# Turmeric and curcumin: Biological actions and medicinal applications ## Ishita Chattopadhyay<sup>1</sup>, Kaushik Biswas<sup>1</sup>, Uday Bandyopadhyay<sup>2</sup> and Ranajit K. Banerjee<sup>1</sup>,\* <sup>1</sup>Department of Physiology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India <sup>2</sup>Deptartment of Biochemistry, Central Drug Research Institute, Chhattar Manzil Palace, Lucknow 226 001, India Turmeric (Curcuma longa) is extensively used as a spice, food preservative and colouring material in India, China and South East Asia. It has been used in traditional medicine as a household remedy for various diseases, including biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism and sinusitis. For the last few decades, extensive work has been done to establish the biological activities and pharmacological actions of turmeric and its extracts. Curcumin (diferuloylmethane), the main yellow bioactive component of turmeric has been shown to have a wide spectrum of biological actions. These include its antiinflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant, antifertility, antidiabetic, antibacterial, antifungal, antiprotozoal, antiviral, antifibrotic, antivenom, antiulcer, hypotensive and hypocholesteremic activities. Its anticancer effect is mainly mediated through induction of apoptosis. Its antiinflammatory, anticancer and antioxidant roles may be clinically exploited to control rheumatism, carcinogenesis and oxidative stress-related pathogenesis. Clinically, curcumin has already been used to reduce post-operative inflammation. Safety evaluation studies indicate that both turmeric and curcumin are well tolerated at a very high dose without any toxic effects. Thus, both turmeric and curcumin have the potential for the development of modern medicine for the treatment of various diseases. INDIA has a rich history of using plants for medicinal purposes. Turmeric (*Curcuma longa* L.) is a medicinal plant extensively used in Ayurveda, Unani and Siddha medicine as home remedy for various diseases<sup>1,2</sup>. *C. longa* L., botanically related to ginger (Zingiberaceae family), is a perennial plant having a short stem with large oblong leaves and bears ovate, pyriform or oblong rhizomes, which are often branched and brownish-yellow in colour. Turmeric is used as a food additive (spice), preservative and colouring agent in Asian countries, including China and South East Asia. It is also considered as auspicious and is a part of religious rituals. In old Hindu medicine, it is extensively used for the treatment of sprains and swelling caused by injury<sup>1</sup>. In recent times, traditional Indian medicine uses turmeric powder for the treatment of biliary disorders, anorexia, coryza, cough, diabetic wounds, hepatic disorders, rheumatism and sinusitis<sup>3</sup>. In China, *C. longa* is used for diseases associated with abdominal pains<sup>4</sup>. The colouring principle of turmeric is the main component of this plant and is responsible for the antiinflammatory property. Turmeric was described as *C. longa* by Linnaeus and its taxonomic position is as follows: Class Liliopsida Subclass Commelinids Order Zingiberales Family Zingiberaceae Genus Curcuma Species Curcuma longa The wild turmeric is called *C. aromatica* and the domestic species is called *C. longa*. #### Chemical composition of turmeric Turmeric contains protein (6.3%), fat (5.1%), minerals (3.5%), carbohydrates (69.4%) and moisture (13.1%). The essential oil (5.8%) obtained by steam distillation of rhizomes has *a*-phellandrene (1%), sabinene (0.6%), cineol (1%), borneol (0.5%), zingiberene (25%) and sesquiterpines (53%)<sup>5</sup>. Curcumin (diferuloylmethane) (3–4%) is responsible for the yellow colour, and comprises curcumin I (94%), curcumin II (6%) and curcumin III (0.3%)<sup>6</sup>. Demethoxy and bisdemethoxy derivatives of curcumin have also been isolated<sup>7</sup> (Figure 1). Curcumin was first isolated<sup>8</sup> in 1815 and its chemical structure was determined by Roughley and Whiting<sup>9</sup> in 1973. It has a melting point at 176–177°C; forms a reddish-brown salt with alkali and is soluble in ethanol, alkali, ketone, acetic acid and chloroform. #### Biological activity of turmeric and its compounds Turmeric powder, curcumin and its derivatives and many other extracts from the rhizomes were found to be bioactive (Table 1). The structures of some of these compounds<sup>4</sup> are presented in Figure 1. Turmeric powder has healing effect on both aseptic and septic wounds in rats and rab- <sup>\*</sup>For correspondence. (e-mail: ranajitb@yahoo.com) bits<sup>10</sup>. It also shows adjuvant chemoprotection in experimental forestomach and oral cancer models of Swiss mice and Syrian golden hamsters<sup>11</sup>. Curcumin also increases mucin secretion in rabbits<sup>12</sup>. Curcumin, the ethanol extract of the rhizomes, sodium curcuminate, [feruloyl-(4-hydroxycinnamoyl)-methane] (FHM) and [bis-(4-hydroxycinnamoyl)-methane] (BHM) and their derivatives, have high antiinflammatory activity against carrageenin-induced rat paw oedema<sup>13,14</sup>. Curcumin is also effective in formalin-induced arthritis<sup>13</sup>. Curcumin reduces intestinal gas formation<sup>15</sup> and carbon tetrachloride and D-galactosamine-induced glutamate oxaloacetate transaminase and glutamate pyruvate transaminase levels<sup>16,17</sup>. It also increases bile secretion in anaesthetized dogs <sup>18</sup> and rats<sup>19</sup>, and elevates the activity of pancreatic lipase, amylase, trypsin and chymo- Figure 1. Structure of natural curcuminoids. Sodiumcurcuminate trypsin<sup>20</sup>. Curcumin protects isoproterenol-induced myocardial infarction in rats<sup>21</sup>. Curcumin, FHM and BHM also have anticoagulant activity<sup>22,23</sup>. Curcumin and an etherextract of C. longa have hypolipemic action in rats<sup>24</sup> and lower cholesterol, fatty acids and triglycerides in alcoholinduced toxicity<sup>25</sup>. Curcumin is also reported to have antibacterial<sup>15</sup>, antiamoebic<sup>26</sup> and antiHIV<sup>27</sup> activities. Curcumin also shows antioxidant activity<sup>28–31</sup>. It also shows antitumour<sup>32–34</sup> and anticarcinogenic<sup>35–38</sup> activities. The volatile oil of C. longa shows antiinflammatory<sup>39</sup>, antibacterial<sup>40,41</sup> and antifungal<sup>41</sup> activities. The petroleum ether extract of C. longa is reported to have antiinflammatory activity $^{42}$ . Petroleum ether and aqueous extracts have 100% antifertility effects in rats<sup>43</sup>. Fifty per cent ethanolic extract of C. *longa* shows hypolipemic action<sup>44</sup> in rats. Ethanolic extract also possesses antitumour activity<sup>45</sup>. Alcoholic extract and sodium curcuminate can also offer antibacterial activity<sup>15,18</sup>. The crude ether and chloroform extracts of C. longa stem are also reported to have antifungal effects<sup>46</sup>. A C. longa fraction containing ar-turmerone has potent antivenom activity<sup>47</sup>. ## Pharmacological action of turmeric and its extract Several pharmacological activities and medicinal applications of turmeric are known<sup>1,2,4</sup>. Although curcumin has been isolated in the 19th century, extracts of the rhizomes of *C. longa* have been in use from the Vedic ages<sup>1,48</sup>. Some of the medicinal applications<sup>3</sup> of turmeric are mentioned in Table 2. #### Pharmacological action of curcumin Effect on gastrointestinal system Stomach: Turmeric powder has beneficial effect on the stomach. It increases mucin secretion in rabbits and may thus act as gastroprotectant against irritants<sup>12</sup>. However, controversy exists regarding antiulcer activity of curcumin. Both antiulcer<sup>49</sup> and ulcerogenic<sup>50,51</sup> effects of curcumin have been reported but detailed studies are still lacking. Curcumin has been shown to protect the stomach from ulcerogenic effects of phenylbutazone in guinea pigs at 50 mg/kg dose<sup>52,53</sup>. It also protects from 5-hydroxytryptamine- induced ulceration at 20 mg/kg dose<sup>52,53</sup>. However, when 0.5% curcumin was used, it failed to protect against histamine-induced ulcers<sup>54</sup>. In fact, at higher doses of 50 mg/ kg and 100 mg/kg, it produces ulcers in rats<sup>51</sup>. Though the mechanism is not yet clear, an increase in the gastric acid and/or pepsin secretion and reduction in mucin content have been implicated in the induction of gastric ulcer<sup>55</sup>. Recent studies in our laboratory indicate that curcumin can block indomethacin, ethanol and stress-induced gastric ulcer and can also prevent pylorus-ligation-induced acid secretion in rats. The antiulcer effect is mediated by scavenging of reactive oxygen species by curcumin (unpublished observation). *Intestine*: Curcumin has some good effects on the intestine also. Antispasmodic activity of sodium curcuminate was observed in isolated guinea pig ileum<sup>14</sup>. Antiflatulent activity was also observed in both *in vivo* and *in vitro* experiments in rats<sup>15</sup>. Curcumin also enhances intestinal lipase, sucrase and maltase activity<sup>56</sup>. *Liver*: Curcumin and its analogues have protective activity in cultured rat hepatocytes against carbon tetrachloride, D-galactosamine, peroxide and ionophore-induced toxicity<sup>17,30,57</sup>. Curcumin also protects against diethylni- Table 1. Biological activity of turmeric and its compounds | Compound/extract | Biological activity | Reference | |------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------| | Turmeric powder<br>Ethanol extract | Wound-healing<br>Antiinflammatory<br>Hypolipemic<br>Antitumour<br>Antiprotozoan | 10<br>71<br>44<br>45<br>26 | | Petroleum ether extract | Antiinflammatory<br>Antifertility | 71<br>43 | | Alcoholic extract | Antibacterial | 15 | | Crude ether extract | Antifungal | 46 | | Chloroform extract | Antifungal | 46 | | Aqueous extract | Antifertility | 43 | | Volatile oil | Antiinflammatory<br>Antibacterial<br>Antifungal | 39<br>15<br>41 | | Curcumin | Antibacterial Antiprotozoan Antiviral Hypolipemic Hypoglycemic Anticoagulant Antioxidant Antitumour Anticarcinogenic | 40<br>15<br>27<br>24<br>110<br>23<br>77,79<br>97,98<br>91 | | Ar-turmerone | Antivenom | 47 | | Methylcurcumin | Antiprotozoan | 123 | | Demethoxycurcumin | Antioxidant | 29 | | Bisdemethoxycurcumin | Antioxidant | 29 | | Sodium curcuminate | Antiinflammatory, antibacterial | 18 | Table 2. Medicinal properties of turmeric Turmeric finds medicinal applications in haemorrhoids, hepatitis, hysteria, indigestion, inflammation, skin disease, urinary disease, wound and bruise healing, psoriasis, anorexia, cough, liver disorders, rheumatism, sinusitis trosamine and 2-acetylaminofluorine-induced altered hepatic foci development<sup>58</sup>. Increased bile production was reported in dogs by both curcumin and essential oil of $C.\ longa^{19,59}$ . *Pancreas*: 1-phenyl-1-hydroxy-*n*-pentane, a synthetic derivative of *p*-tolylmethylcarbinol (an ingredient of *C. longa*) increases plasma secretion and bicarbonate levels<sup>60</sup>. Curcumin also increases the activity of pancreatic lipase, amylase, trypsin and chymotrypsin<sup>20</sup>. #### Effect on cardiovascular system Curcumin decreases the severity of pathological changes and thus protects from damage caused by myocardial infarction<sup>21</sup>. Curcumin improves Ca<sup>2+</sup>-transport and its slippage from the cardiac muscle sarcoplasmic reticulum, thereby raising the possibility of pharmacological interventions to correct the defective Ca<sup>2+</sup> homeostasis in the cardiac muscle<sup>61</sup>. Curcumin has significant hypocholesteremic effect in hypercholesteremic rats<sup>62</sup>. #### Effect on nervous system Curcumin and manganese complex of curcumin offer protective action against vascular dementia by exerting antioxidant activity <sup>63,64</sup>. #### Effect on lipid metabolism Curcumin reduces low density lipoprotein and very low density lipoprotein significantly in plasma and total cholesterol level in liver alongwith an increase of **a**-tocopherol level in rat plasma, suggesting *in vivo* interaction between curcumin and **a**-tocopherol that may increase the bioavailability of vitamin E and decrease cholesterol levels<sup>65</sup>. Curcumin binds with egg and soy-phosphatidylcholine, which in turn binds divalent metal ions to offer antioxidant activity<sup>66</sup>. The increase in fatty acid content after ethanol-induced liver damage is significantly decreased by curcumin treatment and arachidonic acid level is increased<sup>67</sup>. #### Anti-inflammatory activity Curcumin is effective against carrageenin-induced oedema in rats<sup>13,14,68,69</sup> and mice<sup>70</sup>. The natural analogues of curcumin, viz. FHM and BHM, are also potent antiinflammatory agents<sup>14</sup>. The volatile oil<sup>39</sup> and also the petroleum ether, alcohol and water extracts of *C. longa* show antiinflammatory effects<sup>71</sup>. The antirheumatic activity of curcumin has also been established in patients who showed significant improvement of symptoms after administration of curcumin<sup>72</sup>. That curcumin stimulates stress-induced expression of stress proteins and may act in a way similar to indomethacin and salicylate, has recently been reported<sup>73</sup>. Curcumin offers antiinflammatory effect through inhibition of NF**k**B activation<sup>74</sup>. Curcumin has also been shown to reduce the TNF-**a**-induced expression of the tissue factor gene in bovine aortic-endothelial cells by repressing activation of both AP-1 and NF**k**B<sup>75</sup>. The antiinflammatory role of curcumin is also mediated through downregulation of cyclooxygenase-2 and inducible nitric oxide synthetase through suppression of NF**k**B activation<sup>34</sup>. Curcumin also enhances wound-healing in diabetic rats and mice<sup>76</sup>, and in H<sub>2</sub>O<sub>2</sub>-induced damage in human keratinocytes and fibroblasts<sup>31</sup>. #### Antioxidant effect The antioxidant activity of curcumin was reported<sup>77</sup> as early as 1975. It acts as a scavenger of oxygen free radicals<sup>6,78</sup>. It can protect haemoglobin from oxidation<sup>29</sup>. In vitro, curcumin can significantly inhibit the generation of reactive oxygen species (ROS) like superoxide anions, H<sub>2</sub>O<sub>2</sub> and nitrite radical generation by activated macrophages, which play an important role in inflammation<sup>79</sup>. Curcumin also lowers the production of ROS in vivo<sup>79</sup>. Its derivatives, demethoxycurcumin and bis-demethoxycurcumin also have antioxidant effect<sup>29,30</sup>. Curcumin exerts powerful inhibitory effect against H<sub>2</sub>O<sub>2</sub>-induced damage in human keratinocytes and fibroblasts<sup>31</sup> and in NG 108-15 cells<sup>80</sup>. Curcumin reduces oxidized proteins in amyloid pathology in Alzheimer transgenic mice81. It also decreases lipid peroxidation in rat liver microsomes, erythrocyte membranes and brain homogenates<sup>28</sup>. This is brought about by maintaining the activities of antioxidant enzymes like superoxide dismutase, catalase and glutathione peroxidase<sup>82</sup>. Recently, we have observed that curcumin prevents oxidative damage during indomethacin-induced gastric lesion not only by blocking inactivation of gastric peroxidase, but also by direct scavenging of H<sub>2</sub>O<sub>2</sub> and OH (unpublished observation). Since ROS have been implicated in the development of various pathological conditions<sup>83–85</sup>, curcumin has the potential to control these diseases through its potent antioxidant activity. Contradictory to the above-mentioned antioxidant effect, curcumin has pro-oxidant activity. Kelly $et\ al.^{86}$ reported that curcumin not only failed to prevent single-strand DNA breaks by $H_2O_2$ , but also caused DNA damage. As this damage was prevented by antioxidant a-tocopherol, the pro-oxidant role of curcumin has been proved. Curcumin also causes oxidative damage of rat hepatocytes by oxidizing glutathione and of human erythrocyte by oxidizing oxyhaemoglobin, thereby causing haemolysis $^{87}$ . The pro-oxidant activity appears to be mediated through generation of phenoxyl radical of curcumin by peroxidase– $H_2O_2$ system, which cooxidizes cellular glutathione or NADH, accompanied by $O_2$ uptake to form $ROS^{87}$ . The antioxidant mechanism of curcumin is attributed to its unique conjugated structure, which includes two methoxylated phenols and an enol form of b-diketone; the structure shows typical radical-trapping ability as a chain-breaking antioxidant (Figure 1)<sup>88,89</sup>. Generally, the nonenzymatic antioxidant process of the phenolic material is thought to be mediated through the following two stages: S-OO $$^{\circ}$$ + AH $\rightarrow$ SOOH + A $^{\circ}$ , A $^{\bullet}$ + X $^{\bullet}$ $\rightarrow$ Nonradical materials. where *S* is the substance oxidized, AH is the phenolic antioxidant, A\* is the antioxidant radical and X\* is another radical species or the same species<sup>90</sup> as A\*. A\* and X\* dimerize to form the non-radical product. Masuda *et al.*<sup>89</sup> further studied the antioxidant mechanism of curcumin using linoleate as an oxidizable polyunsaturated lipid and proposed that the mechanism involves oxidative coupling reaction at the 3'position of the curcumin with the lipid and a subsequent intramolecular Diels–Alder reaction. #### Anticarcinogenic effect – induction of apoptosis Curcumin acts as a potent anticarcinogenic compound. Among various mechanisms, induction of apoptosis plays an important role in its anticarcinogenic effect. It induces apoptosis and inhibits cell-cycle progression, both of which are instrumental in preventing cancerous cell growth in rat aortic smooth muscle cells<sup>91</sup>. The antiproliferative effect is mediated partly through inhibition of protein tyrosine kinase and c-myc mRNA expression and the apoptotic effect may partly be mediated through inhibition of protein tyrosine kinase, protein kinase C, c-myc mRNA expression and bcl-2 mRNA expression<sup>91</sup>. Curcumin induces apoptotic cell death by DNA-damage in human cancer cell lines, TK-10, MCF-7 and UACC-62 by acting as topoisomerase II poison92. Recently, curcumin has been shown to cause apoptosis in mouse neuro 2a cells by impairing the ubiquitin-proteasome system through the mitochondrial pathway<sup>93</sup>. Curcumin causes rapid decrease in mitochondrial membrane potential and release of cytochrome c to activate caspase 9 and caspase 3 for apoptotic cell death<sup>93</sup>. Recently, an interesting observation was made regarding curcumin-induced apoptosis in human colon cancer cell and role of heat shock proteins (hsp) thereon<sup>94</sup>. In this study, SW480 cells were transfected with hsp 70 cDNA in either the sense or antisense orientation and stable clones were selected and tested for their sensitivity to curcumin. Curcumin was found to be ineffective to cause apoptosis in cells having hsp 70, while cells harbouring antisense hsp 70 were highly sensitive to apoptosis by curcumin as measured by nuclear condensation, mitochondrial transmembrane potential, release of cytochrome c, activation of caspase 3 and caspase 9 and other parameters for apoptosis<sup>94</sup>. Expression of glutathione S-transferase P1-1 (GSTP1-1) is correlated to carcinogenesis and curcumin has been shown to induce apoptosis in K562 leukaemia cells by inhibiting the expression of GSTP1-1 at transcription level<sup>95</sup>. The mechanism of curcumin-induced apoptosis has also been studied in Caki cells, where curcumin causes apoptosis through downregulation of Bcl-XL and IAP, release of cytochrome c and inhibition of Akt, which are markedly blocked by Nacetylcysteine, indicating a role of ROS in curcumininduced cell death<sup>96</sup>. In LNCaP prostrate cancer cells, curcumin induces apoptosis by enhancing tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)<sup>97</sup>. The combined treatment of the cell with curcumin and TRAIL induces DNA fragmentation, cleavage of procaspase 3, 8 and 9, truncation of Bid and release of cytochrome c from mitochondria, indicating involvement of both external receptor-mediated and internal chemical-induced apoptosis in these cells<sup>97</sup>. In colorectal carcinoma cell line, curcumin delays apoptosis along with the arrest of cell cycle at G<sub>1</sub> phase<sup>98</sup>. Curcumin also reduces *P53* gene expression, which is accompanied with the induction of HSP-70 gene through initial depletion<sup>98</sup> of intracellular Ca<sup>2+</sup>. Curcumin also produces nonselective inhibition of proliferation in several leukaemia, nontransformed haematopoietic progenitor cells and fibroblast cell lines<sup>99</sup>. That curcumin induces apoptosis and large-scale DNA fragmentation has also been observed in $Vg9Vd2^+$ T cells through inhibition of isopentenyl pyrophosphate-induced NFkB activation, proliferation and chemokine production 100. Curcumin induces apoptosis in human leukaemia HL-60 cells, which is blocked by some antioxidants<sup>35</sup>. Colon carcinoma is also prevented by curcumin through arrest of cell-cycle progression independent of inhibition of prostaglandin synthesis 101. Curcumin suppresses human breast carcinoma through multiple pathways. Its antiproliferative effect is estrogendependent in ER (estrogen receptor)-positive MCF-7 cells and estrogen-independent in ER-negative MDA-MB-231 cells<sup>37</sup>. Curcumin also downregulates matrix metalloproteinase (MMP)-2 and upregulates tissue inhibitor of metalloproteinase (TIMP)-1, two common effector molecules involved in cell invasion<sup>37</sup>. It also induces apoptosis through P53-dependent Bax induction in human breast cancer cells<sup>38</sup> However, curcumin affects different cell lines differently. Whereas leukaemia, breast, colon, hepatocellular and ovarian carcinoma cells undergo apoptosis in the presence of curcumin, lung, prostate, kidney, cervix and CNS malignancies and melanoma cells show resistance to cytotoxic effect of curcumin<sup>102</sup>. Curcumin also suppresses tumour growth through various pathways. Nitric oxide (NO) and its derivatives play a major role in tumour promotion. Curcumin inhibits iNOS and COX-2 production<sup>69</sup> by suppression of NF**k**B activation<sup>34</sup>. Curcumin also increases NO production in NK cells after prolonged treatment, culminating in a stronger tumouricidal effect<sup>33</sup>. Curcumin also induces apoptosis in AK-5 tumour cells through upregulation<sup>103</sup> of caspase-3. Reports also exist indicating that curcumin blocks dexamethasone-induced apoptosis of rat thymocytes<sup>104,105</sup>. Recently, in Jurkat cells, curcumin has been shown to prevent glutathione depletion, thus protecting cells from caspase-3 activation and oligonucleosomal DNA fragmentation<sup>106</sup>. Curcumin also inhibits proliferation of rat thymocytes<sup>104</sup>. These strongly imply that cell growth and cell death share a common pathway at some point and that curcumin affects a common step, presumably involving modulation of AP-1 transcription factor<sup>104,106</sup>. #### Pro/antimutagenic activity Curcumin exerts both pro- and antimutagenic effects. At 100 and 200 mg/kg body wt doses, curcumin has been shown to reduce the number of aberrant cells in cyclophosphamide-induced chromosomal aberration in Wistar rats<sup>107</sup>. Turmeric also prevents mutation in urethane (a powerful mutagen) models<sup>108</sup>. Contradictory reports also exist. Curcumin and turmeric enhance g-radiation-induced chromosome aberration in Chinese hamster ovary<sup>109</sup>. Curcumin has also been shown to be non-protective against hexavalent chromium-induced DNA strand break. In fact, the total effect of chromium and curcumin is additive in causing DNA breaks in human lymphocytes and gastric mucosal cells<sup>110</sup>. #### Anticoagulant activity Curcumin shows anticoagulant activity by inhibiting collagen and adrenaline-induced platelet aggregation *in vitro* as well as *in vivo* in rat thoracic aorta<sup>23</sup>. #### Antifertility activity Petroleum ether and aqueous extracts of turmeric rhizomes show 100% antifertility effect in rats when fed orally<sup>43</sup>. Implantation is completely inhibited by these extracts<sup>111</sup>. Curcumin inhibits 5*a*-reductase, which converts testosterone to 5*a*-dihydrotestosterone, thereby inhibiting the growth of flank organs in hamster<sup>112</sup>. Curcumin also inhibits human sperm motility and has the potential for the development of a novel intravaginal contraceptive<sup>113</sup>. #### Antidiabetic effect Curcumin prevents galactose-induced cataract formation at very low doses<sup>114</sup>. Both turmeric and curcumin decrease blood sugar level in alloxan-induced diabetes in rat<sup>115</sup>. Curcumin also decreases advanced glycation end products-induced complications in diabetes mellitus<sup>116</sup>. #### Antibacterial activity Both curcumin and the oil fraction suppress growth of several bacteria like *Streptococcus*, *Staphylococcus*, *Lactobacillus*, etc.<sup>15</sup>. The aqueous extract of turmeric rhizomes has antibacterial effects<sup>117</sup>. Curcumin also prevents growth of *Helicobacter pylori* CagA<sup>+</sup> strains *in vitro*<sup>118</sup>. #### Antifungal effect Ether and chloroform extracts and oil of *C. longa* have antifungal effects<sup>41,46,119</sup>. Crude ethanol extract also possesses antifungal activity<sup>120</sup>. Turmeric oil is also active against *Aspergillus flavus*, *A. parasiticus*, *Fusarium moniliforme* and *Penicillium digitatum*<sup>121</sup>. #### Antiprotozoan activity The ethanol extract of the rhizomes has anti-Entamoeba histolytica activity. Curcumin has anti-Leishmania activity in vitro<sup>122</sup>. Several synthetic derivatives of curcumin have anti-L. amazonensis effect<sup>123</sup>. Anti-Plasmodium falciparum and anti-L. major effects of curcumin have also been reported<sup>124</sup>. #### Antiviral effect Curcumin has been shown to have antiviral activity<sup>4</sup>. It acts as an efficient inhibitor of Epstein-Barr virus (EBV) key activator Bam H fragment z left frame 1 (BZLF1) protein transcription in Raji DR-LUC cells<sup>125</sup>. EBV inducers such as 12-0-tetradecanoylphorbol-13-acetate, sodium butyrate and transforming growth factor-beta increase the level of BZLF1 m-RNA at 12–48 h after treatment in these cells, which is effectively blocked by curcumin<sup>125</sup>. Most importantly, curcumin also shows anti-HIV (human immunodeficiency virus) activity by inhibiting the HIV-1 integrase needed for viral replication<sup>27,126</sup>. It also inhibits UV light-induced HIV gene expression<sup>127</sup>. Thus curcumin and its analogues may have the potential for novel drug development against HIV. #### Antifibrotic effect Curcumin suppresses bleomycin-induced pulmonary fibrosis in rats<sup>128</sup>. Oral administration of curcumin at 300 mg/kg dose inhibits bleomycin-induced increase in total cell counts and biomarkers of inflammatory responses. It also suppresses bleomycin-induced alveolar macrophage-production of TNF-*a*, superoxide and nitric oxide. Thus curcumin acts as a potent antiinflammatory and antifibrotic agent. #### Antivenom effect Ar-turmerone, isolated from *C. longa*, neutralizes both haemorrhagic activity of *Bothrops* venom and 70% lethal effect of *Crotalus* venom in mice<sup>4</sup>. It acts as an enzymatic inhibitor of venom enzymes with proteolytic activities<sup>47</sup>. #### Pharmacokinetic studies on curcumin Curcumin, when given orally or intraperitoneally to rats, is mostly egested in the faeces and only a little in the urine <sup>129,130</sup>. Only traces of curcumin are found in the blood from the heart, liver and kidney. Curcumin, when added to isolated hepatocytes, is quickly metabolized and the major biliary metabolites are glucuronides of tetrahydrocurcumin and hexahydrocurcumin <sup>131,132</sup>. Curcumin, after metabolism in the liver, is mainly excreted through bile. ### Clinical studies and medicinal applications of turmeric and curcumin Although various studies have been carried out with turmeric extracts and some of its ingredients in several animal models<sup>1,4,133</sup>, only a few clinical studies are reported so far. #### Turmeric Powdered rhizome is used to treat wounds, bruises, inflamed joints and sprains<sup>134</sup> in Nepal. In current traditional Indian medicine, it is used for the treatment of biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism and sinusitis<sup>48</sup>. Data are also available showing that the powder, when applied as capsules to patients with respiratory disease, gives relief from symptoms like dyspnoea, cough and sputum<sup>135</sup>. A short clinical trial in 18 patients with definite rheumatoid arthritis showed significant improvement in morning stiffness and joint swelling after two weeks of therapy with oral doses of 120 mg/day<sup>53</sup>. Application of the powder in combination with other plant products is also reported for purification of blood and for menstrual and abdominal problems<sup>136</sup>. #### Curcumin In patients undergoing surgery, oral application of curcumin reduces post-operative inflammation<sup>137</sup>. Recently, curcumin has been formulated as slow-release biodegradable microspheres for the treatment of inflammation in arthritic rats<sup>138</sup>. It is evident from the study that curcumin-biodegradable microspheres could be successfully employed for therapeutic management of inflammation<sup>138</sup>. #### Safety evaluation with turmeric and curcumin Detailed studies have been reported on the safety evaluation of the rhizomes of C. longa and its alcohol extract, curcumin<sup>132,139</sup>. The major findings are presented below. #### Turmeric The average intake of turmeric by Asians varies from 0.5 to 1.5 g/day/person, which produces no toxic symptoms<sup>2</sup>. Male and female Wistar rats, guinea pigs and monkeys were fed with turmeric at much higher doses (2.5 g/kg body wt) than normally consumed by humans. No changes were observed in the appearance and weight of kidney, liver and heart<sup>132</sup>. Also, no pathological or behavioural abnormalities were noticed and no mortality was observed. #### Curcumin Curcumin was given to Wistar rats, guinea pigs and monkeys of both sexes at a dose of 300 mg/kg body wt. No pathological, behavioural abnormalities or lethality was observed <sup>133</sup>. No adverse effects were observed on both growth and the level of erythrocytes, leucocytes, blood constituents such as haemoglobin, total serum protein, alkaline phosphatase, etc. <sup>139</sup>. Human clinical trials also indicate that curcumin has no toxicity when administered at doses of 1–8 g/day<sup>140</sup> and 10 g/day<sup>141</sup>. #### **Future prospects** Turmeric has been used in ayurvedic medicine since ancient times, with various biological applications. Although some work has been done on the possible medicinal applications, no studies for drug-development have been carried out as yet. Although the crude extract has numerous medicinal applications, clinical applications can be made only after extensive research on its bioactivity, mechanism of action, pharmacotherapeutics and toxicity studies. However, as curcumin is now available in pure form, which shows a wide spectrum of biological activities, it would be easier to develop new drugs from this compound after extensive studies on its mechanism of action and pharmacological effects. Recent years have seen an increased enthusiasm in treating various diseases with natural products. Curcumin is a non-toxic, highly promising natural antioxidant compound having a wide spectrum of biological functions. It is expected that curcumin may find application as a novel drug in the near future to control various diseases, including inflammatory disorders, carcinogenesis and oxidative stress-induced pathogenesis. - 1. Ammon, H. P. T. and Wahl, M. A., Pharmacology of *Curcuma longa*. *Planta Med.*, 1991, **57**, 1–7. - Eigner, D. and Scholz, D., Ferula asa-foetida and Curcuma longa in traditional medicinal treatment and diet in Nepal. J. Ethnopharmacol., 1999, 67, 1–6. - 3. Ammon, H. P. T., Anazodo, M. I., Safayhi, H., Dhawan, B. N. and Srimal, R. C., Curcumin: a potent inhibitor of leukotriene B4 formation in rat peritoneal polymorphonuclear neutrophils (PMNL). *Planta Med.*, 1992, **58**, 26. - Araujo, C. A. C. and Leon, L. L., Biological activities of Curcuma longa L. Mem. Inst. Oswaldo Cruz, 2001, 96, 723–728. - Kapoor, L. D., Handbook of Ayurvedic Medicinal Plants, CRC Press, Boca Raton, Florida, 1990, p. 185. - Ruby, A. J., Kuttan, G., Dinesh Babu, K., Rajasekharan, K. N. and Kuttan, R., Antitumor and antioxidant activity of natural curcuminoids. *Cancer Lett.*, 1995, 94, 79–83. - 7. Vopel, G., Gaisbaver, M. and Winkler, W., *Phytotherapie in der Praxis*. Deutscher Arzteverlag, Kolu, 1990, **74**. - 8. Vogel and Pelletier, J. Pharm., 1815, 2, 50. - 9. Roughley, P. J. and Whiting, D. A., Experiments in the biosynthesis of curcumin. *J. Chem. Soc.*, 1973, **20**, 2379–2388. - Gujral, M. L., Chowdhury, N. K. and Saxena, P. N., The effect of certain indigenous remedies on the healing of wounds and ulcers. *J. Indian State Med. Assoc.*, 1953, 22, 273–276. - Azuine, M. A. and Bhide, S. V., Adjuvant chemoprevention of experimental cancer: catechin and dietary turmeric in forestomach and oral cancer models. *J. Ethnopharmacol.*, 1994, 44, 211–217. - Lee, C. J., Lee, J. H., Seok, J. H., Hur, G. M., Park, Y. C., Seol, I. C. and Kim, Y. H., Effects of baicalein, berberine, curcumin and hespiridin on mucin release from airway goblet cells. *Planta Med.*, 2003, 69, 523–526. - 13. Ghatak, N. and Basu, N., Sodium curcuminate as an effective antiinflammatory agent. *Indian J. Exp. Biol.*, 1972, **10**, 235–236. - Srihari Rao, T., Basu, N. and Siddqui, H. H., Anti inflammatory activity of curcumin analogues. *Indian J. Med. Res.*, 1982, 75, 574– 578. - Bhavani Shankar, T. N. and Sreenivasa Murthy, V., Effect of turmeric (*Curcuma longa*) fractions on the growth of some intestinal and pathogenic bacteria in vitro. Indian J. Exp. Biol., 1979, 17, 1363 1366. - Kiso, Y., Suzuki, Y., Watanabe, N., Oshima, Y. and Hikino, H., Anti-hepatotoxic principles of *Curcuma longa* rhizomes. *Planta Med.*, 1983, 49, 185–187. - Hikino, H., Antihepatotoxic activity of crude drugs. Yakugaku Zasshi, 1985, 105, 109–118. - Ramprasad, C. and Sirsi, M., Studies on Indian medicinal plants: Curcuma longa Linn. – Effect of curcumin and the essential oils of Curcuma longa on bile secretion. J. Sci. Ind. Res., 1956, 15, 262–265. - Jentzsch, K., Gonda, T. and Holler, H., Paper chromatographic and pharmacological investigations on *Curcuma* pigments. *Pharm. Acta Helv.*, 1959, 34, 181–188. - Platel, K. and Srinivasan, K., Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. *Nahrung*, 2000, 44, 42–46. - Nirmala, C. and Puvanakrishnan, R., Protective role of curcumin against isoproterenol-induced myocardial infarction in rats. *Mol. Cell. Biochem.*, 1996, 159, 85–93. - 22. Kosuge, T., Ishida, H. and Yamazaki, H., Studies on active substances in the herbs used for oketsu ('stagnant blood') in Chinese medicine. III. On the anticoagulative principles in curcumae rhizoma. *Chem. Pharm. Bull. (Tokyo)*, 1985, **33**, 1499–1502. - Srivastava, R., Dikshit, M., Srimal, R. C. and Dhawan, B. N., Antithrombotic effect of curcumin. *Thromb. Res.*, 1985, 40, 413–417. - Rao, S. D., Chandrashekhara, N., Satyanarayana, M. N. and Srinivasan, M., Effect of curcumin on serum and liver cholesterol levels in the rat. *J. Nutr.*, 1970, 100, 1307–1315. - Rukkumani, R., Sri Balasubashini, M. and Menon, V. P., Protective effects of curcumin and photo-irradiated curcumin on circulatory lipids and lipid peroxidation products in alcohol and polyunsaturated fatty acid-induced toxicity. *Phytother. Res.*, 2003, 17, 925–929. - Dhar, M. L., Dhar, M. M., Dhawan, B. N., Mehrotra, B. N. and Ray, C., Screening of Indian plants for biological activity: I. *Indian J. Exp. Biol.*, 1968, 6, 232–247. - Mazumdar, A., Raghavan, K., Weinstein, J., Kohn, K. W. and Pommer, Y., Inhibition of human immunodeficiency virus type-1 integrase by curcumin. *Biochem. Pharmacol.*, 1995, 49, 1165–1170. - 28. Pulla Reddy, Ach. and Lokesh, B. R., Effect of dietary turmeric (*Curcuma longa*) on iron-induced lipid peroxidation in the rat liver. *Food Chem. Toxicol.*, 1994, **32**, 279–283. - Unnikrishnan, M. K. and Rao, M. N., Inhibition of nitric-induced oxidation of hemoglobin by curcuminoids. *Pharmazie*, 1995, 50, 490–492. - Song, E. K. et al., Diarylheptanoids with free radical scavenging and hepato protective activity in vitro from Curcuma longa. Planta Med., 2001, 67, 876–877. - 31. Phan, T. T., See, P., Lee, S. T. and Chan, S. Y., Protective effects of curcumin against oxidative damage on skin cell *in vitro*: its implication for wound healing. *J. Trauma*, 2001, **51**, 927–931. - 32. Huang, M. T., Smart, R. C., Wong, Ch. Q. and Conney, A. H., Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoyl-phorbol-13-acetate. *Cancer Res.*, 1988, **48**, 5941–5946. - Bhaumik, S., Jyothi, M. D. and Khar, A., Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells. FEBS Lett., 2000, 483, 78–82. - 34. Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K. and Lee, S. S., Molecular mechanism underlying chemopreventive activities of anti-inflammatory phytochemicals: down regulation of COX-2 and iNOS through suppression of NF-kB activation. *Mutat. Res.*, 2001, 480–481, 243–268. - Kuo, M. L., Huang, T. S. and Lin, J. K., Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. *Biochim. Biophys. Acta*, 1996, 1317, 95–100. - 36. Goel, A., Boland, C. R. and Chauhan, D. P., Specific inhibition of cyclooxygenase-2(COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. *Cancer Lett.*, 2001, **172**, 111–118. - Shao, Z. M., Shen, Z. Z., Liu, C. H., Sartippour, M. R., Go, V. L., Heber, D. and Nguyen, M., Curcumin exerts multiple suppressive effects on human breast carcinoma cells. *Int. J. Cancer*, 2002, 98, 234–240. - Choudhuri, T., Pal, S., Aggarwal, M. L., Das, T. and Sa, G., Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett., 2002, 512, 334–340. - 39. Chandra, D. and Gupta, S. S., Antiinflammatory and antiarthritic activity of volatile oil of *Curcuma longa* (Haldi). *Indian J. Med. Res.*, 1972, **60**, 138–142. - 40. Lutomski, J., Kedzia, B. and Debska, W., Effect of an alcohol extract and of active ingredients from *Curcuma longa* on bacteria and fungi. *Planta Med.*, 1974, **26**, 9–19. - 41. Banerjee, A. and Nigam, S. S., Antimicrobial efficacy of the essential oil of Curcuma longa. Indian J. Med. Res., 1978. 68, 864–866. - Arora, R. B., Basu, N., Kapoor, V. and Jain, A. P., Anti-inflammatory studies on *Curcuma longa* (Turmeric). *Indian J. Med. Res.*, 1971, 59, 1289–1295. - 43. Garg, S. K., Effect of *Curcuma longa* (rhizomes) on fertility in experimental animals. *Planta Med.*, 1974, **26**, 225–227. - Dixit, V. P., Jain, P. and Joshi, S. C., Hypolipidaemic effects of Curcuma longa L and Nardostachys jatamansi DC in triton-indu- ced hyperlipidaemic rats. Indian J. Physiol. Pharmacol., 1988, 32, 299–304 - Kuttan, R., Bhanumathy, P., Nirmala, K. and George, M. C., Potential anticancer activity of turmeric (*Curcuma longa*). *Cancer Lett.*, 1985, 29, 197–202. - 46. Misra, S. K. and Sahu, K. C., Screening of some indigenous plants for antifungal activity against dermatophytes. *Indian J. Pharmacol.*, 1977, **9**, 269–272. - 47. Ferreira, L. A. F., Henriques, O. B., Andreoni, A. A. S., Vital, G. R. F., Campos, M. M. C., Habermehl, G. G. and Moraes, V. L. G., Antivenom and biological effects of ar-turmerone isolated from *Curcuma longa* (Zingiberaceae). *Toxicon*, 1992, 30, 1211–1218. - 48. Jain, S. K. and DeFillips, R. A., *Medicinal Plants of India*, 1991, Reference Publications, Algonac, Michigan, 1991, p. 120. - Sinha, M., Mukherjee, B. P., Mukherjee, B., Sikdar, S. and Dasgupta, S. R., Study of the mechanism of action of curcumin; an antiulcer agent. *Indian J. Pharmacol.*, 1975, 7, 98. - Prasad, D. N., Gupta B., Srivastava, R. K. and Satyavati, G. V., Studies on ulcerogenic activity of curcumin. *Indian J. Physiol. Pharmacol.*, 1976, 20, 92. - 51. Gupta, B., Kulshrestha, V. K., Srivastava, R. K. and Prasad, D. N., - Mechanisms of curcumin induced gastric ulcer in rats. *Indian J. Med. Res.*, 1980, **71**, 806–814. - Dasgupta, S. R., Sinha, M., Sahana, C. C. and Mukherjee, B. P., A study of the effect of an extract of *Curcuma longa* Linn. on experimental gastric ulcers in animals. *Indian J. Pharmacol.*, 1969, 1, 49– 54. - 53. Sinha, M., Mukherjee, B. P., Mukherjee, B. and Dasgupta, S. R., Study on the 5-hydroxytryptamine contents in guinea pig stomach with relation to phenylbutazone induced gastric ulcers and the effects of curcumin thereon. *Indian J. Pharmacol.*, 1974, **6**, 87–96. - Bhatia, A., Singh, G. B. and Khanna, N. M., Effect of curcumin, its alkali salts and *Curcuma longa* oil in histamine induced gastric ulceration. *Indian J. Exp. Biol.*, 1964, 2, 158–160. - Cream, G. P., Shearman, D. J. C. and Small, W. P., Diseases of the digestive system. In *Davidsons Principles and Practice of Medicine* (ed. Macleod, J.) The English Language Book Society and Churchill Livingstone, Edinburgh, 1974, 11th edn, p. 456. - Platel, K. and Srinivasan, K., Influence of dietary spices or their active principles on digestive enzymes of small intestinal mucosa in rats. *Int. J. Food Sci. Nutr.*, 1996, 47, 55–59. - Kang, H. C. et al., Curcumin inhibits collagen synthesis and hepatic stellate cell activation in vivo and in vitro. J. Pharm. Pharmacol., 2002, 54, 119–126. - Shukla, Y. and Arora, A., Suppression of altered hepatic foci development by curcumin in Wistar rats. *Nutr. Cancer*, 2003, 45, 53–59. - Ozaki, Y., and Liang, O. B., Shoyakugaku Zasshi (in Japanese) 1988, 42, 257–263. - Chey, W. Y., Millikan, L., Lee, K. Y., Watanabe, S., Shiratori, K. and Takeuchi, T., Effect of 1-phenylpentanol on release of secretin and exocrine pancreatic secretion in dogs and humans. *Gastroenterology*, 1983, 84, 1578–1584. - Sumbilla, C., Lewis, D., Hammerschmidt, T. and Inesi, G., The slippage of the Ca<sup>2+</sup> pump and its control by anions and curcumin in skeletal and cardiac sarcoplasmic reticulum. *Biol. Chem.*, 2002, 277, 13900–13906. - 62. Patil, T. N. and Srinivasan, M., Hypocholesteremic effect of curcumin in induced-hypercholesteremic rats. *Indian J. Exp. Biol.*, 1971, **9**, 167–169. - 63. Vajragupta, O., Boonchoong, P., Watanabe, H., Tohda, M., Kummasud, N. and Sumanont, Y., Manganese complexes of curcumin and its derivatives: evaluation for the radical scavenging ability and neuroprotective activity. *Free Radic. Biol. Med.*, 2003, **35**, 1632–1644 - 64. Thiyagarajan, M. and Sharma, S. S., Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. *Life Sci.*, 2004, **74**, 969–985. - Kamal-Eldin, A., Frank, J., Razdan, A., Tengblad, S., Basu, S. and Vessby, B., Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rats. *Lipids*, 2000, 35, 427–435. - Began, G., Sudharshan, E., Udaya Shankar, K. and Appu Rao, A. G., Interaction of curcumin with phosphatidylcholine: a spectrofluorometric study. *J. Agric. Food Chem.*, 1999, 47, 4992–4997. - 67. Akrishnan, V. R. and Menon, V. P., Potential role of antioxidants during ethanol-induced changes in the fatty acid composition and arachidonic acid metabolites in male Wistar rats. *Cell Biol. Toxicol.*, 2001, **17**, 11–22. - Srivastava, R. and Srimal, R. C., Modification of certain inflammation-induced biochemical changes by curcumin. *Indian J. Med. Res.*, 1985, 81, 215–223. - Brouet, I. and Ohshima, H., Curcumin, an antitumor promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. *Biochem. Biophys. Res. Commun.*, 1995, 206, 533–540. - Srimal, R. C. and Dhawan, B. N., In Development of Unani drugs from Herbal Sources and the Role of Elements in their Mechanism of Action (ed. Arora, B. B.), Hamdard National Foundation Monograph, New Delhi, 1985. - Yegnanarayan, R., Saraf, A. P. and Balwani, J. H., Comparison of anti-inflammatory activity of various extracts of *Curcuma longa* (Linn). *Indian J. Med. Res.*, 1976, 64, 601–608. - Deodhar, S. D., Sethi, R. and Srimal, R. C., Preliminary study on antirheumatic activity of curcumin (diferuloylmethane). *Indian J. Med. Res.*, 1980, 71, 632–634. - Kato, K, Ito, H., Kamei, K. and Iwamoto, I., Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues *in vivo*. *Cell Stress Chaperones*, 1998, 3, 152–160. - Singh, S. and Aggarwal, B. B., Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). *J. Biol. Chem.*, 1995, 270, 24995–25000. - 75. Bierhous, A. *et al.*, The dietary pigment curcumin reduces endothelial tissue factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NFκB. *Thromb. Haematostasis*, 1997, 77, 772–782. - Sidhu, G. S. et al., Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen., 1999, 7, 362–374. - 77. Sharma, O. P., Antioxidant activity of curcumin and related compounds. *Biochem. Pharmacol.*, 1976, **25**, 1811–1812. - Subramanian, M., Sreejayan Rao, M. N. A., Devasagayam, T. P. A. and Singh, B. B., Diminution of singlet oxygen induced DNA damage by curcumin and related antioxidants. *Mutat. Res.*, 1994, 311, 249–255. - Joe, B. and Lokesh, B. R., Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. *Biochim. Biophys. Acta*, 1994, 1224, 255–263. - Mahakunakorn, P., Tohda, M., Murakami, Y., Matsumoto, K., Watanabe, H. and Vajragupta, O., Cytoprotective and cytotoxic effects of curcumin: dual action on H<sub>2</sub>O<sub>2</sub> induced oxidative cell damage in NG108-15 cells. *Biol. Pharm. Bull.*, 2003, 26, 725–728. - Lim, G. P., Chu, T., Yang, F., Beech, W., Frantschy, S. A. and Cole, G. M., The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. *J. Neurosci.*, 2001, 21, 8370–8377. - 82. Pulla Reddy, Ach. and Lokesh, B. R., Studies on spice principles as antioxidant in the inhibition of lipid peroxidation of rat liver microsomes. *Mol. Cell. Biochem.*, 1992, **111**, 117–124. - 83. Bandyopadhyay, U., Das, D. and Banerjee, R. K., Reactive oxygen species: oxidative damage and pathogenesis. *Curr Sci.*, 1999, 77, 658–666. - 84. Halliwell, B., In *Oxidative Stress in Skeletal Muscle* (eds Reznick, A. Z. *et al.*), Birkhauser, Verlag Basel, Switzerland, 1998, pp. 1–27. - Halliwell, B. and Gutteridge, J. M. C., Role of free radicals and catalytic metal ions in human disease: an overview. *Methods Enzy*mol., 1990, 186, 1–85. - Kelly, M. R., Xu, J., Alexander, K. E. and Loo, G., Disparate effects of similar phenolic phytochemicals as inhibitors of oxidative damage to cellular DNA. *Mutat. Res.*, 2001, 485, 309–318. - 87. Galati, G., Sabzevari, O., Wilson, J. X. and O'Brien, P. J., Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. *Toxicology*, 2002, **177**, 91–104. - 88. Sreejayan Rao, M. N., Curcuminoids as potent inhibitors of lipid peroxidation. *J. Pharm. Pharmacol.*, 1994, **46**, 1013–1016. - 89. Masuda, T., Maekawa, T., Hidaka, K., Bando, H., Takeda Y. and Yamaguchi, H., Chemical studies on antioxidant mechanisms of curcumin: analysis of oxidative coupling products from curcumin and linoleate. *J. Agric. Food Chem.*, 2001, **49**, 2539–2547. - 90. Frankel, E. N., *Lipid Oxidation*, The Oily Press, Dundee, Scotland, 1998, pp. 129–160. - Chen, H. W. and Huang, H. C., Effect of curcumin on cell cycle progression and apoptosis in vascular smooth cells. *Br. J. Pharma-col.*, 1998, 124, 1029–1040. - Martin-Cordero, C., Lopez-Lazaro, M., Galvez, M. and Ayuso, M. J., Curcumin as a DNA topoisomerase II poison. *J. Enzyme Inhib. Med. Chem.*, 2003, 18, 505–509. - Jana, N. R., Dikshit, P., Goswami, A. and Nukina, N., Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J. Biol. Chem., 2004, 279, 11680–11685. - 94. Rashmi, R., Kumar, S. and Karunagaran, D., Ectopic expression of Hsp 70 confers resistance and silencing its expression sensitizes human colon cancer cells to curcumin-induced apoptosis. *Carcinogenesis*, 2004, **25**, 179–187. - Duvoix, A. *et al.*, Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1-1 inhibition. *Biochem. Pharmacol.*, 2003, 66, 1475–1483. - Woo, J. H. et al., Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis, 2003, 24, 1199–1208. - Deeb, D., Xu, Y. X., Jiang, H., Gao, X., Janakiram, N., Chapman, R. A. and Gautam, S. C., Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. *Mol. Cancer Ther.*, 2003. 2, 95–103. - Chen, Y-C., Kuo, T-C., Lin-Shiau, S-Y. and Lin, J-K., Induction of HSP70 gene expression by modulation of Ca<sup>2+</sup> ion and cellular P53 protein by curcumin in colorectal carcinoma cells. *Mol. Carcinogenesis*, 1996, 17, 224–234. - Gautam, S. C., Xu, Y. X., Pindolia, K. R., Janakiraman, N. and Chapman, R. A., Nonselective inhibition of proliferation of transformed and nontransformed cells by the anticancer agent carcumin (diferuloylmethane). *Biochem. Pharmacol.*, 1998, 55, 1333–1337. - Cipriani, B. et al., Curcumin inhibits activation of Vg9Vd2 T cells by phosphoantigens and induces apoptosis involving apoptosis inducing factor and large scale DNA fragmentation. J. Immunol., 2001, 167, 3454–3462. - 101. Hanif, R., Qiao, L., Shiff, S. J. and Rigas, B., Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin independent pathway. *J. Lab. Clin. Med.*, 1997, 130, 576–584. - 102. Khar, A., Ali, A. M., Pardhasaradhi, B. V., Varalakshmi, C. H., Anjum, R. and Kumari, A. L., Induction of stress response renders human tumor cell lines resistant to curcumin mediated apoptosis: role of reactive oxygen intermediates. *Cell Stress Chaperones*, 2001, 6, 368–376. - 103. Khar, A., Ali, A. M., Pardhasaradhi, B. V., Begum, Z. and Anjum, R., Antitumor activity of curcumin is mediated through the induction of apoptosis in AK-5 tumor cells. FEBS Lett., 1999, 445, 165–168. - 104. Sikora, E., Bielak-Zmijewska, A., Piwocka, K., Skierski, J. and Radziszewska, E., Inhibition of proliferation and apoptosis of human and rat T lymphocytes by curcumin, a curry pigment. *Bio-chem. Pharmacol.*, 1997, 54, 899–907. - Jaruga, E., Bielak-Zmijewska, A., Sikora, E., Skierski, J., Radziszewska, E., Piowcka, K. and Bartosz, G., Glutathione-independent mechanism of apoptosis inhibition by curcumin in rat thymocytes. *Biochem. Pharmacol.*, 1998, 56, 961–965. - 106. Piwocka, K., Jaruga, E., Skierski, J., Gradzka, I. and Sikora, E., Effect of glutathione depletion on caspase-3 independent apoptosis pathway induced by curcumin in Jurkat cells. *Free Radic. Biol. Med.*, 2001, 31, 670–678. - Shukla, Y., Arora, A. and Taneja, P., Antimutagenic potential of curcumin on chromosomal aberrations in Wistar rats. *Mutat. Res.*, 2002, 515, 197–202. - el Hamss, R., Analla, M., Campos-Sanchez, J., Alonso-Moraga, A., Munoz-Serrano, A. and Idaomar, M., A dose dependent anti-genotoxic effect of turmeric. *Mutat. Res.*, 1999, 446, 135–139. - Araujo, M. C., Dias, F. L. and Takahashi, C. S., Potentiation by turmeric and curcumin of gamma-radiation-induced chromosome aberrations in Chinese hamster ovary cells. *Teratogen. Carcinogen. Mutagen*, 1999, 19, 9–18. - 110. Blasiak, J., Trzeciak, A., Malecka-Panas, E., Drzewoski, J., Iwamienko, T., Szumiel, I. and Wojewodzka, M., DNA damage and repair in human lymphocytes and gastric mucosa cells exposed to chromium and curcumin. *Teratogen. Carcinogen. Mutagen*, 1999, 19, 19–31. - Garg, S. K., Mathur V. S. and Chaudhury, R. R., Screening of Indian plants for antifertility activity. *Indian J. Exp. Biol.*, 1978, 16, 1077–1079. - 112. Liao, S., Lin, J., Dang, M. T., Zhang, H., Kao, Y. H., Fukuchi, J and Hiipakka, R. A., Growth suppression of hamster flank organs by topical application of catechins, alizarin, curcumin, and myristoleic acid. *Arch. Dermatol. Res.*, 2001, 293, 200–205. - 113. Rithaporn, T., Monga, M. and Rajasekharan, M., Curcumin: a potential vaginal contraceptive. *Contraception*, 2003, **68**, 219–223. - Suryanarayana, P., Krishnaswamy, K. and Reddy, G. B., Effect of curcumin on galactose-induced cataractogenesis in rats. *Mol. Vis.*, 2003, 9, 223–230. - Arun, N. and Nalini, N., Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. *Plant Foods Hum. Nutr.*, 2002, 57, 41–52. - Sajithlal, G. B., Chittra, P. and Chandrakasan, G., Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. *Biochem. Pharmacol.*, 1998, 56, 1607–1614. - 117. Kumar, S., Narain, U., Tripathi, S. and Misra, K., Synthesis of curcumin bioconjugates and study of their antibacterial activities against beta-lactamase-producing microorganisms. *Bioconjug. Chem.*, 2001, 12, 464–469. - 118. Mahady, G. B., Pendland, S. L., Yun, G. and Lu, Z. Z., Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, of group 1 carcinogen. Anticancer Res., 2002, 22, 4179–4181. - Apisariyakul, A., Vanittanakomm N. and Buddhasukh, D., Antifungal activity of turmeric oil extracted from *Curcuma longa* (Zingiberaceae). J. Ethnopharmacol., 1995, 49, 163–169. - Wuthi-Udomler, M., Grisanapan, W., Luanratana, O. and Caichompoo, W., Antifungal activity of *Curcuma longa* grown in Thailand. *Southeast Asian J. Trop. Med. Public Health*, 2000, 31, 178–182. - 121. Jayaprakasha, G. K., Negi, P. S., Anandharamakrishnan, C. and Sakariah, K. K., Chemical composition of turmeric oil a byproduct from turmeric oleorsin industry and its inhibitory activity against different fungi. *Z. Naturforsch.*, *C*, 2001, **56**, 40–44. - Koide, T., Nose, M., Ogihara, Y., Yabu, Y. and Ohta, N., Leishmanicidal effect of curcumin in vitro. Biol. Pharm. Bull., 2002, 25, 131–133. - 123. Gomes Dde, C., Alegrio, L. V., de Lima, M. E., Leon L. L. and Araujo, C. A., Synthetic derivatives of curcumin and their activity against *Leishmania amazonensis*. *Arzneimittelforschung*, 2002, 52, 120–124. - 124. Rasmussen, H. B., Christensen, S. B., Kuist, L. P. and Karazmi, A., A simple and effective separation of the curcumins, the antiprotozoal constituents of *Curcuma longa. Planta Med.*, 2000, 66, 396–398. - 125. Hergenhahn, M., Soto, U., Weninger, A., Polack, A., Hsu, C. H., Cheng, A. L. and Rosl, F., The chemopreventive compound curcumin is an efficient inhibitor of Epstein-Barr virus BLZF1 transcription in Raji DR-LUC cells. *Mol. Carcinogen.*, 2002, 33, 137– 145. - 126. De Clercq, E., Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. *Med. Res. Rev.*, 2000, **20**, 323–349. - Taher, M. M., Lammering, G., Hershey, C. and Valerie, K., Curcumin inhibits ultraviolet light induced human immunodeficiency virus gene expression. *Mol. Cell Biochem.*, 2003, 254, 289–297. - Punithavathi, D., Venkatesan, N. and Babu, M., Curcumin inhibition of bleomycin induced pulmonary fibrosis in rats. *Br. J. Pharmacol.*, 2000, 131, 169–172. - Wahlstrom, B. and Blennow, G., A study on the fate of curcumin in the rat. Acta Pharmacol. Toxicol., 1978, 43, 86–92. - Ravindranath, V. and Chandrasekhara, N., Absorption and tissue distribution of curcumin in rats. *Toxicology*, 1980, 16, 259–265. - Pan, M-H., Huang, T-M. and Lin, J-K., Biotransformation of curcumin through reduction and glucoronidation in mice. *Drug Metabol. Dispos.*, 1999, 27, 486–494. - 132. Holder, G. M., Plummer, J. L. and Ryan, A. J., The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. *Xenobiotica*, 1978, **8**, 761–768. - 133. Bhavani Shankar, T. N., Shantha, N. V., Ramesh, H. P., Murthy, I. A. S. and Murthy, V. S., Toxicity studies on turmeric (*Curcuma longa*): acute toxicity studies in rats, guinea pigs and monkeys. *Indian J. Exp. Biol.*, 1980, 18, 73–75. - 134. Surh, Y. J., Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. *Food Chem. Toxicol.*, 2002, 40, 1091–1097. - Jain, J. P., Bhatnagar, L. S. and Parsai, M. R., *J. Res. Indian Med. Yoga Homeopathy*, 1979, 14, 110. - Eigner, D. and Scholz, D., Das Zauberbuchlein der Gyani Dolma. Pharm. Unserer Zeit, 1990, 19, 141–152. - Satoskar, R. R., Shah, S. J. and Shenoy, S. G., Evaluation of antiinflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. *Int. J. Clin. Pharmacol. Ther. Toxi*col., 1986, 24, 651–654. - Kumar, V., Lewis, S. A., Mutalik, S., Shenoy, D. B., Venkatesh and Udupa, N., Biodegradable microspheres of curcumin for treatment of inflammation. *Indian J. Physiol. Pharmacol.*, 2002, 46, 209– 217 - Sambaiah, K., Ratankumar, S., Kamanna, V. S., Satyanarayana, M. N. and Rao, M. V. L., Influence of turmeric and curcumin on growth, blood constituents and serum enzymes in rats. *J. Food Sci. Technol.*, 1982, 19, 187–190. - Chainani-Wu, N., Safety and antiinflammatory activity of curcumin: a component of turmeric (*Curcuma longa*). J. Altern. Complement Med., 2003, 9, 161–168. - Aggarwal, B. B., Kumar, A. and Bharti, A. C., Anticancer potential of curcumin: preclinical and clinical studies. *Anticancer Res.*, 2003, 23, 363–398. Received 8 January 2004; revised accepted 31 March 2004