preference relation is not
crucial for this result, because Approval Voting remains to be strategy-proof
for any completion of their preference extension. To see why Approval Voting
is strategy-proof on the cohesive dichotomous domain, recall the definition of
Approval Voting after which all alternatives with the largest support are se-
lected. If an individual misrepresents her/his preferences by approving some
bad alternative and/or disapproving some good alternative, s/he either does not
change the image or achieves to remove some good alternative from the image
and/or add some bad alternative to the image. Hence, the misrepresentation
cannot increase the percentage of good alternative in the set of pre-selected
alternatives, and therefore, Approval Voting has to be strategy-proof on the
cohesive dichotomous domain. Using this observation together with Proposi-
tion 1 we have argued that the Borda Count is strategy-proof on the cohesive
dichotomous domain. Proposition 2 states that the Borda Count is the only

strategy-proof scoring rule on the cohesive dichotomous domain.

Proposition 2 The social choice function fs : DN — 2K\ {0} corresponding
to the scoring rule s is strategy-proof on the cohesive dichotomous domain if

and only if s is the Borda Count.

Proof: It has already been argued that the Borda Count is strategy-proof on
the cohesive dichotomous domain. To prove the other implication we construct
a set of necessary conditions which any social choice function f; must satisfy
in order to be strategy-proof on the cohesive dichotomous domain and show

afterwards that only the Borda Count meets these conditions.
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Consider the preference profile D € DY which is as follows: If n = 2,
then D = (D;, D;), where D; is such that G(D;) = {z} and Dj is prescribed
by the set of good alternatives G(D;) = {y}. If n > 2, then the preference
relations for individual 7 and j are as described above and for all [ # 1, j, D; is
the dichotomous preference relation associated to the set of good alternatives
G(D,;) = {z,y}. Then, given a scoring rule s, it has to be that fs(D) = {z,y}.
We analyze under which conditions individual ¢+ may not manipulate f; at D
via D}, where D) satisfies the conditions g(D}) > 1, z € G(D}) and y ¢ G(D}).

Let m = g(D}) — 1 be the difference in the cardinality of the set of good
alternatives with respect to the preference relations D} and D,—. At (D], D_;) €

DN the score of alternative z is equal to pS (D!, D_;) = X fnfl Ly =+

(n—2) %1152 hecause ps(D}) = e thlsk 5 p5(Dj) = 74 12, ! Sko1

and pi(D;) = %(Sk—l + sk_9g) for all I # 4,j. At the same preference profile

k—m—2
the score of alternative y is equal to py (D, D_;) = Eé% + 8,1+ (n—

—1+Sk k-
2) #5222, because py(Df) = g1 5=t Sk-(mt1)—» Py(Dj) = sp-1 and

py(Di) = %(sk_l + sk_o) for all [ # i,j. Since the score of alternative z at D €
DN is for sure as high as the score of any alternative z # v, individual 4 cannot
manipulate fs at D € DV via D} € D whenever p, (D}, D_;) < py(D!, D_;), or
forallm=1,...k — 2,

k—1 k—2 k—m—2
Zj:k—m—l S5 Zj:l Sj < st ijin S5
m+1 k—1 = ' e o1

On the other hand, if the former weak inequality is strict for some m, then
can manipulate f; at (D}, D_;) € DN via D; € D. Hence, the set of equations

k-1 k—2 k—m—2
Zj:lc—m—l Sj Zj:l Sj — 5 + Z]:In Sj (1)
m+1 k-1 T g m—1

for allm = 1, ..., k—2, defines a set of necessary conditions for strategy-proofness
on the cohesive dichotomous domain for the generic social choice function f;.
Since the Borda Count is strategy-proof on the cohesive dichotomous domain,
we already know that the Borda Count solves the linear system of k—2 equations
(the possible deviations m = 1,...,k — 2) and k — 2 unknowns (the scores s; for
all j = 1,...,k — 2). Nonetheless, we present the calculus before showing that

the system of linear equations (1) has a unique solution.
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Suppose that s; = j for all j = 1,...,k — 2. We have to verify the equation

k—1 . k—2 . k—m—2 .
m+1 k-1 k—m-—-1
Rewrite it as
k-1 . k—m—2 . k-m—2 . k-2 .
Ej:lJ_Zj:{n J _k_l_l_zj:{n J _Zj:1j
m—+1 k—m-1 k-1

and apply the equation Z?Zl j= @ in order to get that the left and the

(k—1)k—(k—m—2)(k—m—1)
2 )

(1 and

right hand sides of the former equation are equal to
2(k—1)+(k—m—2)—(k—2)
2

, respectively. Perform all the necessary multiplications to

yield the expression

k> —k— (k*—2km —3k+m?>+3m+2) 2(k-1)—-m

2(m+1) 2

which is equivalent to 2km + 2k — m? —3m — 2 = (m + 1) (2k — m — 2). The
result follows from simple algebra.

Finally, we prove that there is no other solution to the system of linear
equations. Since s;_1 and sg are normalized to &k — 1 and 0, respectively, we
rewrite equation (1) for the generic parameter m as

k—2 k—2 k—m—2
Z_j:k—m—l Sj " Zj:l 55 Zj:{n Sj _ m(k —1)
m+1 k-1 k—-m-—1 m+1

Next, consider the matrix representation As = b of the former set of equations
where the rows of the matrix A correspond to the different values of m =
1,....,k — 2. For example, A = (ﬁE—{— A), where E is a (k — 2) x (k —2)
matrix with a 1 in every entry and

-1 __1 1 1
k—2 k—2 k—2 2
-1 __1 1 1
k-3 k-3 3 3
A — . .
1 1 1 1
2 k—2 k-2 k-2
1 1 1 1
k-1 k-1 k-1 k-1

Moreover, the vector b can be represented as b = k—ilb' , where
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The system of k — 2 linear equations and k — 2 unknowns has a unique solution

if the matrix of coefficients A with the generic element a;,, has full rank.

-1
i k—1 1
Multiply the m’th row of A by am,1H = (ﬁ + mLH) = g_mx_:Z_"'l The
resulting matrix A has the same rank as A and it is equal to
a  a a a a 1
Gy Gz G as 1 1
A- ,
ar—s3 1 1 1 1 1
1 1 1 ... 1 1 1
where a,, = % (ﬁ — kﬂlrkl). Observe that for allm =1,...,k — 2,
% > (0 and ﬁ—ﬁ < 0. Therefore, a,, < O0forallm=1,...,k—2.

Let v, be the vector notation for the r’th column of A. The matrix A has
full rank if there does not exist a vector A # 0 such that forallr =1,...,k —2
the scalar product A - v, = 0. Suppose contrary that there exists a A # 0
such that for all r = 1,...,k — 2, A- v, = 0. Consider vi_o and vi_3. By
assumption Zf;f Aj = 0and A\ay —I—Ef;g Aj = 0. Combining the two equations
yields Ay = A1dy. Since @1 < 0, it has to be that that \;y = 0. Let m > 2
and suppose that A; = 0 for all j < m < k — 3. To see that A\py1 = 0
consider vi_s_m and vi_s_m. By the induction hypothesis Zf;fn 1A =0
and Apy10my1 + Zf;?n 12 Aj = 0. Combining the two equations yields Ap11 =
Am+418@my1. Since apmy1 < 0, it has to be that A\, = 0. We conclude that
Aj =0 for all j = 1,...,k — 3. Finally, since the scalar product X - vy = 0 by
assumption, A; = 0 for all j = 1,...,k — 3, and a; 2 # 0, we conclude that
Ap—2 = 0 as well. Hence, the matrix A has full rank. =

Proposition 2 is a characterization of the Borda Count stating that in terms
of incentives the Borda Count is the best scoring rule to apply whenever in-
dividual preferences are dichotomous. In the Introduction we have already
described voting environments where individuals have dichotomous preferences
on the set of alternatives. Yet, for the rest of the paper we want to ask whether
the dichotomous domain restriction can be weakened, or, to say it in different

words, whether there are domains containing the set of dichotomous preferences
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under which the Borda Count is strategy-proof on the associated cohesive pref-
erence domain. Following Ching and Serizawa [6] the domain R C R is said
to be a mazimal domain for a list of properties for the social choice function
RN = 2BE\{0} if (a) f: RN — 2K\{0} satisfies the list of properties, and
(b) for all R 2 R, f : RN — 2K\{0} does not satisfy the list of properties.
We consider in addition to strategy-proofness on the cohesive R domain a rich-
ness condition that eliminates all small domains for which the Borda Count is
strategy-proof on the corresponding cohesive domain. The condition we apply
is stronger than the one of Berga and Serizawa [2] who propose the following: A
domain R C R is rich if for all z € K there exists a preference relation R; € R
such that zPy for all y € K\{z}. Here, a domain R C R is said to be rich if
for all z € K there exists a dichotomous preference relation D; € R such that
G(D;) = {z}. The strengthening of the richness condition is needed, because
otherwise, given a preference profile, we cannot calculate the score of all alter-
natives in order to determine the set of Borda Winners. The last Proposition of
the paper states that the dichotomous preference domain is the unique maximal
rich domain for strategy-proofness for the Borda Count whenever at least three

individuals participate in the election.

Proposition 3 Ifn > 3, then the dichotomous preference domain is the unique

mazimal rich domain for strategy-proofness for the Borda Count.

Proof: The proof is organized as follows. We show at first that if n > 3, then
the dichotomous preference domain is a maximal rich domain for strategy-
proofness for the Borda Count. Afterwards we proof uniqueness.

(1) Since for all z € K the preference relation D; which is such that G(D;) =
{z} belongs to D, it follows that the dichotomous preference domain is rich.
Moreover, it has already been seen that the Borda Count is strategy-proof on
the cohesive dichotomous domain. To see that the Borda Count is manipulable
on the cohesive preference extension if the we enlarge the underlying preference
domain, we add the preference relation T; € R with at least three indifference

classes to the domain D. Assume without loss of generality that 7; satisfies
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Cl={1,..,z'}, C? = {z' +1,...,2%}, ..., and, CF = {z"~1 +1,..., 2"}, where
z" = k and h > 3. The cardinality for the generic set Cg is equal to |CZ] | =2/ —

27~ > 0, where z°

is normalized to 0. Therefore, we consider now the domains
R D DUT; and the objective is to show that the Borda Count is manipulable by
i on RN. Consider the preference profile D_; € RV\{*} which is such that the
preference relation D; for individual j satisfies G(D;) = {z"} and the preference
relation D; for all [ # 4, is given by G(D;) = {z',z"}. Given the dichotomous
preference relation D; for individual 4 which is completely prescribed by the set

of good alternatives G(D;) = {z'}, we show that if n > 3, then individual 4

can manipulate the Borda Count at D € RN via T; € R. At the preference

k—zh—1-1
profile (T;, D_;), pyn(Dj) = k—1, pya(D;) = m 21 m, and for all [ #
m=
i,7, per(Dy) = % Similar at the preference profile (T3, D_;), p,1(D;) =
k—2 k—1
ﬁ > m, pu(D;) = wil > m, and for all I # i,5, p(D;) = %
m=1 m=k—z!
Therefore,
1 1 k—zh—1-1
pwh(Tiani):k_1+(n_2)§(k_1+k_2)+xh_mhfl m
m=1
and
1 1 k-1 1 k—2
p;cl(Tiani) = (n—2)§(k—1+k—2) +; Z m+ﬁ Zm
m=k—zl m=1
Since for all £ > 7 > 0,
. k—xi—1 L k—xi—1 k—xitl_1
TF 2 M= g | 2 m-— ) m
m=k—zi+1 m=1 m=1
1 (k—zj—l) (k—mj) 1 (k—ac“’l—l) (lc—zj‘H)
= 3 it — i 2 it —gi
i k2—2k$j+(a:j)2—k+mj k2—2ka:j+1+(zj+1)2—k+a:j+1
- 2(zit1—z7) B 2(zi+1—g7)
B —kaj—l—(zj)2+wj+2kwj+1—(wj+1)2—zj+1
- 2(xit1—z7)
(wj+1_wj)(Qk_1)_($j+1_$j)(wj+1_|_$j) ok 1_gitl _gi
= 2(zd H1—g7) - 2

it can be concluded that the difference in the score between z and z' at the

preference profile (T;, D_;), pyn(Ti, D—i) — py1(Ti, D—;), is equal to

2(k—1) 2k —1—ah —zht 2k —1—-2'—20 k-2 —ghlqgl
+ - - = < 0.
2 2 2 2 2
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To see this remember that 2" = k and z° = 0. Therefore, f5 (T}, D_;) = {z'}
whenever n > 3 (if n = 2, then fg (T}, D—;) = C} and i can manipulate
the Borda Count only if the cardinality of C’i1 is equal to one). On the other
hand, the score of ! and z" are the same at D € RY which implies that
fB(D) = {z',z"}. Since the preference relation - p. relative to D; € R is
cohesive, individual 4 with the preference relation D; strictly prefers {z'} to
{wl,xh}. This is a manipulation, and therefore, the dichotomous preference
domain is a maximal rich domain for strategy-proofness for the Borda Count if

n > 3.

(2) To prove uniqueness, suppose otherwise. Then, there exists a rich do-
main R C R that is not a subset of the dichotomous preference domain and
the Borda Count is strategy-proof on the cohesive R domain. Since the domain
R is rich, given z € K, the dichotomous preference relation D; which is such
that G(D;) = {z} belongs to R. Moreover, since R is not a proper subset of
the dichotomous preference domain D, the preference relation 7; with at least
three indifference classes belongs to R as well. Without loss of generality T;
is as described in the first part of the proof. Construct the preference profile
D_; € RNM# a5 follows: If n is even, then let there be 5 — 1 individuals with
the preference relation D; which is such that G(D;) = {z'} and % individ-
uals with the preference relation D; which is such that G(D;) = {z"}. If n
is odd, then let there be "Tfl — 1 individuals with the preference relation D;
which is such that G(D;) = {z'}, 2! individuals with the preference rela-
tion D; which is such that G(D;) = {z"} and one individual m € N with the
preference relation D,, which is such that G(D,,) = {z?}. If the preference
relation D; is prescribed by the set of good alternatives G(D;) = {z'}, then it
is easy to see that fz(D) = {z",z'} whenever n > 3 and fg(D) = {z!, 22, z"}
if n = 3. Apply the same calculus as in the first part of the proof of Propo-
sition 3 to see that at (T;, D_;), fs (T3, D_;) = {z'} if n > 3. Moreover, it
can be shown in a similar way as in the first part of the proof that if n = 3,

then the difference in the score between alternative z? and z! at the prefer-

ence profile (T;, D_;), py2(T;, D—;) — py1 (T, D—;), is equal to k;‘cz > (. Hence,

20



in this case fp(T;, D_;) = {z%}. Since individual ¢ with the preference rela-
tion Dj; strictly prefers {z'} to {z',z"} according to the cohesive preference
extension, the Borda Count is manipulable by i at D € RY via T; € R when-
ever n > 3. On the other hand, individual 7 with the preference relation T;

2 z"} to {2?} according to the cohesive preference exten-

strictly prefers {z!, z
sion, and therefore, the Borda Count is manipulable by i at (T;, D_;) € RN
via D; € R whenever n = 3. Therefore, the domain of dichotomous preferences
is the unique maximal rich domain for strategy-proofness for the Borda Count

whenever n > 3. =

Finally, we indicate how Proposition 3 changes if we use the preference ex-
tension of Brams and Fishburn [4] instead of the cohesive preference extension.
Consider the following example to see why in this case there is another maximal
rich domain for strategy-proofness for the Borda if the number of individuals is

equal to three.

Example 3: Suppose that n = 3 and K = {z,y,2z}. Let the preference
domain R = {D;, D, D}, T;} be completely prescribed by the sets G(D;) =
{z},G(D;) = {y},G(Dy) = {z},G(T;) = {z} and B(T;) = {z}. Notice that the
domain R is rich. If the preference profile R € R is such that two individuals
have the same preference relation D,,, m = i, j,[, or one individual has the pref-
erence relation D; and a second individual has the preference relation T;, then
the Borda Count selects the top alternative according to D,, or the alternative
x, respectively. We can see that at these preference profiles the top alterna-
tive of two individuals is chosen. Since the third individual cannot change this
by misrepresenting her/his preferences, there are only two possible manipula-
tions: Individual ¢ either manipulates the Borda Count at (D;, Dj,D;) € RN
via T; € R or s/he manipulates the Borda Count at (T;,D;,D;) € RY via
D; € R. Notice that fg(D;,D;,D;) = K and fg(T;,Dj,D;) = {y}. Since
individual 7 with the preference relation D;, or T; respectively, does not order
the sets {y} and {z,y, 2z} according to the preference extension of Brams and
Fishburn [4], there does not exist a viable manipulation (at this point one sees

most clearly why it can be important to have a complete ordering of all non-
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empty subsets of alternatives). Therefore, the Borda Count is strategy-proof

on the {D;, D, D;,T;} domain according to the preference extension of Brams

and Fishburn [4]. m
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