
1

Schema Rules for UBL…
and Maybe for You

Eve Maler
XML 2002 Conference

12 December 2002

2

Lots to cover in this session

• Goals
– Introduce the Universal Business Language and its unique

schema requirements and constraints
– Describe three major areas of its design, introducing the

ebXML Core Components model along the way
– Help you decide whether you want to apply any of these

design rules to your own project, B2B or otherwise
• Assumptions

– You are familiar with advanced W3C XML Schema concepts
– But not necessarily an expert in XML B2B in general or

ebXML specifically

3

Overview of UBL and its
EDI and ebXML roots

4

The classic EDI stack

VANPackaging/transport

CASE toolBusiness processes

Ad hoc TPABusiness agreements

EDIFACT,
X12Standard messages

MIGsMessage
contextualization

Infra-
structure

Payload

5

Some EDI pressure points

• It’s hard to get in the game
• Private networks are expensive
• You need to do extensive point-to-point

negotiation
• The interchange pipe is large, with infinite

possible subsets
• You use a “soft” mechanism for adapting to

special business contexts

6

The ebXML initiative

• A joint 18-month effort, concluding in May 2001, of:
– OASIS (Organization for the Advancement of Structured

Information Standards)
– UN/CEFACT (United Nations Centre for Trade Facilitation

and Electronic Business)
• Over 1000 international participants
• The vision: a global electronic marketplace where

enterprises of any size, anywhere, can:
– Find each other electronically
– Conduct business by exchanging XML messages

• ebXML work continues in OASIS and UN/CEFACT

7

The ebXML stack

Packaging/transport

Business processes

Business agreements

Standard messages

Message
contextualization

Message
Service

BPSS

CPP/CPA

Core
Components

Context
methodology

Reg/
Rep

Discovery/retrieval

8

UBL proposes to fill out the stack

Packaging/transport

Business processes

Business agreements

Standard messages

Message
contextualization

Message
Service

BPSS

CPP/CPA

Core Components

Context methodology

Reg/
Rep

Discovery/retrieval

UBL Library

UBL context meth

9

UBL is…

• An XML-based business language standard being
developed at OASIS (though not officially part of
ebXML) that…

• …leverages existing EDI and XML B2B concepts and
technologies

• …is applicable across all industry sectors and
domains of electronic trade

• …is modular, reusable, and extensible
• …is non-proprietary and committed to freedom from

royalties
• …is intended to become a legal standard for

international trade

10

The UBL subcommittees that get
the work done

• Modeling and content
– Library Content SC
– Context Drivers SC
– (future domain-specific)

• Administrative functions
– Marketing SC
– Liaison SC
– Subcommittee chairs SC

• XML representation and
mechanisms
– Context Methodology SC
– Tools and Techniques

SC
– Naming and Design

Rules SC

11

Requirements on schema design

• Leverage XML technology, but keep it
interoperable

• Achieve semantic clarity through a binding to
the Core Components model

• Support contextualization (customization) and
reuse

• Selectively allow “outsourcing” to other
standard schemas

12

The special requirement for
context

• “Standard” business components need to be
different in different business contexts
– Addresses differ in Japan vs. the U.S.
– Addresses in the auto industry differ from those for

other industries
– Invoice items for shoes need size information; for

coffee, grind information
• UBL needs this kind of customization without

losing interoperability

13

A constraint on the design rules
themselves

• The UBL Library is being specified in syntax-
neutral form using the Core Components
model
– A spreadsheet holds the results

• To convert this automatically into schema
form requires hard rules, not just guidelines
– In fact, we do this today with perl scripts
– W3C XML Schema is our target form of choice

14

The design rules we’ll review
today

• UBL’s mapping to ebXML Core Components,
including XML naming rules

• UBL’s choice of schema style
• UBL recommendations for the creation of

reusable code lists

15

UBL’s mapping to the
ebXML Core

Components model

16

Status of the Core Components
spec

• The Core Components Technical Specification
(CCTS) defines a syntax-neutral metamodel for
business semantics
– It is at V1.85 as of 30 September 2002

• Work is ongoing to define an actual dictionary in the
Core Components Supplementary Documents
(CCSD)
– These are currently non-normative

• UBL is, first and foremost, striving to use the CCTS
metamodel accurately
– And offering feedback for further CCTS/CCSD development

17

Core components vs. business
information entities

• An address might be a generic CC
• A U.S. address has (at least) the geopolitical region

set as its business context, making it a BIE
• UBL, by its nature, deals only in BIEs

A building block for the
exchange of

semantically correct and
meaningful information

Core Component
(CC)

Business Information
Entity (BIE)

A CC to which a business
context has been applied

apply business context:
business process

product classification
industry classification

geopolitical region
official constraint

business process role
supporting role

system capabilitites

18

The Core Components spec
follows ISO 11179

• This is basic object-oriented “good stuff”

Object class

Property 1: representation 1
Property 2: representation 2
Property 3: representation 3
Property 4: representation 4

Address

Street: text
Post code: text
Town: text
Country: identifier

ISO 11179 governs data dictionaries:
defines the notions of object class, property, and representation term

19

Different kinds of CC and BIE

A singular piece of
information; can serve
as a property of an
aggregate

Basic CC/BIE

An object class that is a
collection of related
pieces of information;
can indirectly serve as a
property of another
aggregate

Aggregate CC/BIE
(ACC, ABIE)

Aggregate CC/BIE
(ACC, ABIE)

Association CC/BIE
(ASCC, ASBIE)

A mechanism for
allowing an aggregate to
be a property of another

aggregate

Core Component
Type (CCT)

A built-in set of
representation terms for
basic information

20

A tiny sample data dictionary

• This leaves out cardinality considerations for
simplicity

Person

Name: text
Birth: date
Residence Address: Address
Official Address: Address

Address

Street: text
Post Code: text
Town: text
Country: identifier

Key:
Object class (aggregate BIE) Property (basic BIE)
Property (association BIE) Representation term (CCT)

21

The Core Component Types

• The CCTs are built-in ebXML representation terms
for indicating constraints on basic information

• The current list of CCTs:
– Amount
– Binary Object (plus Graphic, Picture, Sound, and Video)
– Code
– Date Time (plus Date and Time)
– Identifier
– Indicator
– Measure
– Numeric (plus Value, Rate, and Percent)
– Quantity
– Text (plus Name)

22

How dictionary entries are named
• Object classes:

– Object Class Term. “Details”
• Properties:

– Object Class Term. [Qualifier] Property Term. [Qualifier] Representation Term
• CCTs:

– CCT Name. “Type”

Person. Details

Person. Name. Text
Person. Birth. Date
Person. Residence Address. Address
Person. Official Address. Address

Address. Details

Address. Street. Text
Address. Post Code. Text
Address. Town. Text
Address. Country. Identifier

Key:
Object class (aggregate BIE) Property (basic BIE) Property (association BIE)

23

How this would map to a UBL
schema

• Person. Details and Address. Details (and
any other object classes) become complex
types in the UBL Library

• Person. Name. Text and all the other
properties become elements

• Text, date, and other CCTs become complex
types in the UBL Library’s “built-in” CCT
schema module
– Codes and identifiers are a special case

24

UBL’s XML naming rules
• Remove periods and spaces
• Replace “Details” with “Type”
• On properties (elements), leave

out the object class term
– XPath gives you uniqueness

• Remove redundant words
• Remove “Text” as the default

CCT
• Truncate “Identifier” to “ID”

PersonType

Name
BirthDate
Residence Address
Official Address

AddressType

Street
PostCode
Town
CountryID

Key:
XSD complex type
XML element bound to a CCT type
XML element bound to a regular complex type

25

UBL’s choice of schema
style

26

XSD offers many options for
schema organization

• Elements and types can be managed
separately

• Type inheritance and derivation allows for
deep type hierarchies

• Elements, datatypes, and attributes can
independently be locally or globally scoped

• Namespace support allows for distributed
component creation and reuse
– And importing (outer) schemas can reset some

settings

27

Several options have become
well known

• Russian Doll, Salami Slice, and Venetian
Blind have been proposed by Roger Costello
(xfront.com)

• A fourth obvious option is Garden of Eden
• There are many variations we won’t go into

here
– There are some weird ones, like making all

attributes global

28

Russian Doll
<xs:schema … >

<xs:element name=“Person”>
<xs:complexType> keep nesting ever more deeply…
<xs:element name=“Name” type=“NameType” />
<xs:element name=“BirthDate” type=“DateType” />
<xs:element name=“ResidenceAddress”>
<xs:complexType>
<xs:element name=“Street” type=“TextType” />
…

</xs:complexType>
</xs:element>
<xs:element name=“OfficialAddress”>
<xs:complexType> … </xs:complexType>

</xs:element>
</xs:complexType>

</xs:element>
</xs:schema>

29

Salami Slice
<xs:schema … >

<xs:element name=“Person”> only elements are at the top level…
<xs:complexType>
<xs:element ref=“Name” />
<xs:element ref=“BirthDate” />
<xs:element ref=“ResidenceAddress” />
<xs:element ref=“OfficialAddress” />
</xs:complexType>

</xs:element>
<xs:element name=“Name” type=“TextType” />
<xs:element name=“BirthDate” type=“DateType” />
<xs:element name=“ResidenceAddress”>
<xs:complexType> … </xs:complexType>

</xs:element>
</xs:schema>

30

Venetian Blind
<xs:schema … > mostly types are at the top level…

<xs:element name=“Person” type=“PersonType”>
<xs:complexType name=“PersonType”>
<xs:element name=“Name” type=“NameType” />
<xs:element name=“BirthDate” type=“DateType” />
<xs:element name=“ResidenceAddress” type=“AddressType”/>
<xs:element name=“OfficialAddress” type=“AddressType”/>

</xs:complexType>
<xs:complexType name=“AddressType”>
<xs:element name=“Street” type=“TextType” />
<xs:element name=“PostCode” type=“TextType” />
<xs:element name=“Town” type=“TextType” />
<xs:element name=“CountryID” type=“…” />

</xs:complexType>
</xs:schema>

31

Garden of Eden
<xs:schema

targetNamespace=“http://www.example.com/BIEs”
… > everything’s at the top level…
<xs:element name=“Person” type=“PersonType”>

<xs:complexType name=“PersonType”>
<xs:element ref=“Name” />
<xs:element ref=“BirthDate” />
<xs:element ref=“ResidenceAddress” />
<xs:element ref=“OfficialAddress” />

</xs:complexType>

<xs:element name=“Name” type=“TextType” />

<xs:complexType name=“TextType”> … </xs:complexType>

…
</xs:schema>

32

Some potential criteria for
choosing a style

• Flexibility:
– Does the vocabulary need to adapt, chameleon-like, to

different namespaces?
• Consistency:

– Is it okay for the vocabulary to bounce between qualified and
unqualified? What happens when importing schemas do
overrides?

• Reuse:
– What constructs might someone else want to reuse

wholesale?
• Specialization:

– What constructs might someone else want to modify?

33

UBL’s specific concerns

• Validators and transformation/query engines need to
work
– Type-awareness in tools isn’t always easy to come by

• Both direct reuse and customization need to work
– No surprises
– No weird or inconsistent results
– Simple things should be simple; hard things should be

possible
• Semantic clarity needs to be retained at all times
• We ultimately chose Garden of Eden

34

Consequences of this choice

• Every object class/complex type has a corresponding
global element declaration for direct reuse

• Properties become references to those declarations
• Properties with the same XML name must be able to

share a common object class definition
• This complicates modeling and the algorithm for

generating the schema from the syntax-neutral model
– But it’s better to optimize for the users than for ourselves!

• But it has the benefit of rationalizing how we name
object classes

• And it gives us some useful new type hierarchy depth

35

Simple example
 <xs:complexType name=“AddressType”>

gets its semantics from the Address. Details object class
…

</xs:complexType>
<xs:element name=“Address” type=“AddressType” />

same generic Address. Details semantics

<xs:complexType name=“PersonType”>
<xs:element ref=“Address” />
gets its semantics from Address as a property of the Person
…

</xs:complexType>

36

Complex example
 <xs:complexType name=“AddressType”>

gets its semantics from the Address. Details object class
…

</xs:complexType>
<xs:element name=“Address” type=“AddressType” />

<xs:complexType name=“ResidenceAddressType”>
<xs:complexContent>
<xs:extension base=“AddressType” />
gets its semantics from a new ResidenceAddress. Details object class;
same is true for OfficialAddressType

</xs:complexContent>
</xs:complexType>

<xs:element name=“ResidenceAddress”
type=“ResidenceAddressType” />
gets referenced in PersonType and maybe other places too, picking up
property-level additional semantics as it goes

37

Reusable code lists

39

Options for formal
representations of code lists

• Often the lists are merely maintained in text
documents

• But formal encodings are immensely useful
– For example, as RDF ontologies or in the ebXML

Registry Information Model’s
<ClassificationScheme> language

• In addition, UBL and other vocabularies that
are “consumers” of code lists need them in
XSD form for reasons of validation and
semantic clarity

40

Each consumer schema could
create its own version

• But this is costly and prone to error
• Better to help code list producers create their

own code list schema modules

UBL Library

Colors Countries
Pick one: Pick one:

01=white AW=Aruba
02=blue CA=Canada
03=red FR=France
04=green DE=Germany
05=yellow ZM=Zambia
... ...

vs.
Colors
Pick one:

01=white
02=blue
03=red
04=green
05=yellow
...

Countries
Pick one:

AW=Aruba
CA=Canada
FR=France
DE=Germany
ZM=Zambia
...

UBL Library

41

The UBL solution: code list
schema recommendations

• The code list producer needs to identify the attributes that make
the list unique:
– An XML namespace for its schema
– A unique agency name, code list name, version, and so on

• …and define a prescribed set of complex and simple XSD types
that can be bound in a standard way to a native (e.g., UBL)
element

UBL Library

ISO 3166
country codes

42

The native element is unique to
that code list

• The outer element is generic, while the inner element is specific
• The code value itself doesn’t have to be a string; it could have

nested XML structure
• The simple type governing the value can be “tight” or “loose”,

depending on what the code list producer wants to maintain
over time:
– Enumerated list
– Pattern
– No constraints at all

• The unique attributes can be defaulted, or even fixed

 <CountryID>
<ISO3166CountryCode attribs…>FR</ISO3166CountryCode>

</CountryID>

43

A global marketplace in code
lists?

• If these recommendations are followed, we
could see…

• …less duplication of work in XML language
development

• …wider application platform support for well-
known code lists

• …earlier validation of code values
• …standardization of more code lists, and

even subsetting and extension

44

Conclusion

45

UBL has had to solve some tough
schema problems

• Some of its needs are unique, but many
might be shared by you

• Our hope is that UBL’s schema naming and
design rules may be helpful to others

• Please see the paper in the proceedings for
further reading

• Please see other talks at this conference for
more on other areas of UBL development

46

Thanks!
Questions?

Eve Maler
eve.maler@sun.com

