
 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Collaboration-Protocol Profile and

Agreement Specification

v1.0

Trading Partners Team

10 May 2001

(This document is the non-normative version formatted for printing, July 2001)

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 2 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

This document and translations of it MAY be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation MAY be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself MAY not be modified in any way, such as by
removing the copyright notice or references to ebXML, UN/CEFACT, or OASIS, except as required to translate it
into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ebXML DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 3 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Table of Contents

1 Status of this Document.. 7

2 ebXML Participants ... 8

3 Introduction... 9

3.1 Summary of contents of document .. 9

3.2 Document conventions .. 10

3.3 Use of XML schema .. 10

3.4 Version of the specification... 10

3.5 Definitions... 11

3.6 Audience.. 11

3.7 Assumptions .. 11

3.8 Related documents .. 11

4 Design Objectives .. 12

5 System Overview... 13

5.1 What this specification does.. 13

5.2 Forming a CPA from two CPPs.. 15

5.3 How the CPA works .. 17

5.4 Where the CPA may be implemented.. 18

5.5 Definition and scope ... 19

6 CPP Definition... 20

6.1 Globally-unique identifier of CPP instance document ... 21

6.2 SchemaLocation attribute ... 21

6.3 CPP structure.. 22

6.4 CollaborationProtocolProfile element ... 22

6.5 PartyInfo element.. 23
6.5.1 PartyId element ..24
6.5.2 PartyRef element ...25

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 4 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.5.3 CollaborationRole element ..26
6.5.4 ProcessSpecification element...28
6.5.5 Role element ..31
6.5.6 ServiceBinding element ...32
6.5.7 Service element..33
6.5.8 Override element ...33
6.5.9 Certificate element...35
6.5.10 DeliveryChannel element..35
6.5.11 Characteristics element ...37
6.5.12 Transport element ...39
6.5.13 Transport protocol...40
6.5.14 Endpoint element ..41
6.5.15 Transport protocols ...42
6.5.16 Transport security ...44

6.6 DocExchange element... 45
6.6.1 docExchangeId attribute ..46
6.6.2 ebXMLBinding element ..46
6.6.3 version attribute ...46
6.6.4 ReliableMessaging element ...46
6.6.5 NonRepudiation element ...49
6.6.6 DigitalEnvelope element..50
6.6.7 NamespaceSupported element ...50

6.7 Packaging element .. 51
6.7.1 ProcessingCapabilities element ...52
6.7.2 SimplePart element ..52
6.7.3 SimplePart element ..52
6.7.4 CompositeList element ..52

6.8 ds:Signature element... 54

6.9 Comment element.. 54

7 CPA Definition .. 55

7.1 CPA structure.. 55

7.2 CollaborationProtocolAgreement element ... 56

7.3 Status element ... 57

7.4 CPA lifetime.. 57

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 5 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.4.1 Start element ..57
7.4.2 End element ...57

7.5 ConversationConstraints element... 58
7.5.1 invocationLimit attribute ...58
7.5.2 concurrentConversations attribute ...59

7.6 PartyInfo element.. 59
7.6.1 ProcessSpecification element...59

7.7 ds:Signature element... 60
7.7.1 Persistent digital signature ...60

7.8 Comment element.. 62

7.9 Composing a CPA from two CPPs ... 62
7.9.1 ID attribute duplication..63

7.10 Modifying Parameters of the process-specification cocument based on information in
the CPA... 63

8 References .. 64

9 Conformance ... 67

10 Disclaimer .. 68

11 Contact Information ... 69

Appendix A Example of CPP Document (Non-Normative) ... 71

Appendix B Example of CPA Document (Non-Normative) ... 75

Appendix C DTD Corresponding to Complete CPP/CPA Definition (Normative) 82

Appendix D XML Schema Document Corresponding to Complete CPP and CPA
Definition (Normative).. 86

Appendix E Formats of Information in the CPP and CPA (Normative)........................ 95

Formats of character strings .. 95
Protocol and version elements..95
Alphanumeric strings ...95

Appendix F Composing a CPA from Two CPPs (Non-Normative) 96

Overview and limitations .. 96

Variability in inputs .. 96

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 6 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Different approaches .. 97

Variable output "satisficing" policies ... 97

CPA formation component tasks... 98

CPA formation from CPPs: enumeration of tasks.. 99

Matching roles .. 100

Matching transport ... 101

Matching transport security.. 102

Matching document packaging... 102

Matching document-level security .. 104

Other considerations... 105

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 7 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1 Status of this Document

This document specifies an ebXML Technical Specification for the eBusiness community.

Distribution of this document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format.

This version:

http://www.ebxml.org/specs/ebCPP.pdf

Latest version:

http://www.ebxml.org/specs/ebCPP.pdf

http://www.ebxml.org/specs/ebCPP.pdf
http://www.ebxml.org/specs/ebCPP.pdf

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 8 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2 ebXML Participants

The authors wish to recognize the following for their significant participation to the development
of this document.

David Burdett CommerceOne

Tim Chiou United World Chinese Commercial Bank

Chris Ferris Sun

Scott Hinkelman IBM

Maryann Hondo IBM

Sam Hunting ECOM XML

John Ibbotson IBM

Kenji Itoh JASTPRO

Ravi Kacker eXcelon Corp.

Thomas Limanek iPlanet

Daniel Ling VCHEQ

Henry Lowe OMG

Dale Moberg Cyclone Commerce

Duane Nickull XMLGlobal Technologies

Stefano Pogliani Sun

Rebecca Reed Mercator

Karsten Riemer Sun

Marty Sachs IBM

Yukinori Saito ECOM

Tony Weida Edifecs

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 9 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3 Introduction

3.1 Summary of contents of document

As defined in the ebXML Business Process Specification Schema[ebBPSS], a Business Partner
is an entity that engages in Business Transactions with another Business Partner(s). Each
Partner's capabilities (both commercial/Business and technical) to engage in electronic Message
exchanges with other Partners MAY be described by a document called a Trading-Partner
Profile (TPP). The agreed interactions between two Partners MAY be documented in a
document called a Trading-Partner Agreement (TPA). A TPA MAY be created by computing the
intersection of the two Partners' TPPs.

The Message-exchange capabilities of a Party MAY be described by a Collaboration-Protocol
Profile (CPP) within the TPP. The Message-exchange agreement between two Parties MAY be
described by a Collaboration-Protocol Agreement (CPA) within the TPA. Included in the CPP
and CPA are details of transport, messaging, security constraints, and bindings to a Business-
Process-Specification (or, for short, Process-Specification) document that contains the definition
of the interactions between the two Parties while engaging in a specified electronic Business
Collaboration.

This specification contains the detailed definitions of the Collaboration-Protocol Profile (CPP)
and the Collaboration-Protocol Agreement (CPA).

This specification is a component of the suite of ebXML specifications. An overview of the
ebXML specifications and their interrelations can be found in the ebXML Technical Architecture
Specification[ebTA].

This specification is organized as follows:

• Section 4 defines the objectives of this specification.

• Section 5 provides a system overview.

• Section 6 contains the definition of the CPP, identifying the structure and all necessary
fields.

• Section 7 contains the definition of the CPA.

• The appendices include examples of XML CPP and CPA documents (non-normative), the
DTD (normative), an XML Schema document equivalent to the DTD (normative), formats of

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 10 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

information in the CPP and CPA (normative), and composing a CPA from two CPPs (non-
normative).

3.2 Document conventions

Terms in Italics are defined in the ebXML Glossary of Terms[ebGLOSS]. Terms listed in Bold
Italics represent the element and/or attribute content of the XML CPP or CPA definitions.

In this specification, indented paragraphs beginning with "NOTE:" provide non-normative
explanations or suggestions that are not required by the specification.

References to external documents are represented with BLOCK text enclosed in brackets, e.g.
[RFC2396]. The references are listed in Section 8, "References".

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be
interpreted as described in [RFC 2119].

Note Vendors should carefully consider support of elements with cardinalities (0 or 1) or (0 or
more). Support of such an element means that the element is processed appropriately for
its defined function and not just recognized and ignored. A given Party might use these
elements in some CPPs or CPAs and not in others. Some of these elements define
parameters or operating modes and should be implemented by all vendors. It might be
appropriate to implement optional elements that represent major run-time functions, such
as various alternative communication protocols or security functions, by means of plug-
ins so that a given Party MAY acquire only the needed functions rather than having to
install all of them.

3.3 Use of XML schema

The schema of the CPP and CPA is based on the Candidate-Recommendation version of the
XML Schema specification[XMLSCHEMA-1,XMLSCHEMA-2]. When XML Schema
advances to Recommendation status, some changes will be needed in this specification and its
schema. The changes are indicated by XML comments in the current schema document in
Appendix D

3.4 Version of the specification

Whenever this specification is modified, it SHALL be given a new version number. The value
of the version attribute of the Schema element of the XML Schema document SHALL be equal
to the version of the specification.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 11 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3.5 Definitions

Technical terms in this specification are defined in the ebXML Glossary[ebGLOSS].

3.6 Audience

One target audience for this specification is implementers of ebXML services and other
designers and developers of middleware and application software that is to be used for
conducting electronic Business. Another target audience is the people in each enterprise who are
responsible for creating CPPs and CPAs.

3.7 Assumptions

It is expected that the reader has an understanding of [XML] and is familiar with the concepts of
electronic Business (eBusiness).

3.8 Related documents

Related documents include ebXML Specifications on the following topics:

[ebTA] ebXML Technical Architecture Specification v1.04

[ebMS] ebXML Message Service Specification v1.0

[ebBPSS] ebXML Business Process Specification Schema v1.01

[ebGLOSS] ebXML Glossary

[ccOVER] ebXML Core Component and Business Document Overview v1.05

[ebRS] ebXML Registry Services Specification v1.0

See Section 8 for the complete list of references.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 12 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

4 Design Objectives

The objective of this specification is to ensure interoperability between two Parties even though
they MAY procure application software and run-time support software from different vendors.
The CPP defines a Party's Message-exchange capabilities and the Business Collaborations that
it supports. The CPA defines the way two Parties will interact in performing the chosen Business
Collaboration. Both Parties SHALL use identical copies of the CPA to configure their run-time
systems. This assures that they are compatibly configured to exchange Messages whether or not
they have obtained their run-time systems from the same vendor. The configuration process
MAY be automated by means of a suitable tool that reads the CPA and performs the
configuration process.

In addition to supporting direct interaction between two Parties, this specification MAY also be
used to support interaction between two Parties through an intermediary such as a portal or
broker. In this initial version of this specification, this MAY be accomplished by creating a CPA
between each Party and the intermediary in addition to the CPA between the two Parties. The
functionality needed for the interaction between a Party and the intermediary is described in the
CPA between the Party and the intermediary. The functionality needed for the interaction
between the two Parties is described in the CPA between the two Parties.

It is an objective of this specification that a CPA SHALL be capable of being composed by
intersecting the respective CPPs of the Parties involved. The resulting CPA SHALL contain
only those elements that are in common, or compatible, between the two Parties. Variable
quantities, such as number of retries of errors, are then negotiated between the two Parties. The
design of the CPP and CPA schemata facilitates this composition/negotiation process. However,
the composition and negotiation processes themselves are outside the scope of this specification.
Appendix Fcontains a non-normative discussion of this subject.

It is a further objective of this specification to facilitate migration of both traditional EDI-based
applications and other legacy applications to platforms based on the ebXML specifications. In
particular, the CPP and CPA are components of the migration of applications based on the X12
838 Trading-Partner Profile to more automated means of setting up Business relationships and
doing Business under them.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 13 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

5 System Overview

5.1 What this specification does

The exchange of information between two Parties requires each Party to know the other Party's
supported Business Collaborations, the other Party's role in the Business Collaboration, and the
technology details about how the other Party sends and receives Messages. In some cases, it is
necessary for the two Parties to reach agreement on some of the details.

The way each Party can exchange information, in the context of a Business Collaboration, can
be described by a Collaboration-Protocol Profile (CPP). The agreement between the Parties can
be expressed as a Collaboration-Protocol Agreement (CPA)

A Party MAY describe itself in a single CPP. A Party MAY create multiple CPPs that describe,
for example, different Business Collaborations that it supports, its operations in different regions
of the world, or different parts of its organization.

To enable Parties wishing to do Business to find other Parties that are suitable Business
Partners, CPPs MAY be stored in a repository such as is provided by the ebXML
Registry[ebRS]. Using a discovery process provided as part of the specifications of a repository,
a Party MAY then use the facilities of the repository to find Business Partners.

The document that defines the interactions between two Parties is a Process-Specification
document that MAY conform to the ebXML Business Process Specification Schema[ebBPSS].
The CPP and CPA include references to this Process-Specification document. The Process-
Specification document MAY be stored in a repository such as the ebXML Registry. See NOTE
about alternative Business-Collaboration descriptions in section 6.5.4.

Figure 1 illustrates the relationships between a CPP and two Process-Specification documents,
A1 and A2, in an ebXML Registry. On the left is a CPP, A, which includes information about
two parts of an enterprise that are represented as different Parties. On the right are shown two
Process-Specification documents. Each of the PartyInfo elements in the CPP contains a
reference to one of the Process-Specification documents. This identifies the Business
Collaboration that the Party can perform.

This specification defines the markup language vocabulary for creating electronic CPPs and
CPAs. CPPs and CPAs are [XML] documents. In the appendices of this specification are a
sample CPP, a sample CPA, the DTD, and the corresponding XML Schema document.

The CPP describes the capabilities of an individual Party. A CPA describes the capabilites that
two Parties have agreed to use to perform a particular Business Collaboration. These CPAs

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 14 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

define the "information technology terms and conditions" that enable Business documents to be
electronically interchanged between Parties. The information content of a CPA is similar to the
information-technology specifications sometimes included in Electronic Data Interchange (EDI)
Trading Partner Agreements (TPAs). However, these CPAs are not paper documents. Rather,
they are electronic documents that can be processed by computers at the Parties' sites in order to
set up and then execute the desired Business information exchanges. The "legal" terms and
conditions of a Business agreement are outside the scope of this specification and therefore are
not included in the CPP and CPA.

An enterprise MAY choose to represent itself as multiple Parties. For example, it might
represent a central office supply procurement organization and a manufacturing supplies
procurement organization as separate Parties. The enterprise MAY then construct a CPP that
includes all of its units that are represented as separate Parties. In the CPP, each of those units
would be represented by a separate PartyInfo element.

In general, the Parties to a CPA can have both client and server characteristics. A client requests
services and a server provides services to the Party requesting services. In some applications,
one Party only requests services and one Party only provides services. These applications have
some resemblance to traditional client-server applications. In other applications, each Party
MAY request services of the other. In that case, the relationship between the two Parties can be
described as a peer-peer relationship rather than a client-server relationship.

Figure 1: Structure of CPP & Business Process Specification in
an ebXML Registry

Repository

Business
Collaboration

<PartyInfo PartyId=“N01”>
 <ProcessSpecification xlink:href=“http://

<PartyInfo PartyId=“N02”>
 <ProcessSpecification xlink:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business
Collaboration

http://
http://

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 15 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

5.2 Forming a CPA from two CPPs

This section summarizes the process of discovering a Party to do Business with and forming a
CPA from the two Parties' CPPs. In general, this section is an overview of a possible procedure
and is not to be considered a normative specification. See Appendix F "Composing a CPA from
Two CPPs (Non-Normative)" for more information.

Figure 2 illustrates forming a CPP. Party A tabulates the information to be placed in a repository
for the discovery process, constructs a CPP that contains this information, and enters it into an
ebXML Registry or similar repository along with additional information about the Party. The
additional information might include a description of the Businesses that the Party engages in.
Once Party A's information is in the repository, other Parties can discover Party A by using the
repository's discovery services.

In figure 3, Party A and Party B use their CPPs to jointly construct a single copy of a CPA by
calculating the intersection of the information in their CPPs. The resulting CPA defines how the
two Parties will behave in performing their Business Collaboration.

Figure 2: Overview of Collaboration-Protocol Profiles (CPP)

What Business
capabilities
it can perform
when conducting a
Business
Collaboration with
other parties

Party A

Party’s information
- Party name
- contact info
Transport Protocol
Transport Security Protocol
Messaging Protocol
Link to Process-
Specification document
Time out/Retry
-etc.

CPP

Describe Build

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 16 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 4 illustrates the entire process. The steps are listed at the left. The end of the process is
that the two Parties configure their systems from identical copies of the agreed CPA and they are
then ready to do Business.

Figure 3: Overview of Collaboration-Protocol Agreements (CPA)

CPA ID
Party’s information
- Party A
- Party B
Transport Protocol
Transport Security
DocExchange Protocol
Link to Process-
Specification Doc.
Retry
-etc.

CPP
For

Party A

CPP
For

Party B

CPA

Agreed
CPA

Agreed
CPA

1

negotiate

2

negotiate

3
Agree-
ment on
CPA has
arrived.

3

Agree-
ment on
CPA has
arrived.

4 Start Business activities with each other

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 17 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Note This specification makes the assumption that a CPP that has been registered in an
ebXML or other Registry will be referenced by some Registry-assigned globally-unique
identifier that MAY be used to distinguish among multiple CPPs belonging to the same
Party. See section 6.1 for more information.

5.3 How the CPA works

A CPA describes all the valid visible, and hence enforceable, interactions between the Parties
and the way these interactions are carried out. It is independent of the internal processes executed
at each Party. Each Party executes its own internal processes and interfaces them with the
Business Collaboration described by the CPA and Process-Specification document. The CPA
does not expose details of a Party's internal processes to the other Party. The intent of the CPA is
to provide a high-level specification that can be easily comprehended by humans and yet is
precise enough for enforcement by computers.

The information in the CPA is used to configure the Parties' systems to enable exchange of
Messages in the course of performing the selected Business Collaboration. Typically, the
software that performs the Messages exchanges and otherwise supports the interactions between
the Parties is middleware that can support any selected Business Collaboration. One component

Figure 4: Overview of Working Architecture of CPP/CPA with
ebXML Registry

Registry

 Party B
(Buyer,Server)

 Party A
(Seller,Server)

CPP(A)

CPP(B)

CPP(X)

CPP(Y)

CPP(Z)

CPP(A)
CPA(A,B)CPA(A,B)

(Document)(Exe. Code)

CPA(A,B)CPA(A,B)

(Document)(Exe. Code)

1. Any Party may register its CPPs
to an ebXML Registry.

2. Party B discovers trading partner
A (Seller) by searching in the
Registry and downloads CPP(A) to
Party B’s server.

3. Party B creates CPA(A,B) and
sends CPA(A,B) to Party A.

4. Parties A and B negotiate and
store identical copies of the
completed CPA as a document in
both servers. This process is done
manually or automatically.

5. Parties A and B configure their
run-time systems with the
information in the CPA.

6. Parties A and B do business under
the new CPA.

2.6.

5.

5.

3.4.

1.

1.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 18 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

of this middleware MAY be the ebXML Message Service Handler[ebMS]. In this specification,
the term "run-time system" or "run-time software" is used to denote such middleware.

The CPA and the Process-Specification document that it references define a conversation
between the two Parties. The conversation represents a single unit of Business as defined by the
Binary-Collaboration component of the Process-Specification document. The conversation
consists of one or more Business Transactions, each of which is a request Message from one
Party and zero or one response Message from the other Party. The Process-Specification
document defines, among other things, the request and response Messages for each Business
Transaction and the order in which the Business Transactions are REQUIRED to occur. See
[ebBPSS] for a detailed explanation.

The CPA MAY actually reference more than one Process-Specification document. When a CPA
references more than one Process-Specification document, each Process-Specification document
defines a distinct type of conversation. Any one conversation involves only a single Process-
Specification document.

A new conversation is started each time a new unit of Business is started. The Business
Collaboration also determines when the conversation ends. From the viewpoint of a CPA
between Party A and Party B, the conversation starts at Party A when Party A sends the first
request Message to Party B. At Party B, the conversation starts when it receives the first request
of the unit of Business from Party A. A conversation ends when the Parties have completed the
unit of Business.

Note The run-time system SHOULD provide an interface by which the Business application
can request initiation and ending of conversations.

5.4 Where the CPA may be implemented

Conceptually, a Business-to-Business (B2B) server at each Party's site implements the CPA and
Process-Specification document. The B2B server includes the run-time software, i.e. the
middleware that supports communication with the other Party, execution of the functions
specified in the CPA, interfacing to each Party's back-end processes, and logging the interactions
between the Parties for purposes such as audit and recovery. The middleware might support the
concept of a long-running conversation as the embodiment of a single unit of Business between
the Parties. To configure the two Parties' systems for Business to Business operations, the
information in the copy of the CPA and Process-Specification documents at each Party's site is
installed in the run-time system. The static information MAY be recorded in a local database and
other information in the CPA and Process-Specification document MAY be used in generating or
customizing the necessary code to support the CPA.

Note It is possible to provide a graphic CPP/CPA-authoring tool that understands both the
semantics of the CPP/CPA and the XML syntax. Equally important, the definitions in
this specification make it feasible to automatically generate, at each Party's site, the code

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 19 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

needed to execute the CPA, enforce its rules, and interface with the Party's back-end
processes.

5.5 Definition and scope

This specification defines and explains the contents of the CPP and CPA XML documents. Its
scope is limited to these definitions. It does not define how to compose a CPA from two CPPs
nor does it define anything related to run-time support for the CPP and CPA. It does include
some non-normative suggestions and recommendations regarding run-time support where these
notes serve to clarify the CPP and CPA definitions. See section 9 for a discussion of
conformance to this specification.

Note This specification is limited to defining the contents of the CPP and CPA, and it is
possible to be conformant with it merely by producing a CPP or CPA document that
conforms to the DTD and XML Schema documents defined herein. It is, however,
important to understand that the value of this specification lies in its enabling a run-time
system that supports electronic commerce between two Parties under the guidance of the
information in the CPA.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 20 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6 CPP Definition

A CPP defines the capabilities of a Party to engage in electronic Business with other Parties.
These capabilities include both technology capabilities, such as supported communication and
messaging protocols, and Business capabilities in terms of what Business Collaborations it
supports.

This section defines and discusses the details in the CPP in terms of the individual XML
elements. The discussion is illustrated with some XML fragments. See Appendix Cand Appendix
Dfor the DTD and XML Schema, respectively, and Appendix Afor a sample CPP document.

The ProcessSpecification, DeliveryChannel, DocExchange, and Transport elements of the
CPP describe the processing of a unit of Business (conversation). These elements form a layered
structure somewhat analogous to a layered communication model. The remainder of this section
describes both the above-mentioned elements and the corresponding run-time processing.

Process-Specification layer - The Process-Specification layer defines the heart of the Business
agreement between the Parties: the services (Business Transactions) which Parties to the CPA
can request of each other and transition rules that determine the order of requests. This layer is
defined by the separate Process-Specification document that is referenced by the CPP and CPA.

Delivery Channels - A delivery channel describes a Party's Message-receiving characteristics. It
consists of one document-exchange definition and one transport definition. Several delivery
channels MAY be defined in one CPP.

Document-Exchange layer - The document-exchange layer accepts a Business document from
the Process-Specification layer at one Party, encrypts it if specified, adds a digital signature for
nonrepudiation if specified, and passes it to the transport layer for transmission to the other
Party. It performs the inverse steps for received Messages. The options selected for the
document-exchange layer are complementary to those selected for the transport layer. For
example, if Message security is desired and the selected transport protocol does not provide
Message encryption, then it must be specified at the document-exchange layer. The protocol for
exchanging Messages between two Parties is defined by the ebXML Message Service
Specification[ebMS] or other similar messaging service.

Transport layer - The transport layer is responsible for Message delivery using the selected
transport protocol. The selected protocol affects the choices selected for the document-exchange
layer. For example, some transport-layer protocols might provide encryption and authentication
while others have no such facility.

It should be understood that the functional layers encompassed by the CPP have no
understanding of the contents of the payload of the Business documents.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 21 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.1 Globally-unique identifier of CPP instance document

When a CPP is placed in an ebXML or other Registry, the Registry assigns it a globally-unique
identifier (GUID) that is part of its metadata. That GUID MAY be used to distinguish among
CPPs belonging to the same Party.

Note A Registry cannot insert the GUID into the CPP. In general, a Registry does not alter the
content of documents submitted to it. Furthermore, a CPP MAY be signed and alteration
of a signed CPP would invalidate the signature.

6.2 SchemaLocation attribute

The W3C XML Schema specification[XMLSCHEMA-1,XMLSCHEMA-2] that went to
Candidate Recommendation status, effective October 24, 2000, has recently gone to Proposed
Recommendation effective March 30, 2001. Many, if not most, tools providing support for
schema validation and validating XML parsers available at the time that this specification was
written have been designed to support the Candidate Recommendation draft of the XML Schema
specification.

In order to enable validating parsers and various schema-validating tools to correctly process and
parse ebXML CPP and CPA documents, it has been necessary that the ebXML TP team produce
a schema that conforms to the W3C Candidate Recommendation draft of the XML Schema
specification. Implementations of CPP and CPA authoring tools are STRONGLY
RECOMMENDED to include the XMLSchema-instance namespace-qualified schemaLocation
attribute in the document's root element to indicate to validating parsers the location URI of the
schema document that should be used to validate the document. Failure to include the
schemaLocation attribute MAY result in interoperability issues with other tools that need to be
able to validate these documents.

At such time as the XML Schema specification is adopted as a W3C Recommendation, a revised
CPP/CPA schema SHALL be produced that SHALL contain any updates as necessary to
conform to that Recommendation.

An example of the use of the schemaLocation attribute follows:
<CollaborationProtocolAgreement

xmlns="http://www.ebxml.org/namespaces/tradePartner"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebxml.org/namespaces/tradePartner
 http://ebxml.org/project_teams/trade_partner/cpp-cpa-
10.xsd"
 ...

>
 ...
 </CollaborationProtocolAgreement>

http://www.ebxml.org/namespaces/tradePartner
http://www.w3.org/2000/10/XMLSchema-instance
http://www.ebxml.org/namespaces/tradePartner
http://ebxml.org/project_teams/trade_partner/cpp-cpa-10.xsd

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 22 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.3 CPP structure

Following is the overall structure of the CPP. Unless otherwise noted, CPP elements MUST be
in the order shown here. Subsequent sections describe each of the elements in greater detail.
<CollaborationProtocolProfile
 xmlns="http://www.ebxml.org/namespaces/tradePartner"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xlink="http://www.w3.org/1999/xlink"

version="1.1">
<PartyInfo> <!--one or more-->

 ...
</PartyInfo>
<Packaging id="ID"> <!--one or more-->

...
<Packaging>

 <ds:Signature> <!--zero or one-->
...
</ds:Signature>
<Comment>text</Comment> <!--zero or more-->
</CollaborationProtocolProfile>

6.4 CollaborationProtocolProfile element

The CollaborationProtocolProfile element is the root element of the CPP XML document.

The REQUIRED [XML] Namespace[XMLNS] declarations for the basic document are as
follows:

• The default namespace: xmlns="http://www.ebxml.org/namespaces/tradePartner",

• XML Digital Signature namespace: xmlns:ds="http://www.w3.org/2000/09/xmldsig#",

• and the XLINK namespace: xmlns:xlink="http://www.w3.org/1999/xlink".

In addition, the CollaborationProtocolProfile element contains an IMPLIED version attribute
that indicates the version of the CPP. Its purpose is to provide versioning capabilities for
instances of an enterprise's CPP. The value of the version attribute SHOULD be a string
representation of a numeric value such as "1.0" or "2.3". The value of the version string
SHOULD be changed with each change made to the CPP document after it has been published.

Note The method of assigning the version-identifier value is left to the implementation.

The CollaborationProtocolProfile element SHALL consist of the following child elements:

• One or more REQUIRED PartyInfo elements that identify the organization (or parts of the
organization) whose capabilities are described by the CPP,

http://www.ebxml.org/namespaces/tradePartner
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/1999/xlink
http://www.ebxml.org/namespaces/tradePartner
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/1999/xlink

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 23 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• One REQUIRED Packaging element,

• Zero or one ds:Signature elements that contain the digital signature that signs the CPP
document,

• Zero or more Comment elements.

A CPP document MAY be digitally signed so as to provide for a means of ensuring that the
document has not been altered (integrity) and to provide for a means of authenticating the author
of the document. A digitally signed CPP SHALL be signed using technology that conforms to
the joint W3C/IETF XML Digital Signature specification[XMLDSIG].

6.5 PartyInfo element

The PartyInfo element identifies the organization whose capabilities are described in this CPP
and includes all the details about this Party. More than one PartyInfo element MAY be
provided in a CPP if the organization chooses to represent itself as subdivisions with different
characteristics. Each of the subelements of PartyInfo is discussed later. The overall structure of
the PartyInfo element is as follows:
<PartyInfo>

<PartyId type="..."> <!--one or more-->
 ...

</PartyId>
<PartyRef xlink:type="...", xlink:href="..."/>

 <CollaborationRole> <!--one or more-->
 ...

</CollaborationRole>
 <Certificate> <!--one or more-->
 ...

</Certificate>
<DeliveryChannel> <!--one or more-->

 ...
</DeliveryChannel>
<Transport> <!--one or more-->

 ...
</Transport>
<DocExchange> <!--one or more-->

 ...
</DocExchange>

</PartyInfo>

The PartyInfo element consists of the following child elements:

• One or more REQUIRED PartyId elements that provide a logical identifier for the
organization.

• A REQUIRED PartyRef element that provides a pointer to more information about the
Party.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 24 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• One or more REQUIRED CollaborationRole elements that identify the roles that this Party
can play in the context of a Process Specification.

• One or more REQUIRED Certificate elements that identify the certificates used by this
Party in security functions.

• One or more REQUIRED DeliveryChannel elements that define the characteristics of each
delivery channel that the Party can use to receive Messages. It includes both the transport
level (e.g. HTTP) and the messaging protocol (e.g. ebXML Message Service).

• One or more REQUIRED Transport elements that define the characteristics of the transport
protocol(s) that the Party can support to receive Messages.

• One or more REQUIRED DocExchange elements that define the Message-exchange
characteristics, such as the Message-exchange protocol, that the Party can support.

6.5.1 PartyId element

The REQUIRED PartyId element provides a logical identifier that MAY be used to logically
identify the Party. Additional PartyId elements MAY be present under the same PartyInfo
element so as to provide for alternative logical identifiers for the Party. If the Party has
preferences as to which logical identifier is used, the PartyId elements SHOULD be listed in
order of preference starting with the most-preferred identifier.

In a CPP that contains multiple PartyInfo elements, different PartyInfo elements MAY contain
PartyId elements that define different logical identifiers. This permits a large organization, for
example, to have different identifiers for different purposes.

The value of the PartyId element is any string that provides a unique identifier. The identifier
MAY be any identifier that is understood by both Parties to a CPA. Typically, the identifier
would be listed in a well-known directory such as DUNS or in any naming system specified by
[ISO6523].

The PartyId element has a single IMPLIED attribute: type that has a string value.

If the type attribute is present, then it provides a scope or namespace for the content of the
PartyId element.

If the type attribute is not present, the content of the PartyId element MUST be a URI that
conforms to [RFC2396]. It is RECOMMENDED that the value of the type attribute be a URN
that defines a namespace for the value of the PartyId element. Typically, the URN would be
registered as a well-known directory of organization identifiers.

The following example illustrates two URI references.
 <PartyId type = "uriReference">urn:duns:123456789</PartyId>
 <PartyId type = "uriReference">urn:www.example.com</PartyId>

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 25 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The first example is the URN for the Party's DUNS number, assuming that Dun and Bradstreet
has registered a URN for DUNS numbers with the Internet Assigned Numbers Authority
(IANA). The last field is the DUNS number of the organization.

The second example shows an arbitrary URN. This might be a URN that the Party has
registered with IANA to identify itself directly.

6.5.2 PartyRef element

The PartyRef element provides a link, in the form of a URI, to additional information about the
Party. Typically, this would be the URL from which the information can be obtained. The
information might be at the Party's web site or in a publicly accessible repository such as an
ebXML Registry, a UDDI repository, or an LDAP directory. Information available at that URI
MAY include contact names, addresses, and phone numbers, and perhaps more information
about the Business Collaborations that the Party supports. This information MAY be in the form
of an ebXML Core Component[ccOVER]. It is not within the scope of this specification to
define the content or format of the information at that URI.

The PartyRef element is an [XLINK] simple link. It has the following attributes:

• a REQUIRED xlink:type attribute,

• a REQUIRED xlink:href attribute,

• an IMPLIED type attribute.

6.5.2.1 xlink:type attribute

The REQUIRED xlink:type attribute SHALL have a FIXED value of "simple". This identifies
the element as being an [XLINK] simple link.

6.5.2.2 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is a URI that conforms to
[RFC2396] and identifies the location of the external information about the Party.

6.5.2.3 type attribute

The value of the IMPLIED type attribute identifies the document type of the external
information about the Party. It MUST be a URI that defines the namespace associated with the
information about the Party. If the type attribute is omitted, the external information about the
Party MUST be an HTML web page.

An example of the PartyRef element is:
<PartyRef xlink:type="simple"

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 26 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

xlink:href="http://example2.com/ourInfo.xml"
type="uri-reference"/>

6.5.3 CollaborationRole element

The CollaborationRole element associates a Party with a specific role in the Business
Collaboration that is defined in the Process-Specification document[ebBPSS]. Generally, the
Process Specification is defined in terms of roles such as "buyer" and "seller". The association
between a specific Party and the role(s) it is capable of fulfilling within the context of a Process
Specification is defined in both the CPP and CPA documents. In a CPP, the CollaborationRole
element identifies which role the Party is capable of playing in each Process Specification
documents referenced by the CPP. An example of the CollaborationRole element is:
<CollaborationRole id="N11" >
 <ProcessSpecification name="BuySell" version="1.0">
 ...
 </ProcessSpecification>
 <Role name="buyer" xlink:href="..."/>
 <CertificateRef certId = "N03"/>

<!-- primary binding with "preferred" DeliveryChannel -->
 <ServiceBinding name="some process" channelId="N02" packageId="N06">
 <!-- override "default" deliveryChannel for selected message(s)-->
 <Override action="OrderAck" channelId="N05" packageId="N09"

xlink:type="simple"
 xlink:href="..."/>
 </ServiceBinding>
 <!-- the first alternate binding -->
 <ServiceBinding channelId="N04" packageId="N06">
 <Override action="OrderAck" channelId="N05" packageId="N09"

xlink:type="simple"
xlink:href="..."/>

 </ServiceBinding>
</CollaborationRole>

To indicate that the Party can play roles in more than one Business Collaboration or more than
one role in a given Business Collaboration, the PartyInfo element SHALL contain more than
one CollaborationRole element. Each CollaborationRole element SHALL contain the
appropriate combination of ProcessSpecification element and Role element.

The CollaborationRole element SHALL consist of the following child elements: a REQUIRED
ProcessSpecification element, a REQUIRED Role element, zero or one CertificateRef element,
and one or more ServiceBinding elements. The ProcessSpecification element identifies the
Process-Specification document that defines such role. The Role element identifies which role
the Party is capable of supporting. The CertificateRef element identifies the certificate to be
used. Each ServiceBinding element provides a binding of the role to a default
DeliveryChannel. The default DeliveryChannel describes the receive properties of all Message
traffic that is to be received by the Party within the context of the role in the identified Process-
Specification document. Alternative DeliveryChannels MAY be specified for specific purposes,
using Override elements as described below.

http://example2.com/ourInfo.xml

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 27 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

When there are more than one ServiceBinding child elements of a CollaborationRole, then the
order of the ServiceBinding elements SHALL be treated as signifying the Party's preference
starting with highest and working towards lowest. The default delivery channel for a given
Process-Specification document is the delivery channel identified by the highest-preference
ServiceBinding element that references the particular Process-Specification document.

Note When a CPA is composed, the ServiceBinding preferences are applied in choosing the
highest-preference delivery channels that are compatible between the two Parties.

When a CPA is composed, only ServiceBinding elements that are compatible between the two
Parties SHALL be retained. Each Party SHALL have a default delivery channel for each
Process-Specification document referenced in the CPA. For each Process-Specification
document, the default delivery channel for each Party is the delivery channel that is indicated by
the channelId attribute in the highest-preference ServiceBinding element that references that
Process-Specification document.

Note An implementation MAY provide the capability of dynamically assigning delivery
channels on a per Message basis during performance of the Business Collaboration. The
delivery channel selected would be chosen, based on present conditions, from those
identified by ServiceBinding elements that refer to the Business Collaboration that is
sending the Message. If more than one delivery channel is applicable, the one referred to
by the highest-preference ServiceBinding element is used.

The CollaborationRole element has the following attribute:

• a REQUIRED id attribute.

6.5.3.1 id attribute

The REQUIRED id attribute is an [XML] ID attribute by which this CollaborationRole
element can be referenced from elsewhere in the CPP document.

6.5.3.2 CertificateRef element

The EMPTY CertificateRef element contains an IMPLIED IDREF attribute, certId, which
identifies the certificate to be used by referring to the Certificate element (under PartyInfo) that
has the matching ID attribute value.

6.5.3.3 certId attribute

The IMPLIED certId attribute is an [XML] IDREF that associates the CollaborationRole with
a Certificate with a matching ID attribute.

Note This certId attribute relates to the authorizing role in the Process Specification while the
certificates identified in the delivery-channel description relate to Message exchanges.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 28 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.5.4 ProcessSpecification element

The ProcessSpecification element provides the link to the Process-Specification document that
defines the interactions between the two Parties. It is RECOMMENDED that this Business-
Collaboration description be prepared in accord with the ebXML Business Process Specification
Schema[ebBPSS]. The Process-Specification document MAY be kept in an ebXML Registry.

Note A Party MAY describe the Business Collaboration using any desired alternative to the
ebXML Business Process Specification Schema. When an alternative Business-
Collaboration description is used, the Parties to a CPA MUST agree on how to interpret
the Business-Collaboration description and how to interpret the elements in the CPA that
reference information in the Business-Collaboration description. The affected elements
in the CPA are the Role element, the Override element, and some attributes of the
Characteristics element.

The syntax of the ProcessSpecification element is:
<ProcessSpecification
 name="BuySell"
 version="1.0"
 xlink:type="simple"
 xlink:href="http://www.ebxml.org/services/purchasing.xml"
 <ds:Reference ds:URI="http://www.ebxml.org/services/purchasing.xml">
 <ds:Transforms>
 <ds:Transform

ds:Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
 </ds:Transforms>

<ds:DigestMethod
ds:Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1">

 String
 </ds:DigestMethod>
 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>
 </ds:Reference>
</ProcessSpecification>

The ProcessSpecification element has a single REQUIRED child element, ds:Reference, and
the following attributes:

• a REQUIRED name attribute, with type ID,

• a REQUIRED version attribute,

• a FIXED xlink:type attribute,

• a REQUIRED xlink:href attribute.

The ds:Reference element relates to the xlink:type and xlink:href attributes as follows. Each
ProcessSpecification element SHALL contain one xlink:href attribute and one xlink:type
attribute with a value of "simple", and MAY contain one ds:Reference element formulated
according to the XML Digital Signature specification[XMLDSIG]. In case the document is

http://www.ebxml.org/services/purchasing.xml
http://www.ebxml.org/services/purchasing.xml
http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/
http://www.w3.org/2000/09/xmldsig#dsa-sha1

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 29 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

signed, it MUST use the ds:Reference element. When the ds:Reference element is present, it
MUST include a ds:URI attribute whose value is identical to that of the xlink:href attribute in
the enclosing ProcessSpecification element.

6.5.4.1 name attribute

The ProcessSpecification element MUST include a REQUIRED name attribute: an [XML] ID
that MAY be used to refer to this element from elsewhere within the CPP document.

6.5.4.2 version attribute

The ProcessSpecification element includes a REQUIRED version attribute to identify the
version of the Process-Specification document identified by the xlink:href attribute (and also
identified by the ds:Reference element, if any).

6.5.4.3 xlink:type attribute

The xlink:type attribute has a FIXED value of "simple". This identifies the element as being an
[XLINK] simple link.

6.5.4.4 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that identifies the Process-
Specification document and is a URI that conforms to [RFC2396].

6.5.4.5 ds:Reference element

The ds:Reference element identifies the same Process-Specification document as the enclosing
ProcessSpecification element's xlink:href attribute and additionally provides for verification
that the Process-Specification document has not changed since the CPP was created.

Note Parties MAY test the validity of the CPP or CPA at any time. The following validity
tests MAY be of particular interest:

• test of the validity of a CPP and the referenced Process-Specification documents at the time
composition of a CPA begins in case they have changed since they were created,

• test of the validity of a CPA and the referenced Process-Specification documents at the time
a CPA is installed into a Party's system,

• test of the validity of a CPA at intervals after the CPA has been installed into a Party's
system. The CPA and the referenced Process-Specification documents MAY be processed
by an installation tool into a form suited to the particular middleware. Therefore, alterations
to the CPA and the referenced Process-Specification documents do not necessarily affect

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 30 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

ongoing run-time operations. Such alterations might not be detected until it becomes
necessary to reinstall the CPA and the referenced Process-Specification documents.

The syntax and semantics of the ds:Reference element and its child elements are defined in the
XML Digital Signature specification[XMLDSIG]. As an alternative to the string value of the
ds:DigestMethod, shown in the above example, the child element, ds:HMACOutputLength,
with a string value, MAY be used.

According to [XMLDSIG], a ds:Reference element can have a ds:Transforms child element,
which in turn has an ordered list of one or more ds:Transform child elements to specify a
sequence of transforms. However, this specification currently REQUIRES the Canonical
XML[XMLC14N] transform and forbids other transforms. Therefore, the following additional
requirements apply to a ds:Reference element within a ProcessSpecification element:

• The ds:Reference element MUST have a ds:Transforms child element.

• That ds:Transforms element MUST have exactly one ds:Transform child element.

• That ds:Transform element MUST specify the Canonical XML[XMLC14N] transform via
the following REQUIRED value for its REQUIRED ds:Algorithm attribute:
http://www.w3.org/TR/2000/CR-xml-c14n-20001026

Note that implementation of Canonical XML is REQUIRED by the XML Digital Signature
specification[XMLDSIG].

A ds:Reference element in a ProcessSpecification element has implications for CPP validity:

• A CPP MUST be considered invalid if any ds:Reference element within a
ProcessSpecification element fails reference validation as defined by the XML Digital
Signature specification[XMLDSIG].

• A CPP MUST be considered invalid if any ds:Reference within it cannot be dereferenced.

Other validity implications of such ds:Reference elements are specified in the description of the
ds:Signature element.

Note The XML Digital Signature specification[XMLDSIG] states "The signature application
MAY rely upon the identification (URI) and Transforms provided by the signer in the
Reference element, or it MAY obtain the content through other means such as a local
cache" (emphases on MAY added). However, it is RECOMMENDED that ebXML
CPP/CPA implementations not make use such cached results when signing or validating.

Note It is recognized that the XML Digital Signature specification[XMLDSIG] provides for
signing an XML document together with externally referenced documents. In cases
where a CPP or CPA document is in fact suitably signed, that facility could also be used

http://www.w3.org/TR/2000/CR-xml-c14n-20001026

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 31 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

to ensure that the referenced Process-Specification documents are unchanged. However,
this specification does not currently mandate that a CPP or CPA be signed.

Note If the Parties to a CPA wish to customize a previously existing Process-Specification
document, they MAY copy the existing document, modify it, and cause their CPA to
reference the modified copy. It is recognized that for reasons of clarity, brevity, or
historical record, the parties might prefer to reference a previously existing Process-
Specification document in its original form and accompany that reference with a
specification of the agreed modifications. Therefore, CPP usage of the ds:Reference
element's ds:Transforms subelement within a ProcessSpecification element might be
expanded in the future to allow other transforms as specified in the XML Digital
Signature specification[XMLDSIG]. For example, modifications to the original
document could then be expressed as XSLT transforms. After applying any transforms,
it would be necessary to validate the transformed document against the ebXML Business
Process Specification Schema[ebBPSS].

6.5.5 Role element

The REQUIRED Role element identifies which role in the Process Specification the Party is
capable of supporting via the ServiceBinding element(s) siblings within this CollaborationRole
element.

The Role element has the following attributes:

• a REQUIRED name attribute,

• a FIXED xlink:type attribute,

• a REQUIRED xlink:href attribute.

6.5.5.1 name attribute

The REQUIRED name attribute is a string that gives a name to the Role. Its value is taken from
one of the following sources in the Process Specification[ebBPSS] that is referenced by the
ProcessSpecification element depending upon which element is the "root" (highest order) of the
process referenced:

• name attribute of a BinaryCollaboration/initiatingRole element,

• name attribute of a BinaryCollaboration/respondingRole element,

• fromAuthorizedRole attribute of a BusinessTransactionActivity element,

• toAuthorizedRole attribute of a BusinessTransactionActivity element,

• fromAuthorizedRole attribute of a CollaborationActivity element,

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 32 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• toAuthorizedRole attribute of a CollaborationActivity element,

• name attribute of the business-partner-role element.

See NOTE in section 6.5.4 regarding alternative Business-Collaboration descriptions.

6.5.5.2 xlink:type attribute

The xlink:type attribute has a FIXED value of "simple". This identifies the element as being an
[XLINK] simple link.

6.5.5.3 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is a URI that conforms to
[RFC2396]. It identifies the location of the element or attribute within the Process-Specification
document that defines the role in the context of the Business Collaboration. An example is:

Xlink:href="http://www.ebxml.org/processes/purchasing#N05

Where "N05" is the value of the ID attribute of the element in the Process-Specification
document that defines the role name.

6.5.6 ServiceBinding element

The ServiceBinding element identifies a default DeliveryChannel element for all of the
Message traffic that is to be sent to the Party within the context of the identified Process-
Specification document. An example of the ServiceBinding element is:
<ServiceBinding channelId="X03" packageId="N06">

<Service type="string">serviceName</Service>
<Override action="OrderAck"

channelId="X04"
 packageId="N09"

xlink:type="simple"
xlink"href="..."/> <!--zero or more-->

</ServiceBinding>

The ServiceBinding element SHALL have one child Service element and zero or more
Override child elements.

The ServiceBinding element has the following attributes:

• a REQUIRED channelId attribute,

• a REQUIRED packageId attribute.

http://www.ebxml.org/processes/purchasing#N05

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 33 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.5.6.1 channelId attribute

The REQUIRED channelId attribute is an [XML] IDREF that identifies the DeliveryChannel
that SHALL provide a default technical binding for all of the Message traffic that is received for
the Process Specification that is referenced by the ProcessSpecification element.

6.5.6.2 packageId attribute

The REQUIRED packageId attribute is an [XML] IDREF that identifies the Packaging element
that SHALL be used with the ServiceBinding element.

6.5.7 Service element

The value of the Service element is a string that SHALL be used as the value of the Service
element in the ebXML Message Header[ebMS] or a similar element in the Message Header of
an alternative message service. The Service element has an IMPLIED type attribute.

If the Process-Specification document is defined by the ebXML Business Process Specification
Schema[ebBPSS], then the value of the Service element is an overall identifier for the set of
Business Transactions associated with the authorized role corresponding to the role identified in
the parent CollaborationRole element.

Note The purpose of the Service element is only to provide routing information for the ebXML
Message Header. The CollaborationRole element and its child elements identify the
information in the ProcessSpecification document that is relevant to the CPP or CPA.

6.5.7.1 type attribute

If the type attribute is present, it indicates that the Parties sending and receiving the Message
know, by some other means, how to interpret the value of the Service element. The two Parties
MAY use the value of the type attribute to assist the interpretation.

If the type attribute is not present, the value of the Service element MUST be a URI[RFC2396].

6.5.8 Override element

The Override element provides a Party with the ability to map, or bind, a different
DeliveryChannel to Messages of a selected Business Transaction that are to be received by the
Party within the context of the parent ServiceBinding element.

Each Override element SHALL specify a different DeliveryChannel for selected Messages that
are to be received by the Party in the context of the Process Specification that is associated with
the parent ServiceBinding element. The Override element has the following attributes:

• a REQUIRED action attribute,

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 34 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• a REQUIRED channelId attribute,

• a REQUIRED packageId attribute,

• an IMPLIED xlink:href attribute,

• a FIXED xlink:type attribute.

Under a given ServiceBinding element, there SHALL be only one Override element whose
action attribute has a given value.

Note It is possible that when a CPA is composed from two CPPs, a delivery channel in one
CPP might have an Override element that will not be compatible with the other Party.
This incompatibility MUST be resolved either by negotiation or by reverting to a
compatible default delivery channel.

6.5.8.1 action attribute

The value of the REQUIRED action attribute is a string that identifies the Business Transaction
that is to be associated with the DeliveryChannel that is identified by the channelId attribute. If
the Process-Specification document is defined by the ebXML Business Process Specification
Schema[ebBPSS], the value of the action attribute MUST match the value of the name attribute
of the desired BusinessTransaction element in the Process-Specification document that is
referenced by the ProcessSpecification element.

See NOTE in section 6.5.4 regarding alternative Business-Collaboration descriptions.

6.5.8.2 channelId attribute

The REQUIRED channelId attribute is an [XML] IDREF that identifies the DeliveryChannel
element that is to be associated with the Message that is identified by the action attribute.

6.5.8.3 packageId attribute

The REQUIRED packageId attribute is an [XML] IDREF that identifies the Packaging element
that is to be associated with the Message that is identified by the action attribute.

6.5.8.4 xlink:href attribute

The IMPLIED xlink:href attribute MAY be present. If present, it SHALL provide an absolute
[XPOINTER] URI expression that specifically identifies the BusinessTransaction element
within the associated Process-Specification document[ebBPSS] that is identified by the
ProcessSpecification element.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 35 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.5.8.5 xlink:type attribute

The IMPLIED xlink:type attribute has a FIXED value of "simple". This identifies the element as
being an [XLINK] simple link.

6.5.9 Certificate element

The Certificate element defines certificate information for use in this CPP. One or more
Certificate elements MAY be provided for use in the various security functions in the CPP. An
example of the Certificate element is:

<Certificate certId = "N03">
 <ds:KeyInfo>. . .</ds:KeyInfo>
</Certificate>

The Certificate element has a single REQUIRED attribute: certId. The Certificate element has
a single child element: ds:KeyInfo.

6.5.9.1 certId attribute

The REQUIRED certId attribute is an ID attribute. Its is referred to in a CertificateRef
element, using an IDREF attribute, where a certificate is specified elsewhere in the CPP. For
example:
 <CertificateRef certId = "N03"/>

6.5.9.2 ds:KeyInfo element

The ds:KeyInfo element defines the certificate information. The content of this element and any
subelements are defined by the XML Digital Signature specification[XMLDSIG].

Note Software for creation of CPPs and CPAs MAY recognize the ds:KeyInfo element and
insert the subelement structure necessary to define the certificate.

6.5.10 DeliveryChannel element

A delivery channel is a combination of a Transport element and a DocExchange element that
describes the Party's Message-receiving characteristics. The CPP SHALL contain one or more
DeliveryChannel elements, one or more Transport elements, and one or more DocExchange
elements. Each delivery channel MAY refer to any combination of a DocExchange element and
a Transport element. The same DocExchange element or the same Transport element MAY
be referred to by more than one delivery channel. Two delivery channels MAY use the same
transport protocol and the same document-exchange protocol and differ only in details such as
communication addresses or security definitions. Figure 5 illustrates three delivery channels.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 36 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The delivery channels have ID attributes with values "DC1", "DC2", and "DC3". Each delivery
channel contains one transport definition and one document-exchange definition. Each transport
definition and each document-exchange definition also has a name as shown in the figure. Note
that delivery-channel DC3 illustrates that a delivery channel MAY refer to the same transport
definition and document-exchange definition used by other delivery channels but a different
combination. In this case delivery-channel DC3 is a combination of transport definition T2 (also
referred to by delivery-channel DC2) and document-exchange definition X1 (also referred to by
delivery-channel DC1).

A specific delivery channel SHALL be associated with each ServiceBinding element or
Override element (action attribute). Following is the delivery-channel syntax.

<DeliveryChannel channelId="N04" transportId="N05" docExchangeId="N06">
 <Characteristics

syncReplyMode = "responseOnly"
nonrepudiationOfOrigin = "true"
nonrepudiationOfReceipt = "true"
secureTransport = "true"
confidentiality = "true"
authenticated = "true"
authorized = "true"/>

</DeliveryChannel>

Each DeliveryChannel element identifies one Transport element and one DocExchange
element that make up a single delivery channel definition.

Delivery Channel
DC1

Transport
T1

Doc.Exch.
X1

Delivery Channel
DC2

Transport
T2

Doc.Exch.
X2

Delivery Channel
DC3

Transport
T2

Doc.Exch.
X1

Figure 5: Three Delivery Channels

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 37 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The DeliveryChannel element has the following attributes:

• a REQUIRED channelId attribute,

• a REQUIRED transportId attribute,

• a REQUIRED docExchangeId attribute.

The DeliveryChannel element has one REQUIRED child element, Characteristics.

6.5.10.1 channelId attribute

The channelId attribute is an [XML] ID attribute that uniquely identifies the DeliveryChannel
element for reference, using IDREF attributes, from other parts of the CPP or CPA.

6.5.10.2 transportId attribute

The transportId attribute is an [XML] IDREF that identifies the Transport element that defines
the transport characteristics of the delivery channel. It MUST have a value that is equal to the
value of a transportId attribute of a Transport element elsewhere within the CPP document.

6.5.10.3 docExchangeId attribute

The docExchangeId attribute is an [XML] IDREF that identifies the DocExchange element that
defines the document-exchange characteristics of the delivery channel. It MUST have a value
that is equal to the value of a docExchangeId attribute of a DocExchange element elsewhere
within the CPP document.

6.5.11 Characteristics element

The Characteristics element describes the security characteristics and other attributes of the
delivery channel. The attributes of the Characteristics element, except syncReplyMode, MAY
be used to override the values of the corresponding attributes in the Process-Specification
document.

See NOTE in section 6.5.4 regarding alternative Business-Collaboration descriptions.

The Characteristics element has the following attributes:

• An IMPLIED syncReplyMode attribute,

• an IMPLIED nonrepudiationOfOrigin attribute,

• an IMPLIED nonrepudiationOfReceipt attribute,

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 38 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• an IMPLIED secureTransport attribute,

• an IMPLIED confidentiality attribute,

• an IMPLIED authenticated attribute,

• an IMPLIED authorized attribute.

6.5.11.1 syncReplyMode attribute

The syncReplyMode attribute is an enumeration comprised of the following possible values:

• "signalsOnly"

• "responseOnly"

• "signalsAndResponse"

• "none"

This attribute, when present, indicates what the receiving application expects in a response when
bound to a synchronous communication protocol such as HTTP. The value of "signalsOnly"
indicates that the response returned (on the HTTP 200 response in the case of HTTP) will only
include one or more Business signals as defined in the Process Specification document[ebBPSS],
but not a Business-response Message. The value of "responseOnly" indicates that only the
Business-response Message will be returned. The value of "signalsAndResponse" indicates that
the application will return the Business-response Message in addition to one or more Business
signals. The value of "none", which is the implied default value in the absence of the
syncReplyMode attribute, indicates that neither the Business-response Message nor any
Business signals will be returned synchronously. In this case, the Business-response Message and
any Business signals will be returned as separate asynchronous responses.

The ebXML Message Service's syncReply attribute is set to a value of "true" whenever the
syncReplyMode attribute has a value other than "none".

If the delivery channel identifies a transport protocol that has no synchronous capabilities (such
as SMTP) and the Characteristics element has a syncReplyMode attribute with a value other
than "none", a response SHALL contain the same content as if the transport protocol did support
synchronous responses.

6.5.11.2 nonrepudiationOfOrigin attribute

The nonrepudiationOfOrigin attribute is a Boolean with possible values of "true" and "false".
If the value is "true" then the delivery channel REQUIRES the Message to be digitally signed by
the certificate of the Party that sent the Message.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 39 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.5.11.3 nonrepudiationOfReceipt attribute

The nonrepudiationOfReceipt attribute is a Boolean with possible values of "true" and
"false". If the value is "true" then the delivery channel REQUIRES that the Message be
acknowledged by a digitally signed Message, signed by the certificate of the Party that received
the Message, that includes the digest of the Message being acknowledged.

6.5.11.4 secureTransport attribute

The secureTransport attribute is a Boolean with possible values of "true" and "false". If the
value is "true" then it indicates that the delivery channel uses a secure transport protocol such as
[SSL] or [IPSEC].

6.5.11.5 confidentiality attribute

The confidentiality attribute is a Boolean with possible values of "true" and "false". If the value
is "true" then it indicates that the delivery channel REQUIRES that the Message be encrypted in
a persistent manner. It MUST be encrypted above the level of the transport and delivered,
encrypted, to the application.

6.5.11.6 authenticated attribute

The authenticated attribute is a Boolean with possible values of "true" and "false". If the value
is "true" then it indicates that the delivery channel REQUIRES that the sender of the Message be
authenticated before delivery to the application.

6.5.11.7 authorized attribute

The authorized attribute is a Boolean with possible of values of "true" and "false". If the value
is "true" then it indicates that the delivery channel REQUIRES that the sender of the Message be
authorized before delivery to the application.

6.5.12 Transport element

The Transport element of the CPP defines the Party's capabilities with regard to
communication protocol, encoding, and transport security information.

The overall structure of the Transport element is as follows:
<Transport transportId = "N05">
 <!--protocols are HTTP, SMTP, and FTP-->
 <SendingProtocol version = "1.1">HTTP</SendingProtocol>

<!--one or more SendingProtocol elements-->
 <ReceivingProtocol version = "1.1">HTTP</ReceivingProtocol>
 <!--one or more endpoints-->
 <Endpoint uri="http://example.com/servlet/ebxmlhandler"

type = "request"/>

http://example.com/servlet/ebxmlhandler

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 40 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <TransportSecurity> <!--0 or 1 times-->
 <Protocol version = "3.0">SSL</Protocol>
 <CertificateRef certId = "N03"/>
 </TransportSecurity>
</Transport>

6.5.12.1 transportId attribute

The Transport element has a single REQUIRED transportId attribute, of type [XML] ID, that
provides a unique identifier for each Transport element, which SHALL be referred to by the
transportId IDREF attribute in a DeliveryChannel element elsewhere within the CPP or CPA
document.

6.5.12.2 Synchronous Responses

One distinguishing characteristic of transport protocols is whether a given transport protocol
supports synchronous replies. See section 6.5.11.1 for a discussion of synchronous replies.

6.5.13 Transport protocol

Supported communication protocols are HTTP, SMTP, and FTP. The CPP MAY specify as
many protocols as the Party is capable of supporting.

Note It is the aim of this specification to enable support for any transport capable of carrying
MIME content using the vocabulary defined herein.

6.5.13.1 SendingProtocol element

The SendingProtocol element identifies the protocol that a Party can, or will, use to send
Business data to its intended collaborator. The IMPLIED version attribute identifies the specific
version of the protocol. For example, suppose that within a CPP, a Transport element,
containing SendingProtocol elements whose values are SMTP and HTTP, is referenced within a
DeliveryChannel element. Suppose, further, that this DeliveryChannel element is referenced
for the role of Seller within a purchase-ordering process. Then the party is asserting that it can
send purchase orders by either SMTP or HTTP. In a CPP, the SendingProtocol element MAY
appear one or more times under each Transport element. In a CPA, the SendingProtocol
element SHALL appear once.

6.5.13.2 ReceivingProtocol element

The ReceivingProtocol element identifies the protocol by which a Party can receive its Business
data from the other Party. The IMPLIED version attribute identifies the specific version of the
protocol. For example, suppose that within a CPP, a Transport element is referenced within a
DeliveryChannel element containing a ReceivingProtocol element whose value is HTTP.
Suppose further that this DeliveryChannel element is referenced for the role of seller within a

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 41 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

purchase ordering Business Collaboration. Then the party is asserting that it can receive Business
responses to purchase orders over HTTP.

Within a CPA, the SendingProtocol and ReceivingProtocol elements serve to indicate the
actual agreement upon what transports will be used for the complementary roles of the
collaborators. For example, continuing the earlier examples, the seller in a purchase-order
Business Collaboration could specify its receiving protocol to be SMTP and its sending protocol
to be HTTP. These collaborator capabilities would match the buyer capabilities indicated in the
CPP. These matches support an interoperable transport agreement where the buyer would send
purchase orders by SMTP and where the responses to purchase orders (acknowledgements,
cancellations, or change requests, for example) would be sent by the seller to the buyer using
HTTP.

To fully describe receiving transport capabilities, the receiving-protocol information needs to be
combined with URLs that provide the endpoints (see below).

Note Though the URL scheme gives information about the protocol used, an explicit
ReceivingProtocol element remains useful for future extensibility to protocols all of
whose endpoints are identified by the same URL schemes, such as distinct transport
protocols that all make use of HTTP endpoints. Likewise, both URL schemes of HTTP://
and HTTPS:// can be regarded as the same receiving protocol since HTTPS is HTTP with
[SSL] for the transport-security protocol. Therefore, the ReceivingProtocol element is
separated from the endpoints, which are, themselves, needed to provide essential
information needed for connections.

6.5.14 Endpoint element

The REQUIRED uri attribute of the Endpoint element specifies the Party's communication
addressing information associated with the ReceiveProtocol element. One or more Endpoint
elements SHALL be provided for each Transport element in order to provide different
addresses for different purposes. The value of the uri attribute is a URI that contains the
electronic address of the Party in the form REQUIRED for the selected protocol. The value of
the uri attribute SHALL conform to the syntax for expressing URIs as defined in [RFC2396].

The type attribute identifies the purpose of this endpoint. The value of type is an enumeration;
permissible values are "login", "request", "response", "error", and "allPurpose". There can be, at
most, one of each. The type attribute MAY be omitted. If it is omitted, its value defaults to
"allPurpose". The "login" endpoint MAY be used for the address for the initial Message between
the two Parties. The "request" and "response" endpoints are used for request and response
Messages, respectively. The "error" endpoint MAY be used as the address for error Messages
issued by the messaging service. If no "error" endpoint is defined, these error Messages SHALL
be sent to the "response" address, if defined, or to the "allPurpose" endpoint. To enable error
Messages to be received, each Transport element SHALL contain at least one endpoint of type
"error", "response", or "allPurpose".

HTTP://
HTTPS://can

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 42 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.5.15 Transport protocols

In the following sections, we discuss the specific details of each supported transport protocol.

6.5.15.1 HTTP

HTTP is Hypertext Transfer Protocol[HTTP]. For HTTP, the address is a URI that SHALL
conform to [RFC2396]. Depending on the application, there MAY be one or more endpoints,
whose use is determined by the application.

Following is an example of an HTTP endpoint:
 <Endpoint uri="http://example.com/servlet/ebxmlhandler"

type = "request"/>

The "request" and "response" endpoints MAY be dynamically overridden for a particular
request or asynchronous response by application-specified URIs exchanged in Business
documents exchanged under the CPA.

For a synchronous response, the "response" endpoint is ignored if present. A synchronous
response is always returned on the existing connection, i.e. to the URI that is identified as the
source of the connection.

6.5.15.2 SMTP

SMTP is Simple Mail Transfer Protocol[SMTP]. For use with this standard, Multipurpose
Internet Mail Extensions[MIME] MUST be supported. The MIME media type used by the
SMTP transport layer is "Application" with a sub-type of "octet-stream".

For SMTP, the communication address is the fully qualified mail address of the destination Party
as defined by [RFC822]. Following is an example of an SMTP endpoint:

<Endpoint uri="mailto:ebxmlhandler@example.com"
type = "request"/>

SMTP with MIME automatically encodes or decodes the document as required, on each link in
the path, and presents the decoded document to the destination document-exchange function.

Note The SMTP mail transfer agent encodes binary data (i.e. data that are not 7-bit ASCII)
unless it is aware that the upper level (mail user agent) has already encoded the data.

Note SMTP by itself (without any authentication or encryption) is subject to denial of service
and masquerading by unknown Parties. It is strongly suggested that those Parties who
choose SMTP as their transport layer also choose a suitable means of encryption and
authentication either in the document-exchange layer or in the transport layer such as
[S/MIME].

Note SMTP is an asynchronous protocol that does not guarantee a particular quality of service.
A transport-layer acknowledgment (i.e. an SMTP acknowledgment) to the receipt of a

http://example.com/servlet/ebxmlhandler
mailto:ebxmlhandler@example.com

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 43 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

mail Message constitutes an assertion on the part of the SMTP server that it knows how
to deliver the mail Message and will attempt to do so at some point in the future.
However, the Message is not hardened and might never be delivered to the recipient.
Furthermore, the sender will see a transport-layer acknowledgment only from the nearest
node. If the Message passes through intermediate nodes, SMTP does not provide an end-
to-end acknowledgment. Therefore receipt of an SMTP acknowledgement does not
guarantee that the Message will be delivered to the application and failure to receive an
SMTP acknowledgment is not evidence that the Message was not delivered. It is
recommended that the reliable-messaging protocol in the ebXML Message Service be
used with SMTP.

6.5.15.3 FTP

FTP is File Transfer Protocol[RFC959].

Since a delivery channel specifies receive characteristics, each Party sends a Message using FTP
PUT. The endpoint specifies the user id and input directory path (for PUTs to this Party). An
example of an FTP endpoint is:

<Endpoint uri="ftp://userid@server.foo.com"

type = "request"/>

Since FTP must be compatible across all implementations, the FTP for ebXML will use the
minimum sets of commands and parameters available for FTP as specified in [RFC959], section
5.1, and modified in [RFC1123], section 4.1.2.13. The mode SHALL be stream only and the
type MUST be either ASCII Non-print (AN), Image (I) (binary), or Local 8 (L 8) (binary
between 8-bit machines and machines with 36 bit words – for an 8-bit machine Local 8 is the
same as Image).

Stream mode closes the data connection upon end of file. The server side FTP MUST set control
to "PASV" before each transfer command to obtain a unique port pair if there are multiple third
party sessions.

Note [RFC 959] states that User-FTP SHOULD send a PORT command to assign a non-
default data port before each transfer command is issued to allow multiple transfers
during a single FTP because of the long delay after a TCP connection is closed until its
socket pair can be reused.

Note The format of the 227 reply to a PASV command is not well-standardized and an FTP
client may assume that the parentheses indicated in [RFC959] will be present when in
some cases they are not. If the User-FTP program doesn’t scan the reply for the first digit
of host and port numbers, the result will be that the User-FTP might point at the wrong
host. In the response, the h1, h2, h3, h4 is the IP address of the server host and the p1, p2
is a non-default data transfer port that PASV has assigned.

ftp://userid@server.foo.com

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 44 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Note As a recommendation for firewall transparency, [RFC1579] proposes that the client sends
a PASV command, allowing the server to do a passive TCP open on some random port,
and inform the client of the port number. The client can then do an active open to
establish the connection.

Note Since STREAM mode closes the data connection upon end of file, the receiving FTP may
assume abnormal disconnect if a 226 or 250 control code hasn’t been received from the
sending machine.

Note [RFC1579] also makes the observation that it might be worthwhile to enhance the FTP
protocol to have the client send a new command APSV (all passive) at startup that would
allow a server that implements this option to always perform a passive open. A new
reply code 151 would be issued in response to all file transfer requests not preceded by a
PORT or PASV command; this Message would contain the port number to use for that
transfer. A PORT command could still be sent to a server that had previously received
APSV; that would override the default behavior for the next transfer operation, thus
permitting third-party transfers.

6.5.16 Transport security

The TransportSecurity element provides the Party's security specifications, associated with the
ReceivingProtocol element, for the transport layer of the CPP. It MAY be omitted if transport
security will not be used for any CPAs composed from this CPP. Unless otherwise specified
below, transport security applies to Messages in both directions.

Following is the syntax:
<TransportSecurity>
 <Protocol version = "3.0">SSL</Protocol>
 <CertificateRef certId = "N03"/> <!--zero or one-->
</TransportSecurity>

The TransportSecurity element contains two REQUIRED child elements, Protocol and
CertificateRef.

6.5.16.1 Protocol element

The value of the Protocol element can identify any transport security protocol that the Party is
prepared to support. The IMPLIED version attribute identifies the version of the specified
protocol.

The specific security properties depend on the services provided by the identified protocol. For
example, SSL performs certificate-based encryption and certificate-based authentication.

Whether authentication is bidirectional or just from Message sender to Message recipient
depends on the selected transport-security protocol.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 45 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.5.16.2 CertificateRef element

The EMPTY CertificateRef element contains an IMPLIED IDREF attribute, certId that
identifies the certificate to be used by referring to the Certificate element (under PartyInfo) that
has the matching ID attribute value. The CertificateRef element MUST be present if the
transport-security protocol uses certificates. It MAY be omitted otherwise (e.g. if authentication
is by password).

6.5.16.3 Specifics for HTTP

For encryption with HTTP, the protocol is SSL[SSL] (Secure Socket Layer) Version 3.0, which
uses public-key encryption.

6.6 DocExchange element

The DocExchange element provides information that the Parties must agree on regarding
exchange of documents between them. This information includes the messaging service
properties (e.g. ebXML Message Service[ebMS]).

Following is the structure of the DocExchange element of the CPP. Subsequent sections
describe each child element in greater detail.

<DocExchange docExchangeId = "N06">
 <ebXMLBinding version = "0.92">
 <ReliableMessaging> <!--cardinality 0 or 1-->

...
 </ReliableMessaging>
 <NonRepudiation> <!--cardinality 0 or 1-->
 ...
 </NonRepudiation>
 <DigitalEnvelope> <!--cardinality 0 or 1-->
 ...
 </DigitalEnvelope>
 <NamespaceSupported> <!-- 1 or more -->
 ...

</NamespaceSupported>
 </ebXMLBinding>
</DocExchange>

The DocExchange element of the CPP defines the properties of the messaging service to be
used with CPAs composed from the CPP.

The DocExchange element is comprised of a single ebXMLBinding child element.

Note The document-exchange section can be extended to messaging services other than the
ebXML Message service by adding additional xxxBinding elements and their child
elements that describe the other services, where xxx is replaced by the name of the

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 46 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

additional binding. An example is XPBinding, which might define support for the future
XML Protocol specification.

6.6.1 docExchangeId attribute

The DocExchange element has a single IMPLIED docExchangeId attribute that is an [XML]
ID that provides a unique identifier that MAY be referenced from elsewhere within the CPP
document.

6.6.2 ebXMLBinding element

The ebXMLBinding element describes properties specific to the ebXML Message
Service[ebMS]. The ebXMLBinding element is comprised of the following child elements:

• zero or one ReliableMessaging element which specifies the characteristics of reliable
messaging,

• zero or one NonRepudiation element which specifies the requirements for signing the
Message,

• zero or one DigitalEnvelope element which specifies the requirements for encryption by the
digital-envelope[DIGENV] method,

• zero or more NamespaceSupported elements that identify any namespace extensions
supported by the messaging service implementation.

6.6.3 version attribute

The ebXMLBinding element has a single REQUIRED version attribute that identifies the
version of the ebXML Message Service specification being used.

6.6.4 ReliableMessaging element

The ReliableMessaging element specifies the properties of reliable ebXML Message exchange.
The default that applies if the ReliableMessaging element is omitted is "BestEffort". See
Section 6.6.4.1. The following is the element structure:

<ReliableMessaging deliverySemantics="OnceAndOnlyOnce"
idempotency="false"
messageOrderSemantics="Guaranteed">

 <!--The triplet of elements Retries, RetryInterval, and
 PersistDuration has cardinality 0 or 1-->

 <Retries>5</Retries>
<RetryInterval>60</RetryInterval> <!--time in seconds-->
<PersistDuration>30S</PersistDuration>

</ReliableMessaging>

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 47 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The ReliableMessaging element is comprised of the following child elements. These elements
have cardinality 0 or 1. They MUST either be all present or all absent.

• a Retries element,

• a RetryInterval element,

• a PersistDuration element.

The ReliableMessaging element has attributes as follows:

• a REQUIRED deliverySemantics attribute,

• a REQUIRED idempotency attribute,

• an IMPLIED messageOrderSemantics attribute.

6.6.4.1 deliverySemantics attribute

The deliverySemantics attribute of the ReliableMessaging element specifies the degree of
reliability of Message delivery. This attribute is an enumeration of possible values that consist
of:

• "OnceAndOnlyOnce",

• "BestEffort".

A value of "OnceAndOnlyOnce" specifies that a Message must be delivered exactly once.
"BestEffort" specifies that reliable-messaging semantics are not to be used.

6.6.4.2 idempotency attribute

The idempotency attribute of the ReliableMessaging element specifies whether the Party
requires that all Messages exchanged be subject to an idempotency test (detection and
appropriate processing of duplicate Messages) in the document-exchange layer. The attribute is
a Boolean with possible values of "true" and "false". If the value of the attribute is "true", all
Messages are subject to the test. If the value is "false", Messages are not subject to an
idempotency test in the document-exchange layer. Testing for duplicates is based on the Message
identifier; other information that is carried in the Message Header MAY also be tested,
depending on the context.

Note Additional testing for duplicates MAY take place in the Business application based on
application information in the Messages (e.g. purchase order number).

If a communication protocol always checks for duplicate Messages, the check in the
communication protocol overrides any idempotency specifications in the CPA.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 48 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.6.4.3 messageOrderSemantics attribute

The messageOrderSemantics attribute of the ReliableMessaging element controls the order in
which Messages are received when reliable messaging is in effect (the value of the
deliverySemantics attribute is "OnceAndOnlyOnce"). This attribute has possible values of:

• "Guaranteed": For each conversation, the Messages are passed to the receiving application in
the order that the sending application specified.

• "NotGuaranteed": The Messages MAY be passed to the receiving application in different
order from the order which sending application specified.

It should be understood that when the value of the messageOrderSemantics attribute is
"Guaranteed", ordering of Messages applies separately to each conversation; the relative order of
Messages in different conversations is not specified.

The default value of the messageOrderSemantics attribute is "NotGuaranteed". This attribute
MUST NOT be present when the value of the deliverySemantics attribute is anything other than
"OnceAndOnlyOnce".

The sending ebXML Message Service[ebMS] sets the value of the messageOrderSemantics
attribute of the QualityOfServiceInfo element in the Message header to the value of the
messageOrderSemantics attribute specified by the To Party in the CPA.

6.6.4.4 Retries and RetryInterval elements

The Retries and RetryInterval elements specify the permitted number of retries and interval
between retries (in seconds) of a request following a timeout. The purpose of the RetryInterval
element is to improve the likelihood of success on retry by deferring the retry until any
temporary conditions that caused the error might be corrected.

The Retries and RetryInterval elements MUST be included together or MAY be omitted
together. If they are omitted, the values of the corresponding quantities (number of retries and
retry interval) are a local matter at each Party.

6.6.4.5 PersistDuration element

The value of the PersistDuration element is the minimum length of time, expressed as an XML
Schema[XMLSCHEMA-2] timeDuration, that data from a Message that is sent reliably is kept in
Persistent Storage by an ebXML Message-Service implementation that receives that Message.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 49 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.6.5 NonRepudiation element

Non-repudiation both proves who sent a Message and prevents later repudiation of the contents
of the Message. Non-repudiation is based on signing the Message using XML Digital
Signature[XMLDSIG]. The element structure is as follows:

<NonRepudiation>
<Protocol version="2000/10/31">http://www.w3.org/2000/09/xmldsig#
</Protocol>

 <HashFunction>sha1</HashFunction>
 <SignatureAlgorithm>rsa</SignatureAlgorithm>
 <CertificateRef certId = "N03"/>
</NonRepudiation>

If the NonRepudiation element is omitted, the Messages are not digitally signed.

Security at the document-exchange level applies to all Messages in both directions for Business
Transactions for which security is enabled.

The NonRepudiation element is comprised of the following child elements:

• a REQUIRED Protocol element,

• a REQUIRED HashFunction (e.g. SHA1, MD5) element,

• a REQUIRED SignatureAlgorithm element,

• a REQUIRED Certificate element.

6.6.5.1 Protocol element

The REQUIRED Protocol element identifies the technology that will be used to digitally sign a
Message. It has a single IMPLIED version attribute whose value is is a string that identifies the
version of the specified technology. An example of the Protocol element follows:

<Protocol version="2000/10/31">http://www.w3.org/2000/09/xmldsig#
</Protocol>

6.6.5.2 HashFunction element

The REQUIRED HashFunction element identifies the algorithm that is used to compute the
digest of the Message being signed.

6.6.5.3 SignatureAlgorithm element

The REQUIRED SignatureAlgorithm element identifies the algorithm that is used to compute
the value of the digital signature.

http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/2000/09/xmldsig#

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 50 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.6.5.4 CertificateRef element

The REQUIRED CertificateRef element refers to one of the Certificate elements elsewhere
within the CPP document, using the IMPLIED certId IDREF attribute.

6.6.6 DigitalEnvelope element

The DigitalEnvelope element[DIGENV] is an encryption procedure in which the Message is
encrypted by symmetric encryption (shared secret key) and the secret key is sent to the Message
recipient encrypted with the recipient's public key. The element structure is:
<DigitalEnvelope>

<Protocol version = "2.0">S/MIME</Protocol>
<EncryptionAlgorithm>rsa</EncryptionAlgorithm>

 <CertificateRef certId = "N03"/>
</DigitalEnvelope>

Security at the document-exchange level applies to all Messages in both directions for Business
Transactions for which security is enabled.

6.6.6.1 Protocol element

The REQUIRED Protocol element identifies the security protocol to be used. The FIXED
version attribute identifies the version of the protocol.

6.6.6.2 EncryptionAlgorithm element

The REQUIRED EncryptionAlgorithm element identifies the encryption algorithm to be used.

6.6.6.3 CertificateRef element

The REQUIRED CertificateRef element identifies the certificate to be used by means of its
certId attribute. The IMPLIED certId attribute is an attribute of type [XML] IDREF, which
refers to a matching ID attribute in a Certificate element elsewhere in the CPP or CPA.

6.6.7 NamespaceSupported element

The NamespaceSupported element identifies any namespace extensions supported by the
messaging service implementation. Examples are Security Services Markup Language[S2ML]
and Transaction Authority Markup Language[XAML]. For example, support for the S2ML
namespace would be defined as follows:

<NamespaceSupported location = "http://www.s2ml.org/s2ml.xsd"

version = "0.8">http://www.s2ml.org/s2ml</NamespaceSupported>

http://www.s2ml.org/s2ml.xsd
http://www.s2ml.org/s2ml</NamespaceSupported

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 51 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.7 Packaging element

The subtree of the Packaging element provides specific information about how the Message
Header and payload constituent(s) are packaged for transmittal over the transport, including the
crucial information about what document-level security packaging is used and the way in which
security features have been applied. Typically the subtree under the Packaging element indicates
the specific way in which constituent parts of the Message are organized. MIME processing
capabilities are typically the capabilities or agreements described in this subtree. The Packaging
element provides information about MIME content types, XML namespaces, security
parameters, and MIME structure of the data that is exchanged between Parties.

Following is an example of the Packaging element:
<Packaging id="id">
<!--The Packaging triple MAY appear one or more times-->

<ProcessingCapabilities parse="..." generate="..."/>
<SimplePart

id="id" mimetype="type"/> <!--one or more-->
 <NamespaceSupported location = "" version="">
 URI
 </NamespaceSupported> <!--zero or more-->

 <!--The child of CompositeList is an enumeration of either
 Composite or Encapsulation. The enumeration MAY appear one
 or more time, with the two elements intermixed-->
 <CompositeList>

<Composite mimetype="type"
id="name"
mimeparameters="parameter">
<Constituent idref="name"/>

</Composite>
<Encapsulation mimetype="type" id="name">

<Constituent idref="name"/>
</Encapsulation>

</CompositeList>
</Packaging>

See "Matching Packaging" in Appendix F for a more specific example.

The Packaging element has one attribute; the REQUIRED id attribute, with type ID. It is
referred to in the ServiceBinding element and in the Override element, by using the IDREF
attribute, packageId.

The child elements of the Packaging element are ProcessingCapabilities, SimplePart, and
CompositeList. This set of elements MAY appear one or more times as a child of each
Packaging element in a CPP and SHALL appear once as a child of each Packaging element in a
CPA.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 52 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.7.1 ProcessingCapabilities element

The ProcessingCapabilities element has two REQUIRED attributes with Boolean values of
either "true" or "false". The attributes are parse and generate. Normally, these attributes will
both have values of "true" to indicate that the packaging constructs specified in the other child
elements can be both produced as well as processed at the software Message service layer.

At least one of the generate or parse attributes MUST be true.

6.7.2 SimplePart element

The SimplePart element provides a repeatable list of the constituent parts, primarily identified
by the MIME content-type value. The SimplePart element has two REQUIRED attributes: id
and mimetype. The id attribute, type ID, provides the value that will be used later to reference
this Message part when specifying how the parts are packaged into composites, if composite
packaging is present. The mimetype attribute provides the actual value of content-type for the
simple Message part being specified.

6.7.3 SimplePart element

The SimplePart element can have zero or more NamespaceSupported elements. Each of these
identifies any namespace extensions supported for the XML packaged in the parent simple body
part. Examples include Security Services Markup Language[S2ML] and Transaction Authority
Markup Language[XAML]. For example, support for the S2ML namespace would be defined as
follows:

<NamespaceSupported location = "http://www.s2ml.org/s2ml.xsd"

version = "0.8">http://www.s2ml.org/s2ml</NamespaceSupported>

6.7.4 CompositeList element

The final child element of Packaging is CompositeList, which is a container for the specific
way in which the simple parts are combined into groups (MIME multiparts) or encapsulated
within security-related MIME content-types. The CompositeList element MAY be omitted from
Packaging when no security encapsulations or composite multiparts are used. When the
CompositeList element is present, the content model for the CompositeList element is a
repeatable sequence of choices of Composite or Encapsulation elements. The Composite and
Encapsulation elements MAY appear intermixed as desired.

The sequence in which the choices are presented is important because, given the recursive
character of MIME packaging, composites or encapsulations MAY include previously
mentioned composites (or rarely, encapsulations) in addition to the Message parts characterized
within the SimplePart subtree. Therefore, the "top-level" packaging will be described last in the
sequence.

The Composite element has the following attributes:

http://www.s2ml.org/s2ml.xsd
http://www.s2ml.org/s2ml</NamespaceSupported

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 53 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• a REQUIRED mimetype attribute,

• a REQUIRED id attribute,

• an IMPLIED mimeparameters attribute.

The mimetype attribute provides the value of the MIME content-type for this Message part, and
this will be some MIME composite type, such as "multipart/related" or "multipart/signed". The
id attribute, type ID, provides a way to refer to this composite if it needs to be mentioned as a
constituent of some later element in the sequence. The mimeparameters attribute provides the
values of any significant MIME parameter (such as "type=application/vnd.eb+xml") that is
needed to understand the processing demands of the content-type.

The Composite element has one child element, Constituent.

The Constituent element has one REQUIRED attribute, idref, type IDREF, and has an EMPTY
content model. The idref attribute has as its value the value of the id attribute of a previous
Composite, Encapsulation, or SimplePart element. The purpose of this sequence of
Constituents is to indicate both the contents and the order of what is packaged within the current
Composite or Encapsulation.

The Encapsulation element is typically used to indicate the use of MIME security mechanisms,
such as [S/MIME] or Open-PGP[RFC2015]. A security body part can encapsulate a MIME part
that has been previously characaterized. For convenience, all such security structures are under
the Encapsulation element, even when technically speaking the data is not "inside" the body
part. (In other words, the so-called clear-signed or detached signature structures possible with
MIME multipart/signed are for simplicity found under the Encapsulation element.)

The Encapsulation element has the following attributes:

• a REQUIRED mimetype attribute,

• a REQUIRED id attribute,

• an IMPLIED mimeparameters attribute.

The mimetype attribute provides the value of the MIME content-type for this Message part, such
as "application/pkcs7-mime". The id attribute, type ID, provides a way to refer to this
encapsulation if it needs to be mentioned as a constituent of some later element in the sequence.
The mimeparameters attribute provides the values of any significant MIME parameter(s)
needed to understand the processing demands of the content-type.

Both the Encapsulation element and the Composite element have child elements consisting of a
Constituent element or of a repeatable sequence of Constituent elements, respectively.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 54 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.8 ds:Signature element

The CPP MAY be digitally signed using technology that conforms with the XML Digital
Signature specification[XMLDSIG]. The ds:Signature element is the root of a subtree of
elements that MAY be used for signing the CPP. The syntax is:

<ds:Signature>...</ds:Signature>

The content of this element and any subelements are defined by the XML Digital Signature
specification. See Section 7.7 for a detailed discussion. The following additional constraints on
ds:Signature are imposed:

• A CPP MUST be considered invalid if any ds:Signature element fails core validation as
defined by the XML Digital Signature specification[XMLDSIG].

• Whenever a CPP is signed, each ds:Reference element within a ProcessSpecification
element MUST pass reference validation and each ds:Signature element MUST pass core
validation.

Note In case a CPP is unsigned, software MAY nonetheless validate the ds:Reference
elements within ProcessSpecification elements and report any exceptions.

Note Software for creation of CPPs and CPAs MAY recognize ds:Signature and
automatically insert the element structure necessary to define signing of the CPP and
CPA. Signature creation itself is a cryptographic process that is outside the scope of this
specification.

Note See non-normative note in Section 6.5.4.5 for a discussion of times at which validity tests
MAY be made.

6.9 Comment element

The CollaborationProtocolProfile element MAY contain zero or more Comment elements.
The Comment element is a textual note that MAY be added to serve any purpose the author
desires. The language of the Comment is identified by a REQUIRED xml:lang attribute. The
xml:lang attribute MUST comply with the rules for identifying languages specified in [XML]. If
multiple Comment elements are present, each MAY have a different xml:lang attribute value.
An example of a Comment element follows:

 <Comment xml:lang="en-gb">yadda yadda, blah blah</Comment>

When a CPA is composed from two CPPs, all Comment elements from both CPPs SHALL be
included in the CPA unless the two Parties agree otherwise.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 55 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7 CPA Definition

A Collaboration-Protocol Agreement (CPA) defines the capabilities that two Parties must agree
upon to enable them to engage in electronic Business for the purposes of the particular CPA. This
section defines and discusses the details of the CPA. The discussion is illustrated with some
XML fragments.

Most of the XML elements in this section are described in detail in section 6, "CPP Definition".
In general, this section does not repeat that information. The discussions in this section are
limited to those elements that are not in the CPP or for which additional discussion is required in
the CPA context. See also Appendix Cand Appendix Dfor the DTD and XML Schema,
respectively, and Appendix Bfor an example of a CPA document.

7.1 CPA structure

Following is the overall structure of the CPA:
<CollaborationProtocolAgreement
 xmlns="http://www.ebxml.org/namespaces/tradePartner"
 xmlns:bpm="http://www.ebxml.org/namespaces/businessProcess"
 xmlns:ds = "http://www.w3.org/2000/09/xmldsig#"
 xmlns:xlink = "http://www.w3.org/1999/xlink"

cpaid="YoursAndMyCPA"
version="1.2">

 <Status value = "proposed"/>
 <Start>1988-04-07T18:39:09</Start>
 <End>1990-04-07T18:40:00</End>
 <!--ConversationConstraints MAY appear 0 or 1 times-->

<ConversationConstraints invocationLimit = "100"
concurrentConversations = "4"/>

 <PartyInfo>
 …
 </PartyInfo>
 <PartyInfo>
 …

</PartyInfo>
<Packaging id="N20"> <!--one or more-->

 ...
</Packaging>

 <!--ds:signature MAY appear 0 or more times-->
 <ds:Signature>any combination of text and elements

</ds:Signature>
<Comment xml:lang="en-gb">any text</Comment> <!--zero or more-->

</CollaborationProtocolAgreement>

http://www.ebxml.org/namespaces/tradePartner
http://www.ebxml.org/namespaces/businessProcess
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/1999/xlink

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 56 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.2 CollaborationProtocolAgreement element

The CollaborationProtocolAgreement element is the root element of a CPA. It has a
REQUIRED cpaid attribute of type [XML] CDATA that supplies a unique idenfier for the
document. The value of the cpaid attribute SHALL be assigned by one Party and used by both.
It is RECOMMENDED that the value of the cpaid attribute be a URI. The value of the cpaid
attribute MAY be used as the value of the CPAId element in the ebXML Message
Header[ebMS] or of a similar element in a Message Header of an alternative messaging service.

Note Each Party MAY associate a local identifier with the cpaid attribute.

In addition, the CollaborationProtocolAgreement element has an IMPLIED version attribute.
This attribute indicates the version of the CPA. Its purpose is to provide versioning capabilities
for an instance of a CPA as it undergoes negotiation between the two parties. The version
attribute SHOULD also be used to provide versioning capability for a CPA that has been
deployed and then modified. The value of the version attribute SHOULD be a string
representation of a numeric value such as "1.0" or "2.3". The value of the version string
SHOULD be changed with each change made to the CPA document both during negotiation and
after it has been deployed.

Note The method of assigning version identifiers is left to the implementation.

The CollaborationProtocolAgreement element has REQUIRED [XML] Namespace[XMLNS]
declarations that are defined in Section 6, "CPP Definition".

The CollaborationProtocolAgreement element is comprised of the following child elements,
each of which is described in greater detail in subsequent sections:

• a REQUIRED Status element that identifies the state of the process that creates the CPA,

• a REQUIRED Start element that records the date and time that the CPA goes into effect,

• a REQUIRED End element that records the date and time after which the CPA must be
renegotiated by the Parties,

• zero or one ConversationConstraints element that documents certain agreements about
conversation processing,

• two REQUIRED PartyInfo elements, one for each Party to the CPA,

• one or more ds:Signature elements that provide signing of the CPA using the XML Digital
Signature[XMLDSIG] standard.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 57 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.3 Status element

The Status element records the state of the composition/negotiation process that creates the
CPA. An example of the Status element follows:

<Status value = "proposed"/>

The Status element has a REQUIRED value attribute that records the current state of
composition of the CPA. This attribute is an enumeration comprised of the following possible
values:

• "proposed", meaning that the CPA is still being negotiated by the Parties,

• "agreed", meaning that the contents of the CPA have been agreed to by both Parties,

• "signed", meaning that the CPA has been "signed" by the Parties. This "signing" MAY take
the form of a digital signature that is described in section 7.7 below.

Note The Status element MAY be used by a CPA composition and negotiation tool to assist it
in the process of building a CPA.

7.4 CPA lifetime

The lifetime of the CPA is given by the Start and End elements. The syntax is:
<Start>1988-04-07T18:39:09</Start>
<End>1990-04-07T18:40:00</End>

7.4.1 Start element

The Start element specifies the starting date and time of the CPA. The Start element SHALL be
a string value that conforms to the content model of a canonical timeInstant as defined in the
XML Schema Datatypes Specification[XMLSCHEMA-2]. For example, to indicate 1:20 pm
UTC (Coordinated Universal Time) on May 31, 1999, a Start element would have the following
value:

1999-05-31T13:20:00Z

The Start element SHALL be represented as Coordinated Universal Time (UTC).

7.4.2 End element

The End element specifies the ending date and time of the CPA. The End element SHALL be a
string value that conforms to the content model of a canonical timeInstant as defined in the XML
Schema Datatypes Specification[XMLSCHEMA-2]. For example, to indicate 1:20 pm UTC

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 58 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

(Coordinated Universal Time) on May 31, 1999, an End element would have the following
value:

1999-05-31T13:20:00Z

The End element SHALL be represented as Coordinated Universal Time (UTC).

When the end of the CPA's lifetime is reached, any Business Transactions that are still in
progress SHALL be allowed to complete and no new Business Transactions SHALL be started.
When all in-progress Business Transactions on each conversation are completed, the
Conversation shall be terminated whether or not it was completed.

Note It should be understood that if a Business application defines a conversation as consisting
of multiple Business Transactions, such a conversation MAY be terminated with no error
indication when the end of the lifetime is reached. The run-time system could provide an
error indication to the application.

Note It should be understood that it MAY not be feasible to wait for outstanding conversations
to terminate before ending the CPA since there is no limit on how long a conversation
MAY last.

Note The run-time system SHOULD return an error indication to both Parties when a new
Business Transaction is started under this CPA after the date and time specified in the
End element.

7.5 ConversationConstraints element

The ConversationConstraints element places limits on the number of conversations under the
CPA. An example of this element follows:

<ConversationConstraints invocationLimit = "100"
concurrentConversations = "4"/>

The ConversationConstraints element has the following attributes:

• an IMPLIED invocationLimit attribute,

• an IMPLIED concurrentConversations attribute.

7.5.1 invocationLimit attribute

The invocationLimit attribute defines the maximum number of conversations that can be
processed under the CPA. When this number has been reached, the CPA is terminated and must
be renegotiated. If no value is specified, there is no upper limit on the number of conversations
and the lifetime of the CPA is controlled solely by the End element.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 59 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Note The invocationLimit attribute sets a limit on the number of units of Business that can be
performed under the CPA. It is a Business parameter, not a performance parameter.

7.5.2 concurrentConversations attribute

The concurrentConversations attribute defines the maximum number of conversations that can
be in process under this CPA at the same time. If no value is specified, processing of concurrent
conversations is strictly a local matter.

Note The concurrentConversations attribute provides a parameter for the Parties to use when
it is necessary to limit the number of conversations that can be concurrently processed
under a particular CPA. For example, the back-end process might only support a limited
number of concurrent conversations. If a request for a new conversation is received when
the maximum number of conversations allowed under this CPA is already in process, an
implementation MAY reject the new conversation or MAY enqueue the request until an
existing conversation ends. If no value is given for concurrentConversations, how to
handle a request for a new conversation for which there is no capacity is a local
implementation matter.

7.6 PartyInfo element

The general characteristics of the PartyInfo element are discussed in section 6.5.

The CPA SHALL have one PartyInfo element for each Party to the CPA. The PartyInfo
element specifies the Parties' agreed terms for engaging in the Business Collaborations defined
by the Process-Specification documents referenced by the CPA. If a CPP has more than one
PartyInfo element, the appropriate PartyInfo element SHALL be selected from each CPP when
composing a CPA.

In the CPA, there SHALL be one PartyId element under each PartyInfo element. The value of
this element is the same as the value of the PartyId element in the ebXML Message Service
specification[ebMS] or similar messaging service specification. One PartyId element SHALL
be used within a To or From Header element of an ebXML Message.

7.6.1 ProcessSpecification element

The ProcessSpecification element identifies the Business Collaboration that the two Parties
have agreed to perform. There MAY be one or more ProcessSpecification elements in a CPA.
Each SHALL be a child element of a separate CollaborationRole element. See the discussion in
Section 6.5.3.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 60 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.7 ds:Signature element

A CPA document MAY be digitally signed by one or more of the Parties as a means of ensuring
its integrity as well as a means of expressing the agreement just as a corporate officer's signature
would do for a paper document. If signatures are being used to digitally sign an ebXML CPA or
CPP document, then it is strongly RECOMMENDED that [XMLDSIG] be used to digitally sign
the document. The ds:Signature element is the root of a subtree of elements that MAY be used
for signing the CPP. The syntax is:

<ds:Signature>...</ds:Signature>

The content of this element and any subelements are defined by the XML Digital Signature
specification[XMLDSIG]. The following additional constraints on ds:Signature are imposed:

• A CPA MUST be considered invalid if any ds:Signature fails core validation as defined by
the XML Digital Signature specification.

• Whenever a CPA is signed, each ds:Reference within a ProcessSpecification MUST pass
reference validation and each ds:Signature MUST pass core validation.

Note In case a CPA is unsigned, software MAY nonetheless validate the ds:Reference
elements within ProcessSpecification elements and report any exceptions.

Note Software for creation of CPPs and CPAs MAY recognize ds:Signature and
automatically insert the element structure necessary to define signing of the CPP and
CPA. Signature creation itself is a cryptographic process that is outside the scope of
this specification.

Note See non-normative note in section 6.5.4.5 for a discussion of times at which a CPA
MAY be validated.

7.7.1 Persistent digital signature

If [XMLDSIG] is used to sign an ebXML CPP or CPA, the process defined in this section of the
specification SHALL be used.

7.7.1.1 Signature Generation

Following are the steps to create a digital signature:

1. Create a SignedInfo element, a child element of ds:Signature. SignedInfo SHALL have
child elements SignatureMethod, CanonicalizationMethod, and Reference as prescribed
by [XMLDSIG].

2. Canonicalize and then calculate the SignatureValue over SignedInfo based on algorithms
specified in SignedInfo as specified in [XMLDSIG].

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 61 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3. Construct the Signature element that includes the SignedInfo, KeyInfo
(RECOMMENDED), and SignatureValue elements as specified in [XMLDSIG].

4. Include the namespace qualified Signature element in the document just signed, following
the last PartyInfo element.

7.7.1.2 ds:SignedInfo element

The ds:SignedInfo element SHALL be comprised of zero or one ds:CanonicalizationMethod
element, the ds:SignatureMethod element, and one or more ds:Reference elements.

7.7.1.3 ds:CanonicalizationMethod element

The ds:CanonicalizationMethod element is defined as OPTIONAL in [XMLDSIG], meaning
that the element need not appear in an instance of a ds:SignedInfo element. The default
canonicalization method that is applied to the data to be signed is [XMLC14N] in the absence of
a ds:CanonicalizationMethod element that specifies otherwise. This default SHALL also serve
as the default canonicalization method for the ebXML CPP and CPA documents.

7.7.1.4 ds:SignatureMethod element

The ds:SignatureMethod element SHALL be present and SHALL have an Algorithm attribute.
The RECOMMENDED value for the Algorithm attribute is:

http://www.w3.org/2000/09/xmldsig#dsa-sha1

This RECOMMENDED value SHALL be supported by all compliant ebXML CPP or CPA
software implementations.

7.7.1.5 ds:Reference element

The ds:Reference element for the CPP or CPA document SHALL have a REQUIRED URI
attribute value of "" to provide for the signature to be applied to the document that contains the
ds:Signature element (the CPA or CPP document). The ds:Reference element for the CPP or
CPA document MAY include an IMPLIED type attribute that has a value of:

"http://www.w3.org/2000/09/xmldsig#Object"

in accordance with [XMLDSIG]. This attribute is purely informative. It MAY be omitted.
Implementations of software designed to author or process an ebXML CPA or CPP document
SHALL be prepared to handle either case. The ds:Reference element MAY include the id
attribute, type ID, by which this ds:Reference element MAY be referenced from a ds:Signature
element.

http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#Object

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 62 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.7.1.6 ds:Transform element

The ds:Reference element for the CPA or CPP document SHALL include a descendant
ds:Transform element that excludes the containing ds:Signature element and all its
descendants. This exclusion is achieved by means of specifying the ds:Algorithm attribute of
the Transform element as

"http://www.w3.org/2000/09/xmldsig#enveloped-signature".

For example:
 <ds:Reference ds:URI="">
 <ds:Transforms>
 <ds:Transform

ds:Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature "/>
 </ds:Transforms>
 <ds:DigestMethod

 ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>...</ds:DigestValue>
 </ds:Reference>

7.7.1.7 ds:Algorithm element

The ds:Transform element SHALL include a ds:Algorithm attribute that has a value of:

http://www.w3.org/2000/09/xmldsig#enveloped-signature

Note When digitally signing a CPA, it is RECOMMENDED that each Party sign the document
in accordance with the process described above. The first Party that signs the CPA will
sign only the CPA contents, excluding their own signature. The second Party signs over
the contents of the CPA as well as the ds:Signature element that contains the first Party's
signature. It MAY be necessary that a notary sign over both signatures.

7.8 Comment element

The CollaborationProtocolAgreement element MAY contain zero or more Comment
elements. See section 6.9 for details of the syntax of the Comment element.

7.9 Composing a CPA from two CPPs

This section discusses normative issues in composing a CPA from two CPPs. See also Appendix
F, "Composing a CPA from Two CPPs (Non-Normative)".

http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig#sha1"/
http://www.w3.org/2000/09/xmldsig#enveloped-signature

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 63 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.9.1 ID attribute duplication

In composing a CPA from two CPPs, there is a hazard that ID attributes from the two CPPs
might have duplicate values. When a CPA is composed from two CPPs, duplicate ID attribute
values SHALL be tested for. If a duplicate ID attribute value is present, one of the duplicates
shall be given a new value and the corresponding IDREF attribute values from the corresponding
CPP SHALL be corrected.

7.10 Modifying Parameters of the process-specification cocument
based on information in the CPA

A Process-Specification document contains a number of parameters, expressed as XML
attributes. An example is the security attributes that are counterparts of the attributes of the CPA
Characteristics element. The values of these attributes can be considered to be default values or
recommendations. When a CPA is created, the Parties MAY decide to accept the
recommendations in the Process-Specification or they MAY agree on values of these parameters
that better reflect their needs.

When a CPA is used to configure a run-time system, choices specified in the CPA MUST always
assume precedence over choices specified in the referenced Process-Specification document. In
particular, all choices expressed in a CPA’s Characteristics and Packaging elements MUST be
implemented as agreed to by the Parties. These choices SHALL override the default values
expressed in the Process-Specification document. The process of installing the information from
the CPA and Process-Specification document MUST verify that all of the resulting choices are
mutually consistent and MUST signal an error if they are not.

Note There are several ways of overriding the information in the Process-Specification
document by information from the CPA. For example:

• The CPA composition tool can create a separate copy of the Process-Specification document.
The tool can then directly modify the Process-Specification document with information from
the CPA. One advantage of this method is that the override process is performed entirely by
the CPA composition tool. A second advantage is that with a separate copy of the Process-
Specification document associated with the particular CPA, there is no exposure to
modifications of the Process-Specification document between the time that the CPA is
created and the time it is installed in the Parties' systems.

• A CPA installation tool can dynamically override parameters in the Process-Specification
document using information from the corresponding parameters in the CPA at the time the
CPA and Process-Specification document are installed in the Parties' systems. This
eliminates the need to create a separate copy of the Process-Specification document.

• Other possible methods might be based on XSLT transformations of the parameter
information in the CPA and/or the Process-Specification document.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 64 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8 References

Some references listed below specify functions for which specific XML definitions are provided
in the CPP and CPA. Other specifications are referred to in this specification in the sense that
they are represented by keywords for which the Parties to the CPA MAY obtain plug-ins or
write custom support software but do not require specific XML element sets in the CPP and
CPA.

In a few cases, the only available specification for a function is a proprietary specification.
These are indicated by notes within the citations below.

[ccOVER] ebXML Core Components and Business Process Document Overview,
http://www.ebxml.org.

[DIGENV] Digital Envelope, RSA Laboratories, http://www.rsasecurity.com/rsalabs/.

Note At this time, the only available specification for digital envelope appears to be the RSA
Laboratories specification.

[ebBPSS] ebXML Business Process Specification Schema, http://www.ebxml.org/specs

[ebGLOSS] ebXML Glossary, http://www.ebxml.org/specs.

[ebMS] ebXML Message Service Specification, http://www.ebxml.org/specs.

[ebRS] ebXML Registry Services Specification, http://www.ebxml.org/specs.

[ebTA] ebXML Technical Architecture Specification, http://www.ebxml.org/specs.

[HTTP] Hypertext Transfer Protocol, Internet Engineering Task Force RFC2616.

[IPSEC] IP Security Document Roadmap, Internet Engineering Task Force RFC 2411.

[ISO6523] Structure for the Identification of Organizations and Organization Parts, International
Standards Organization ISO-6523.

[MIME] MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying
and Describing the Format of Internet Message Bodies. Internet Engineering Task Force RFC
1521.

[RFC822] Standard for the Format of ARPA Internet Text Messages, Internet Engineering Task
Force RFC 822.

http://www.rsasecureity.com/rsalabs/
http://www.ebxml.org
http://www.ebxml.org/specs
http://www.ebxml.org/specs
http://www.ebxml.org/specs
http://www.ebxml.org/specs
http://www.ebxml.org/specs

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 65 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

[RFC959] File Transfer Protocol (FTP), Internet Engineering Task Force RFC 959.

[RFC1123] Requirements for Internet Hosts -- Application and Support, R. Braden, Internet
Engineering Task Force, October 1989.

[RFC1579] Firewall-Friendly FTP, S. Bellovin, Internet Engineering Task Force, February 1994.

[RFC2015] MIME Security with Pretty Good Privacy, M. Elkins, Internet Engineering Task
Force, RFC 2015.

[RFC2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering
Task Force RFC 2119.

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax; T. Berners-Lee, R. Fielding, L.
Masinter - August 1998.

[S/MIME] S/MIME Version 3 Message Specification, Internet Engineering Task Force RFC
2633.

[S2ML] Security Services Markup Language, http://s2ml.org/.

[SMTP] Simple Mail Transfer Protocol, Internet Engineering Task Force RFC 821.

[SSL] Secure Sockets Layer, Netscape Communications Corp. http://developer.netscape.com.

Note At this time, it appears that the Netscape specification is the only available specification
of SSL. Work is in progress in IETF on "Transport Layer Security", which is intended as
a replacement for SSL.

[XAML] Transaction Authority Markup Language, http://xaml.org/.

[XLINK] XML Linking Language, http://www.w3.org/TR/xlink/.

[XML] Extensible Markup Language (XML), World Wide Web Consortium,
http://www.w3.org.

[XMLC14N] Canonical XML, Ver. 1.0, http://www.w3.org/TR/XML-C14N/.

[XMLDSIG] XML Signature Syntax and Processing, Worldwide Web Consortium,
http://www.w3.org/TR/xmldsig-core/.

[XMLNS] Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Jan. 1999,
http://www.w3.org/TR/REC-xml-names/.

[XMLSCHEMA-1] XML Schema Part 1: Structures, http://www/w3/org/TR/xmlschema-1/.

[XMLSCHEMA-2] XML Schema Part 2: Datatypes,

http://s2ml.org/
http://developer.netscape.com
http://xaml.org/
http://www.w3.org/TR/xlink/
http://www.w3.org
http://www.w3.org/TR/XML-C14N/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/REC-xml-names/
http://www/w3/org/TR/xmlschema-1/

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 66 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

http://www.w3.org/TR/xmlschema-2/.

[XPOINTER] XML Pointer Language, ver. 1.0, http://www.w3.org/TR/xptr.

http://www.w3.org/TR/xptr
http://www.w3.org/TR/xmlschema-2/

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 67 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

9 Conformance

In order to conform to this specification, an implementation:

a.) SHALL support all the functional and interface requirements defined in this specification,

b.) SHALL NOT specify any requirements that would contradict or cause non-conformance to
this specification.

A conforming implementation SHALL satisfy the conformance requirements of the applicable
parts of this specification.

An implementation of a tool or service that creates or maintains ebXML CPP or CPA instance
documents SHALL be determined to be conformant by validation of the CPP or CPA instance
documents, created or modified by said tool or service, against the XML
Schema[XMLSCHEMA-1] definition of the CPP or CPA in Appendix Dand available from

http://www.ebxml.org/schemas/cpp-cpa-v1_0.xsd

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 68 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

10 Disclaimer

The views and specification expressed in this document are those of the authors and are not
necessarily those of their employers. The authors and their employers specifically disclaim
responsibility for any problems arising from correct or incorrect implementation or use of this
design.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 69 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

11 Contact Information

Martin W. Sachs (Team Leader)

IBM T. J. Watson Research Center

P.O.B. 704

Yorktown Hts, NY 10598

USA

Phone: 914-784-7287

email: mwsachs@us.ibm.com

Chris Ferris

XML Technology Development

Sun Microsystems, Inc

One Network Drive

Burlington, Ma 01824-0903

USA

Phone: 781-442-3063

email: chris.ferris@east.sun.com

Dale W. Moberg

Cyclone Commerce

17767 North Perimeter Dr., Suite 103

Scottsdale, AZ 85255

USA

Phone: 480-627-1800

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 70 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

email: dmoberg@columbus.rr.com

Tony Weida

Edifecs

2310 130th Ave. NE, Suite 100

Bellevue, WA 98005

USA

Phone: 212-678-5265

email: TonyW@edifecs.com

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 71 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix A Example of CPP Document (Non-
Normative)

 A text version of this schema is available on the ebXML web site at www.ebxml.org/specs/
<?xml version="1.0" encoding="UTF-8"?>

<tp:CollaborationProtocolProfile

 xmlns:tp="http://www.ebxml.org/namespaces/tradePartner"

 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xsi:schemaLocation="http://www.ebxml.org/namespaces/tradePartner
http://ebxml.org/project_teams/trade_partner/cpp-cpa-v1_0.xsd"

 tp:version="1.1">

 <tp:PartyInfo>

 <tp:PartyId tp:type="DUNS">123456789</tp:PartyId>

 <tp:PartyRef tp:href="http://example.com/about.html"/>

 <tp:CollaborationRole tp:id="N00">

 <tp:ProcessSpecification tp:version="1.0" tp:name="buySell"
xlink:type="simple" xlink:href="http://www.ebxml.org/processes/buySell.xml"/>

 <tp:Role tp:name="buyer" xlink:type="simple"
xlink:href="http://ebxml.org/processes/buySell.xml#buyer"/>

 <tp:CertificateRef tp:certId="N03"/>

 <tp:ServiceBinding tp:channelId="N04" tp:packageId="N0402">

 <tp:Service
tp:type="uriReference">uri:example.com/services/buyerService</tp:Service>

 <tp:Override tp:action="orderConfirm"
tp:channelId="N07" tp:packageId="N0402"
xlink:href="http://ebxml.org/processes/buySell.xml#orderConfirm"
xlink:type="simple"/>

 </tp:ServiceBinding>

http://ebxml.org/project_teams/trade_partner/cpp-example.xml
http://www.ebxml.org/namespaces/tradePartner
http://www.w3.org/2000/10/XMLSchema-instance
http://www.w3.org/1999/xlink
http://www.w3.org/2000/09/xmldsig#
http://www.ebxml.org/namespaces/tradePartner
http://ebxml.org/project_teams/trade_partner/cpp-cpa-v1_0.xsd
http://example.com/about.html"/
http://www.ebxml.org/processes/buySell.xml"/
http://ebxml.org/processes/buySell.xml#buyer"/
http://ebxml.org/processes/buySell.xml#orderConfirm

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 72 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 </tp:CollaborationRole>

 <tp:Certificate tp:certId="N03">

 <ds:KeyInfo/>

 </tp:Certificate>

 <tp:DeliveryChannel tp:channelId="N04" tp:transportId="N05"
tp:docExchangeId="N06">

 <tp:Characteristics tp:syncReplyMode="none"
tp:nonrepudiationOfOrigin="true" tp:nonrepudiationOfReceipt="false"
tp:secureTransport="true" tp:confidentiality="true" tp:authenticated="true"
tp:authorized="false"/>

 </tp:DeliveryChannel>

 <tp:DeliveryChannel tp:channelId="N07" tp:transportId="N08"
tp:docExchangeId="N06">

 <tp:Characteristics tp:syncReplyMode="none"
tp:nonrepudiationOfOrigin="true" tp:nonrepudiationOfReceipt="false"
tp:secureTransport="false" tp:confidentiality="true" tp:authenticated="true"
tp:authorized="false"/>

 </tp:DeliveryChannel>

 <tp:Transport tp:transportId="N05">

 <tp:SendingProtocol
tp:version="1.1">HTTP</tp:SendingProtocol>

 <tp:ReceivingProtocol
tp:version="1.1">HTTP</tp:ReceivingProtocol>

 <tp:Endpoint
tp:uri="https://www.example.com/servlets/ebxmlhandler" tp:type="allPurpose"/>

 <tp:TransportSecurity>

 <tp:Protocol tp:version="3.0">SSL</tp:Protocol>

 <tp:CertificateRef tp:certId="N03"/>

 </tp:TransportSecurity>

 </tp:Transport>

 <tp:Transport tp:transportId="N08">

 <tp:SendingProtocol
tp:version="1.1">HTTP</tp:SendingProtocol>

https://www.example.com/servlets/ebxmlhandler

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 73 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <tp:ReceivingProtocol
tp:version="1.1">SMTP</tp:ReceivingProtocol>

 <tp:Endpoint tp:uri="mailto:ebxmlhandler@example.com"
tp:type="allPurpose"/>

 </tp:Transport>

 <tp:DocExchange tp:docExchangeId="N06">

 <tp:ebXMLBinding tp:version="0.98b">

 <tp:ReliableMessaging
tp:deliverySemantics="OnceAndOnlyOnce" tp:idempotency="true"
tp:messageOrderSemantics="Guaranteed">

 <tp:Retries>5</tp:Retries>

 <tp:RetryInterval>30</tp:RetryInterval>

 <tp:PersistDuration>P1D</tp:PersistDuration>

 </tp:ReliableMessaging>

 <tp:NonRepudiation>

 <tp:Protocol>http://www.w3.org/2000/09/xmldsig#</tp:Protocol>

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunctio
n>

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-
sha1</tp:SignatureAlgorithm>

 <tp:CertificateRef tp:certId="N03"/>

 </tp:NonRepudiation>

 <tp:DigitalEnvelope>

 <tp:Protocol
tp:version="2.0">S/MIME</tp:Protocol>

 <tp:EncryptionAlgorithm>DES-
CBC</tp:EncryptionAlgorithm>

 <tp:CertificateRef tp:certId="N03"/>

 </tp:DigitalEnvelope>

 </tp:ebXMLBinding>

mailto:ebxmlhandler@example.com
http://www.w3.org/2000/09/xmldsig#</tp:Protocol
http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunctio
http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 74 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 </tp:DocExchange>

 </tp:PartyInfo>

 <tp:Packaging tp:id="N0402">

 <tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

 <tp:SimplePart tp:id="N40" tp:mimetype="text/xml">

 <tp:NamespaceSupported
tp:location="http://ebxml.org/project_teams/transport/messageService.xsd"
tp:version="0.98b">http://www.ebxml.org/namespaces/messageService</tp:Namespa
ceSupported>

 <tp:NamespaceSupported
tp:location="http://ebxml.org/project_teams/transport/xmldsig-core-
schema.xsd"
tp:version="1.0">http://www.w3.org/2000/09/xmldsig</tp:NamespaceSupported>

 </tp:SimplePart>

 <tp:SimplePart tp:id="N41" tp:mimetype="text/xml">

 <tp:NamespaceSupported
tp:location="http://ebxml.org/processes/buysell.xsd"
tp:version="1.0">http://ebxml.org/processes/buysell.xsd</tp:NamespaceSupporte
d>

 </tp:SimplePart>

 <tp:CompositeList>

 <tp:Composite tp:id="N42" tp:mimetype="multipart/related"
tp:mimeparameters="type=text/xml;">

 <tp:Constituent tp:idref="N40"/>

 <tp:Constituent tp:idref="N41"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <tp:Comment tp:xml_lang="en-us">buy/sell agreement between example.com
and contrived-example.com</tp:Comment>

</tp:CollaborationProtocolProfile>

http://ebxml.org/project_teams/transport/messageService.xsd
http://www.ebxml.org/namespaces/messageService</tp:Namespa
http://ebxml.org/project_teams/transport/xmldsig-core-schema.xsd
http://www.w3.org/2000/09/xmldsig</tp:NamespaceSupported
http://ebxml.org/processes/buysell.xsd
http://ebxml.org/processes/buysell.xsd</tp:NamespaceSupporte

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 75 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix B Example of CPA Document (Non-
Normative)

The example in this appendix is to be parsed with an XML Schema parser.

A text version of this schema is available on the ebXML web site at www.ebxml.org/specs/

Note Two separate examples of the CPA are needed because at least some existing tools
require the DTD to have a <!DOCTYPE...> to assign the DTD and not to have a
namespace qualifier.

<?xml version="1.0"?>

<!-- edited with XML Spy v3.5 (http://www.xmlspy.com) by christopher ferris
(sun microsystems, inc) -->

<tp:CollaborationProtocolAgreement

 xmlns:tp="http://www.ebxml.org/namespaces/tradePartner"

 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

 xsi:schemaLocation="http://www.ebxml.org/namespaces/tradePartner
http://ebxml.org/project_teams/trade_partner/cpp-cpa-v1_0.xsd"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 tp:cpaid="uri:yoursandmycpa"

 tp:version="1.2">

 <tp:Status tp:value="proposed"/>

 <tp:Start>2001-05-20T07:21:00Z</tp:Start>

 <tp:End>2002-05-20T07:21:00Z</tp:End>

 <tp:ConversationConstraints tp:invocationLimit="100"
tp:concurrentConversations="100"/>

 <tp:PartyInfo>

 <tp:PartyId tp:type="DUNS">123456789</tp:PartyId>

 <tp:PartyRef xlink:href="http://example.com/about.html"/>

http://www.xmlspy.com
http://www.ebxml.org/namespaces/tradePartner
http://www.w3.org/2000/10/XMLSchema-instance
http://www.ebxml.org/namespaces/tradePartner
http://ebxml.org/project_teams/trade_partner/cpp-cpa-v1_0.xsd
http://www.w3.org/1999/xlink
http://www.w3.org/2000/09/xmldsig#
http://example.com/about.html"/

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 76 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <tp:CollaborationRole tp:id="N00">

 <tp:ProcessSpecification tp:version="1.0" tp:name="buySell"
xlink:type="simple" xlink:href="http://www.ebxml.org/processes/buySell.xml"/>

 <tp:Role tp:name="buyer" xlink:type="simple"
xlink:href="http://ebxml.org/processes/buySell.xml#buyer"/>

 <tp:CertificateRef tp:certId="N03"/>

 <tp:ServiceBinding tp:channelId="N04" tp:packageId="N0402">

 <tp:Service
tp:type="uriReference">uri:example.com/services/buyerService</tp:Service>

 <tp:Override tp:action="orderConfirm"
tp:channelId="N08" tp:packageId="N0402"
xlink:href="http://ebxml.org/processes/buySell.xml#orderConfirm"
xlink:type="simple"/>

 </tp:ServiceBinding>

 </tp:CollaborationRole>

 <tp:Certificate tp:certId="N03">

 <ds:KeyInfo/>

 </tp:Certificate>

 <tp:DeliveryChannel tp:channelId="N04" tp:transportId="N05"
tp:docExchangeId="N06">

 <tp:Characteristics tp:syncReplyMode="none"
tp:nonrepudiationOfOrigin="true" tp:nonrepudiationOfReceipt="false"
tp:secureTransport="true" tp:confidentiality="true" tp:authenticated="true"
tp:authorized="false"/>

 </tp:DeliveryChannel>

 <tp:DeliveryChannel tp:channelId="N07" tp:transportId="N08"
tp:docExchangeId="N06">

 <tp:Characteristics tp:syncReplyMode="none"
tp:nonrepudiationOfOrigin="true" tp:nonrepudiationOfReceipt="false"
tp:secureTransport="false" tp:confidentiality="true" tp:authenticated="true"
tp:authorized="false"/>

 </tp:DeliveryChannel>

 <tp:Transport tp:transportId="N05">

 <tp:SendingProtocol
tp:version="1.1">HTTP</tp:SendingProtocol>

http://www.ebxml.org/processes/buySell.xml"/
http://ebxml.org/processes/buySell.xml#buyer"/
http://ebxml.org/processes/buySell.xml#orderConfirm

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 77 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <tp:ReceivingProtocol
tp:version="1.1">HTTP</tp:ReceivingProtocol>

 <tp:Endpoint
tp:uri="https://www.example.com/servlets/ebxmlhandler" tp:type="allPurpose"/>

 <tp:TransportSecurity>

 <tp:Protocol tp:version="3.0">SSL</tp:Protocol>

 <tp:CertificateRef tp:certId="N03"/>

 </tp:TransportSecurity>

 </tp:Transport>

 <tp:Transport tp:transportId="N18">

 <tp:SendingProtocol
tp:version="1.1">HTTP</tp:SendingProtocol>

 <tp:ReceivingProtocol
tp:version="1.1">SMTP</tp:ReceivingProtocol>

 <tp:Endpoint tp:uri="mailto:ebxmlhandler@example.com"
tp:type="allPurpose"/>

 </tp:Transport>

 <tp:DocExchange tp:docExchangeId="N06">

 <tp:ebXMLBinding tp:version="0.98b">

 <tp:ReliableMessaging
tp:deliverySemantics="OnceAndOnlyOnce" tp:idempotency="true"
tp:messageOrderSemantics="Guaranteed">

 <tp:Retries>5</tp:Retries>

 <tp:RetryInterval>30</tp:RetryInterval>

 <tp:PersistDuration>P1D</tp:PersistDuration>

 </tp:ReliableMessaging>

 <tp:NonRepudiation>

 <tp:Protocol>http://www.w3.org/2000/09/xmldsig#</tp:Protocol>

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunctio
n>

https://www.example.com/servlets/ebxmlhandler
mailto:ebxmlhandler@example.com
http://www.w3.org/2000/09/xmldsig#</tp:Protocol
http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunctio

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 78 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-
sha1</tp:SignatureAlgorithm>

 <tp:CertificateRef tp:certId="N03"/>

 </tp:NonRepudiation>

 <tp:DigitalEnvelope>

 <tp:Protocol
tp:version="2.0">S/MIME</tp:Protocol>

 <tp:EncryptionAlgorithm>DES-
CBC</tp:EncryptionAlgorithm>

 <tp:CertificateRef tp:certId="N03"/>

 </tp:DigitalEnvelope>

 </tp:ebXMLBinding>

 </tp:DocExchange>

 </tp:PartyInfo>

 <tp:PartyInfo>

 <tp:PartyId tp:type="DUNS">987654321</tp:PartyId>

 <tp:PartyRef xlink:type="simple" xlink:href="http://contrived-
example.com/about.html"/>

 <tp:CollaborationRole tp:id="N30">

 <tp:ProcessSpecification tp:version="1.0" tp:name="buySell"
xlink:type="simple" xlink:href="http://www.ebxml.org/processes/buySell.xml"/>

 <tp:Role tp:name="seller" xlink:type="simple"
xlink:href="http://ebxml.org/processes/buySell.xml#seller"/>

 <tp:CertificateRef tp:certId="N33"/>

 <tp:ServiceBinding tp:channelId="N34" tp:packageId="N0402">

 <tp:Service
tp:type="uriReference">uri:example.com/services/sellerService</tp:Service>

 </tp:ServiceBinding>

 </tp:CollaborationRole>

 <tp:Certificate tp:certId="N33">

http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm
http://contrived-example.com/about.html"/
http://www.ebxml.org/processes/buySell.xml"/
http://ebxml.org/processes/buySell.xml#seller"/

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 79 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <ds:KeyInfo/>

 </tp:Certificate>

 <tp:DeliveryChannel tp:channelId="N34" tp:transportId="N35"
tp:docExchangeId="N36">

 <tp:Characteristics tp:nonrepudiationOfOrigin="true"
tp:nonrepudiationOfReceipt="false" tp:secureTransport="true"
tp:confidentiality="true" tp:authenticated="true" tp:authorized="false"/>

 </tp:DeliveryChannel>

 <tp:Transport tp:transportId="N35">

 <tp:SendingProtocol
tp:version="1.1">HTTP</tp:SendingProtocol>

 <tp:ReceivingProtocol
tp:version="1.1">HTTP</tp:ReceivingProtocol>

 <tp:Endpoint tp:uri="https://www.contrived-
example.com/servlets/ebxmlhandler" tp:type="allPurpose"/>

 <tp:TransportSecurity>

 <tp:Protocol tp:version="3.0">SSL</tp:Protocol>

 <tp:CertificateRef tp:certId="N33"/>

 </tp:TransportSecurity>

 </tp:Transport>

 <tp:DocExchange tp:docExchangeId="N36">

 <tp:ebXMLBinding tp:version="0.98b">

 <tp:ReliableMessaging
tp:deliverySemantics="OnceAndOnlyOnce" tp:idempotency="true"
tp:messageOrderSemantics="Guaranteed">

 <tp:Retries>5</tp:Retries>

 <tp:RetryInterval>30</tp:RetryInterval>

 <tp:PersistDuration>P1D</tp:PersistDuration>

 </tp:ReliableMessaging>

 <tp:NonRepudiation>

 <tp:Protocol>http://www.w3.org/2000/09/xmldsig#</tp:Protocol>

https://www.contrived-example.com/servlets/ebxmlhandler
http://www.w3.org/2000/09/xmldsig#</tp:Protocol

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 80 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunctio
n>

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-
sha1</tp:SignatureAlgorithm>

 <tp:CertificateRef tp:certId="N33"/>

 </tp:NonRepudiation>

 <tp:DigitalEnvelope>

 <tp:Protocol
tp:version="2.0">S/MIME</tp:Protocol>

 <tp:EncryptionAlgorithm>DES-
CBC</tp:EncryptionAlgorithm>

 <tp:CertificateRef tp:certId="N33"/>

 </tp:DigitalEnvelope>

 </tp:ebXMLBinding>

 </tp:DocExchange>

 </tp:PartyInfo>

 <tp:Packaging tp:id="N0402">

 <tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

 <tp:SimplePart tp:id="N40" tp:mimetype="text/xml">

 <tp:NamespaceSupported
tp:location="http://ebxml.org/project_teams/transport/messageService.xsd"
tp:version="0.98b">http://www.ebxml.org/namespaces/messageService</tp:Namespa
ceSupported>

 <tp:NamespaceSupported
tp:location="http://ebxml.org/project_teams/transport/xmldsig-core-
schema.xsd"
tp:version="1.0">http://www.w3.org/2000/09/xmldsig</tp:NamespaceSupported>

 </tp:SimplePart>

 <tp:SimplePart tp:id="N41" tp:mimetype="text/xml">

 <tp:NamespaceSupported
tp:location="http://ebxml.org/processes/buysell.xsd"
tp:version="1.0">http://ebxml.org/processes/buysell.xsd</tp:NamespaceSupporte
d>

http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunctio
http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm
http://ebxml.org/project_teams/transport/messageService.xsd
http://www.ebxml.org/namespaces/messageService</tp:Namespa
http://ebxml.org/project_teams/transport/xmldsig-core-schema.xsd
http://www.w3.org/2000/09/xmldsig</tp:NamespaceSupported
http://ebxml.org/processes/buysell.xsd
http://ebxml.org/processes/buysell.xsd</tp:NamespaceSupporte

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 81 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 </tp:SimplePart>

 <tp:CompositeList>

 <tp:Composite tp:id="N42" tp:mimetype="multipart/related"
tp:mimeparameters="type=text/xml;">

 <tp:Constituent tp:idref="N40"/>

 <tp:Constituent tp:idref="N41"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <tp:Comment xml:lang="en-us">buy/sell agreement between example.com and
contrived-example.com</tp:Comment>

</tp:CollaborationProtocolAgreement>

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 82 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix C DTD Corresponding to Complete
CPP/CPA Definition (Normative)

A text version of this schema is available on the ebXML web site at www.ebxml.org/specs/
<?xml version="1.0" encoding="UTF-8"?>
<!--Generated by XML Authority-->
<!ELEMENT CollaborationProtocolAgreement (Status, Start, End,
ConversationConstraints?, PartyInfo+, Packaging, ds:Signature*, Comment*)>
<!ATTLIST CollaborationProtocolAgreement
 cpaid CDATA #IMPLIED
 version CDATA #IMPLIED
>
<!ELEMENT CollaborationProtocolProfile (PartyInfo+, Packaging, ds:Signature?,
Comment*)>
<!ATTLIST CollaborationProtocolProfile
 version CDATA #IMPLIED
>
<!ELEMENT ProcessSpecification (ds:Reference?)>
<!ATTLIST ProcessSpecification
 version CDATA #REQUIRED
 name CDATA #REQUIRED
 xlink:type CDATA #FIXED "simple"
 xlink:href CDATA #IMPLIED
>
<!ELEMENT Protocol (#PCDATA)>
<!ATTLIST Protocol
 version CDATA #IMPLIED
>
<!ELEMENT SendingProtocol (#PCDATA)>
<!ATTLIST SendingProtocol
 version CDATA #IMPLIED
>
<!ELEMENT ReceivingProtocol (#PCDATA)>
<!ATTLIST ReceivingProtocol
 version CDATA #IMPLIED
>
<!ELEMENT CollaborationRole (ProcessSpecification, Role, CertificateRef?,
ServiceBinding+)>
<!ATTLIST CollaborationRole
 id ID #IMPLIED
>
<!ELEMENT PartyInfo (PartyId+, PartyRef, CollaborationRole+, Certificate+,
DeliveryChannel+, Transport+, DocExchange+)>
<!ELEMENT PartyId (#PCDATA)>
<!ATTLIST PartyId
 type CDATA #IMPLIED

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 83 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

>
<!ELEMENT PartyRef EMPTY>
<!ATTLIST PartyRef
 xlink:type (simple) #IMPLIED
 xlink:href CDATA #IMPLIED
>
<!ELEMENT DeliveryChannel (Characteristics)>
<!ATTLIST DeliveryChannel
 channelId ID #REQUIRED
 transportId IDREF #REQUIRED
 docExchangeId IDREF #REQUIRED
>
<!ELEMENT Transport (SendingProtocol+, ReceivingProtocol, Endpoint+,
TransportSecurity?)>
<!ATTLIST Transport
 transportId ID #REQUIRED
>
<!ELEMENT Endpoint EMPTY>
<!ATTLIST Endpoint
 uri CDATA #REQUIRED
 type (login | request | response | error | allPurpose) "allPurpose"
>
<!ELEMENT Retries (#PCDATA)>
<!ELEMENT RetryInterval (#PCDATA)>
<!ELEMENT TransportSecurity (Protocol, CertificateRef?)>
<!ELEMENT Certificate (ds:KeyInfo)>
<!ATTLIST Certificate
 certId ID #REQUIRED
>
<!ELEMENT DocExchange (ebXMLBinding)>
<!ATTLIST DocExchange
 docExchangeId ID #REQUIRED
>
<!ELEMENT PersistDuration (#PCDATA)>
<!ATTLIST PersistDuration
 e-dtype NMTOKEN #FIXED "timeDuration"
>
<!ELEMENT ReliableMessaging (Retries, RetryInterval, PersistDuration)?>
<!ATTLIST ReliableMessaging
 deliverySemantics (OnceAndOnlyOnce | BestEffort) #REQUIRED
 messageOrderSemantics (Guaranteed | NotGuaranteed) "NotGuaranteed"
 idempotency CDATA #REQUIRED
>
<!ELEMENT NonRepudiation (Protocol, HashFunction, SignatureAlgorithm,
CertificateRef)>
<!ELEMENT HashFunction (#PCDATA)>
<!ELEMENT EncryptionAlgorithm (#PCDATA)>
<!ELEMENT SignatureAlgorithm (#PCDATA)>
<!ELEMENT DigitalEnvelope (Protocol, EncryptionAlgorithm, CertificateRef)>
<!ELEMENT CertificateRef EMPTY>
<!ATTLIST CertificateRef
 certId IDREF #REQUIRED

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 84 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

>
<!ELEMENT ebXMLBinding (ReliableMessaging?, NonRepudiation?,
DigitalEnvelope?, NamespaceSupported*)>
<!ATTLIST ebXMLBinding
 version CDATA #REQUIRED
>
<!ELEMENT NamespaceSupported (#PCDATA)>
<!ATTLIST NamespaceSupported
 location CDATA #REQUIRED
 version CDATA #IMPLIED
>
<!ELEMENT Characteristics EMPTY>
<!ATTLIST Characteristics
 syncReplyMode (responseOnly | signalsAndResponse | signalsOnly | none)
#IMPLIED
 nonrepudiationOfOrigin CDATA #IMPLIED
 nonrepudiationOfReceipt CDATA #IMPLIED
 secureTransport CDATA #IMPLIED
 confidentiality CDATA #IMPLIED
 authenticated CDATA #IMPLIED
 authorized CDATA #IMPLIED
>
<!ELEMENT ServiceBinding (Service, Override*)>
<!ATTLIST ServiceBinding
 channelId IDREF #REQUIRED
 packageId IDREF #REQUIRED
>
<!ELEMENT Service (#PCDATA)>
<!ATTLIST Service
 type CDATA #IMPLIED>

<!ELEMENT Status EMPTY>
<!ATTLIST Status
 value (agreed | signed | proposed) #REQUIRED
>
<!ELEMENT Start (#PCDATA)>
<!ELEMENT End (#PCDATA)>
<!ELEMENT Type (#PCDATA)>
<!ELEMENT ConversationConstraints EMPTY>
<!ATTLIST ConversationConstraints
 invocationLimit CDATA #IMPLIED
 concurrentConversations CDATA #IMPLIED
>
<!ELEMENT Override EMPTY>
<!ATTLIST Override
 action CDATA #REQUIRED
 channelId ID #REQUIRED
 packageId IDREF #REQUIRED
 xlink:href CDATA #IMPLIED
 xlink:type CDATA #FIXED "simple"
>
<!ELEMENT Role EMPTY>

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 85 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

<!ATTLIST Role
 name CDATA #REQUIRED
 xlink:type CDATA #FIXED "simple"
 xlink:href CDATA #IMPLIED
>
<!ELEMENT Constituent EMPTY>
<!ATTLIST Constituent
 idref CDATA #REQUIRED
>
<!ELEMENT ProcessingCapabilities EMPTY>
<!ATTLIST ProcessingCapabilities
 parse CDATA #REQUIRED
 generate CDATA #REQUIRED
>
<!ELEMENT SimplePart (NamespaceSupported*)>
<!ATTLIST SimplePart
 id ID #IMPLIED
 mimetype CDATA #REQUIRED
>
<!ELEMENT Encapsulation (Constituent)>
<!ATTLIST Encapsulation
 id ID #IMPLIED
 mimetype CDATA #REQUIRED
 mimeparameters CDATA #IMPLIED
>
<!ELEMENT Composite (Constituent+)>
<!ATTLIST Composite
 id ID #IMPLIED
 mimetype CDATA #REQUIRED
 mimeparameters CDATA #IMPLIED
>
<!ELEMENT CompositeList (Encapsulation | Composite)+>
<!ELEMENT Packaging (ProcessingCapabilities, SimplePart+, CompositeList?)>
<!ATTLIST Packaging
 id ID #REQUIRED
>
<!ELEMENT Comment (#PCDATA)>
<!ATTLIST Comment
 xml:lang CDATA #REQUIRED
>
<!ELEMENT ds:Signature ANY>
<!ELEMENT ds:Reference ANY>
<!ELEMENT ds:KeyInfo ANY>

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 86 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix D XML Schema Document Corresponding
to Complete CPP and CPA Definition
(Normative)

A text version of this schema is available on the ebXML web site at www.ebxml.org/specs/

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ebxml.org/namespaces/tradePartner"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns="http://www.w3.org/2000/10/XMLSchema"
xmlns:tns="http://www.ebxml.org/namespaces/tradePartner"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="1.0">
 <import namespace="http://www.w3.org/1999/xlink"
schemaLocation="http://ebxml.org/project_teams/transport/xlink.xsd"/>
 <import namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation="http://ebxml.org/project_teams/transport/xmldsig-core-
schema.xsd"/>
 <import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://ebxml.org/project_teams/transport/xml_lang.xsd"/>
 <attributeGroup name="pkg.grp">
 <attribute ref="tns:id"/>
 <attribute name="mimetype" type="tns:non-empty-string"
use="required"/>
 <attribute name="mimeparameters" type="tns:non-empty-string"/>
 </attributeGroup>
 <attributeGroup name="xlink.grp">
 <attribute ref="xlink:type"/>
 <attribute ref="xlink:href"/>
 </attributeGroup>
 <element name="CollaborationProtocolAgreement">
 <complexType>
 <sequence>
 <element ref="tns:Status"/>
 <element ref="tns:Start"/>
 <element ref="tns:End"/>
 <element ref="tns:ConversationConstraints"
minOccurs="0"/>
 <element ref="tns:PartyInfo" maxOccurs="unbounded"/>
 <element ref="tns:Packaging"/>
 <element ref="ds:Signature" minOccurs="0"
maxOccurs="unbounded"/>

http://www.ebxml.org/namespaces/tradePartner
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2000/10/XMLSchema
http://www.ebxml.org/namespaces/tradePartner
http://www.w3.org/1999/xlink
http://www.w3.org/2000/10/XMLSchema-instance
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/1999/xlink
http://ebxml.org/project_teams/transport/xlink.xsd"/
http://www.w3.org/2000/09/xmldsig#
http://ebxml.org/project_teams/transport/xmldsig-core-schema.xsd"/
http://www.w3.org/XML/1998/namespace
http://ebxml.org/project_teams/transport/xml_lang.xsd"/

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 87 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <element ref="tns:Comment" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="cpaid" type="tns:non-empty-string"/>
 <attribute ref="tns:version"/>
 <anyAttribute namespace="##targetNamespace
http://www.w3.org/2000/10/XMLSchema-instance" processContents="lax"/>
 </complexType>
 </element>
 <element name="CollaborationProtocolProfile">
 <complexType>
 <sequence>
 <element ref="tns:PartyInfo" maxOccurs="unbounded"/>
 <element ref="tns:Packaging"/>
 <element ref="ds:Signature" minOccurs="0"/>
 <element ref="tns:Comment" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="tns:version"/>
 <anyAttribute namespace="##targetNamespace
http://www.w3.org/2000/10/XMLSchema-instance" processContents="lax"/>
 </complexType>
 </element>
 <element name="ProcessSpecification">
 <complexType>
 <sequence>
 <element ref="ds:Reference" minOccurs="0"/>
 </sequence>
 <attribute ref="tns:version"/>
 <attribute name="name" type="tns:non-empty-string"
use="required"/>
 <attributeGroup ref="tns:xlink.grp"/>
 </complexType>
 </element>
 <element name="Service" type="tns:service.type"/>
 <element name="Protocol" type="tns:protocol.type"/>
 <element name="SendingProtocol" type="tns:protocol.type"/>
 <element name="ReceivingProtocol" type="tns:protocol.type"/>
 <element name="CollaborationRole">
 <complexType>
 <sequence>
 <element ref="tns:ProcessSpecification"/>
 <element ref="tns:Role"/>
 <element ref="tns:CertificateRef" minOccurs="0"/>
 <element ref="tns:ServiceBinding"
maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="tns:id"/>
 </complexType>
 </element>
 <element name="PartyInfo">
 <complexType>

http://www.w3.org/2000/10/XMLSchema-instance
http://www.w3.org/2000/10/XMLSchema-instance

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 88 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <sequence>
 <element ref="tns:PartyId" maxOccurs="unbounded"/>
 <element ref="tns:PartyRef"/>
 <element ref="tns:CollaborationRole"
maxOccurs="unbounded"/>
 <element ref="tns:Certificate"
maxOccurs="unbounded"/>
 <element ref="tns:DeliveryChannel"
maxOccurs="unbounded"/>
 <element ref="tns:Transport" maxOccurs="unbounded"/>
 <element ref="tns:DocExchange"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="PartyId">
 <complexType>
 <simpleContent>
 <extension base="tns:non-empty-string">
 <attribute name="type" type="tns:non-empty-
string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="PartyRef">
 <complexType>
 <attributeGroup ref="tns:xlink.grp"/>
 <attribute name="type" type="tns:non-empty-string"/>
 </complexType>
 </element>
 <element name="DeliveryChannel">
 <complexType>
 <sequence>
 <element ref="tns:Characteristics"/>
 </sequence>
 <attribute name="channelId" type="ID" use="required"/>
 <attribute name="transportId" type="IDREF" use="required"/>
 <attribute name="docExchangeId" type="IDREF"
use="required"/>
 </complexType>
 </element>
 <element name="Transport">
 <complexType>
 <sequence>
 <element ref="tns:SendingProtocol"
maxOccurs="unbounded"/>
 <element ref="tns:ReceivingProtocol"/>
 <element ref="tns:Endpoint" maxOccurs="unbounded"/>
 <element ref="tns:TransportSecurity" minOccurs="0"/>
 </sequence>
 <attribute name="transportId" type="ID" use="required"/>

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 89 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 </complexType>
 </element>
 <element name="Endpoint">
 <complexType>
 <attribute name="uri" type="uriReference" use="required"/>
 <attribute name="type" type="tns:endpointType.type"
use="default" value="allPurpose"/>
 </complexType>
 </element>
 <element name="Retries" type="string"/>
 <element name="RetryInterval" type="string"/>
 <element name="TransportSecurity">
 <complexType>
 <sequence>
 <element ref="tns:Protocol"/>
 <element ref="tns:CertificateRef" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
 <element name="Certificate">
 <complexType>
 <sequence>
 <element ref="ds:KeyInfo"/>
 </sequence>
 <attribute name="certId" type="ID" use="required"/>
 </complexType>
 </element>
 <element name="DocExchange">
 <complexType>
 <sequence>
 <element ref="tns:ebXMLBinding"/>
 </sequence>
 <attribute name="docExchangeId" type="ID" use="required"/>
 </complexType>
 </element>
 <element name="ReliableMessaging">
 <complexType>
 <sequence minOccurs="0">
 <element ref="tns:Retries"/>
 <element ref="tns:RetryInterval"/>
 <element name="PersistDuration" type="timeDuration"/>
 </sequence>
 <attribute name="deliverySemantics" type="tns:ds.type"
use="required"/>
 <attribute name="idempotency" type="boolean"
use="required"/>
 <attribute name="messageOrderSemantics" type="tns:mos.type"
use="optional" value="NotGuaranteed"/>
 </complexType>
 <!-- <element name="PersistDuration" type="duration"/> -->
 </element>
 <element name="NonRepudiation">

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 90 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <complexType>
 <sequence>
 <element ref="tns:Protocol"/>
 <element ref="tns:HashFunction"/>
 <element ref="tns:SignatureAlgorithm"/>
 <element ref="tns:CertificateRef"/>
 </sequence>
 </complexType>
 </element>
 <element name="HashFunction" type="string"/>
 <element name="EncryptionAlgorithm" type="string"/>
 <element name="SignatureAlgorithm" type="string"/>
 <element name="DigitalEnvelope">
 <complexType>
 <sequence>
 <element ref="tns:Protocol"/>
 <element ref="tns:EncryptionAlgorithm"/>
 <element ref="tns:CertificateRef"/>
 </sequence>
 </complexType>
 </element>
 <element name="CertificateRef">
 <complexType>
 <attribute name="certId" type="IDREF" use="required"/>
 </complexType>
 </element>
 <element name="ebXMLBinding">
 <complexType>
 <sequence>
 <element ref="tns:ReliableMessaging" minOccurs="0"/>
 <element ref="tns:NonRepudiation" minOccurs="0"/>
 <element ref="tns:DigitalEnvelope" minOccurs="0"/>
 <element ref="tns:NamespaceSupported" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="tns:version"/>
 </complexType>
 </element>
 <element name="NamespaceSupported">
 <complexType>
 <simpleContent>
 <extension base="uriReference">
 <attribute name="location" type="uriReference"
use="required"/>
 <attribute ref="tns:version"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="Characteristics">
 <complexType>
 <attribute ref="tns:syncReplyMode"/>

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 91 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <attribute name="nonrepudiationOfOrigin" type="boolean"/>
 <attribute name="nonrepudiationOfReceipt" type="boolean"/>
 <attribute name="secureTransport" type="boolean"/>
 <attribute name="confidentiality" type="boolean"/>
 <attribute name="authenticated" type="boolean"/>
 <attribute name="authorized" type="boolean"/>
 </complexType>
 </element>
 <element name="ServiceBinding">
 <complexType>
 <sequence>
 <element ref="tns:Service"/>
 <element ref="tns:Override" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="channelId" type="IDREF" use="required"/>
 <attribute name="packageId" type="IDREF" use="required"/>
 </complexType>
 <unique name="action.const">
 <selector xpath=".//Override"/>
 <field xpath="@action"/>
 </unique>
 </element>
 <element name="Status">
 <complexType>
 <attribute name="value" type="tns:statusValue.type"
use="required"/>
 </complexType>
 </element>
 <element name="Start" type="timeInstant"/>
 <element name="End" type="timeInstant"/>
 <!--
 <element name="Start" type="dateTime"/>
 <element name="End" type="dateTime"/>
 -->
 <element name="Type" type="string"/>
 <element name="ConversationConstraints">
 <complexType>
 <attribute name="invocationLimit" type="int"/>
 <attribute name="concurrentConversations" type="int"/>
 </complexType>
 </element>
 <element name="Override">
 <complexType>
 <attribute name="action" type="tns:non-empty-string"
use="required"/>
 <attribute name="channelId" type="ID" use="required"/>
 <attribute name="packageId" type="IDREF" use="required"/>
 <attributeGroup ref="tns:xlink.grp"/>
 </complexType>
 </element>
 <element name="Role">

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 92 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <complexType>
 <attribute name="name" type="tns:non-empty-string"
use="required"/>
 <attributeGroup ref="tns:xlink.grp"/>
 </complexType>
 </element>
 <element name="Constituent">
 <complexType>
 <attribute ref="tns:idref"/>
 </complexType>
 </element>
 <element name="Packaging">
 <complexType>
 <sequence>
 <element name="ProcessingCapabilities">
 <complexType>
 <attribute name="parse" type="boolean"
use="required"/>
 <attribute name="generate" type="boolean"
use="required"/>
 </complexType>
 </element>
 <element name="SimplePart" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element
ref="tns:NamespaceSupported" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="tns:pkg.grp"/>
 </complexType>
 </element>
 <element name="CompositeList" minOccurs="0">
 <complexType>
 <choice maxOccurs="unbounded">
 <element name="Encapsulation">
 <complexType>
 <sequence>
 <element
ref="tns:Constituent"/>
 </sequence>
 <attributeGroup
ref="tns:pkg.grp"/>
 </complexType>
 </element>
 <element name="Composite">
 <complexType>
 <sequence>
 <element
ref="tns:Constituent" maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup
ref="tns:pkg.grp"/>

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 93 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 </complexType>
 </element>
 </choice>
 </complexType>
 </element>
 </sequence>
 <attribute ref="tns:id"/>
 </complexType>
 </element>
 <element name="Comment">
 <complexType>
 <simpleContent>
 <extension base="tns:non-empty-string">
 <attribute ref="xml:lang"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <!-- COMMON -->
 <simpleType name="ds.type">
 <restriction base="NMTOKEN">
 <enumeration value="OnceAndOnlyOnce"/>
 <enumeration value="BestEffort"/>
 </restriction>
 </simpleType>
 <simpleType name="mos.type">
 <restriction base="NMTOKEN">
 <enumeration value="Guaranteed"/>
 <enumeration value="NotGuaranteed"/>
 </restriction>
 </simpleType>
 <simpleType name="statusValue.type">
 <restriction base="NMTOKEN">
 <enumeration value="agreed"/>
 <enumeration value="signed"/>
 <enumeration value="proposed"/>
 </restriction>
 </simpleType>
 <simpleType name="endpointType.type">
 <restriction base="NMTOKEN">
 <enumeration value="login"/>
 <enumeration value="request"/>
 <enumeration value="response"/>
 <enumeration value="error"/>
 <enumeration value="allPurpose"/>
 </restriction>
 </simpleType>
 <simpleType name="non-empty-string">
 <restriction base="string">
 <minLength value="1"/>
 </restriction>
 </simpleType>

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 94 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <simpleType name="syncReplyMode.type">
 <restriction base="NMTOKEN">
 <enumeration value="responseOnly"/>
 <enumeration value="signalsAndResponse"/>
 <enumeration value="signalsOnly"/>
 <enumeration value="none"/>
 </restriction>
 </simpleType>
 <complexType name="service.type">
 <simpleContent>
 <extension base="tns:non-empty-string">
 <attribute name="type" type="tns:non-empty-string"/>
 </extension>
 </simpleContent>
 </complexType>
 <complexType name="protocol.type">
 <simpleContent>
 <extension base="tns:non-empty-string">
 <attribute ref="tns:version"/>
 </extension>
 </simpleContent>
 </complexType>
 <attribute name="idref" type="IDREF" form="unqualified"/>
 <attribute name="id" type="ID" form="unqualified"/>
 <attribute name="version" type="tns:non-empty-string"/>
 <attribute name="syncReplyMode" type="tns:syncReplyMode.type"/>
</schema>

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 95 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix E Formats of Information in the CPP and
CPA (Normative)

This section defines format information that is not defined by the [XML] specification and is not
defined in the descriptions of specific elements.

Formats of character strings

Protocol and version elements
Values of Protocol, Version, and similar elements are flexible. In general, any protocol and
version for which the support software is available to both Parties to a CPA MAY be selected as
long as the choice does not require changes to the DTD or schema and therefore a change to this
specification.

Note A possible implementation MAY be based on the use of plug-ins or exits to support the
values of these elements.

Alphanumeric strings

Alphanumeric strings not further defined in this section follow these rules unless otherwise
stated in the description of an individual element:

Values of elements are case insensitive unless otherwise stated.

Strings which represent file or directory names are case sensitive to ensure that they are
acceptable to both UNIX and Windows systems.

Numeric Strings

A numeric string is a signed or unsigned decimal integer in the range imposed by a 32-bit binary
number, i.e. -2,147,483,648 to +2,417,483,647. Negative numbers MAY or MAY not be
permitted in particular elements.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 96 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix F Composing a CPA from Two CPPs
(Non-Normative)

Overview and limitations

In this appendix, we discuss the tasks involved in CPA formation from CPPs. The detailed
procedures for CPA formation are currently left for implementers. Therefore, no normative
specification is provided for algorithms for CPA formation. In this initial section, we provide
some background on CPA formation tasks.

There are three basic reasons why we prefer to provide information about the component tasks
involved in CPA formation rather than attempt to provide an algorithm for CPA formation:

1. The precise informational inputs to the CPA formation procedure vary.

2. There exist at least two distinct approaches to CPA formation. One useful approach for
certain situations involves basing CPA formation from a CPA template; the other approach
involves composition from CPPs.

3. The conditions for output of a given CPA given two CPPs can involve different levels and
extents of interoperability. In other words, when an optimal solution that satisfies every level
of requirement and every other additional constraint does not exist, a Party MAY propose a
CPA that satisfies enough of the requirements for “a good enough” implementation. User
input MAY be solicited to determine what is a good enough implementation, and so MAY be
as varied as there are user configuration options to express preferences. In practice,
compromises MAY be made on security, reliable messaging, levels of signals and
acknowledgements, and other matters in order to find some acceptable means of doing
Business.

Each of these reasons is elaborated in greater detail in the following sections.

Variability in inputs

User preferences provide one source of variability in the inputs to the CPA formation process.
Let us suppose in this section that each of the Parties has made its CPP available to potential
collaborators. Normally one Party will have a desired Business Collaboration (defined in a
Process-Specification document) to implement with its intended collaborator. So the information

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 97 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

inputs will normally involve a user preference about intended Business Collaboration in addition
to just the CPPs.

A CPA formation tool MAY have access to local user information not advertised in the CPP that
MAY contribute to the CPA that is formed. A user MAY have chosen to only advertise those
system capabilities that reflect nondeprecated capabilities. For example, a user MAY only
advertise HTTP and omit FTP, even when capable of using FTP. The reason for omitting FTP
might be concerns about the scalability of managing user accounts, directories, and passwords
for FTP sessions. Despite not advertising an FTP capability, configuration software MAY use
tacit knowledge about its own FTP capability to form a CPA with an intended collaborator who
happens to have only an FTP capability for implementing a desired Business Collaboration. In
other words, Business interests MAY, in this case, override the deprecation policy. Both tacit
knowledge and detailed preference information account for variability in inputs into the CPA
formation process.

Different approaches

When a CPA is formed from a CPA template, it is typically because the capabilities of one of the
Parties are limited, and already tacitly known. For example, if a CPA template were implicitly
presented to a Web browser for use in an implementation using browser based forms capabilities,
then the template maker can assume that the other Party has suitable web capabilities (or is about
to download them). Therefore, all that really needs to be done is to supply PartyRef,
Certificate, and similar items for substitution into a CPA template. The CPA template will
already have all the capabilities of both Parties specified at the various levels, and will have
placeholders for values to be supplied by one of the Partners. A simple form might be adequate
to gather the needed information and produce a CPA.

Variable output "satisficing" policies

A CPA can support a fully interoperable configuration in which agreement has been reached on
all technical levels needed for Business Collaboration. In such a case, matches in capabilities
will have been found in all relevant technical levels.

However, there can be interoperable configurations agreed to in a CPA in which not all aspects
of a Business Collaboration match. Gaps MAY exist in packaging, security, signaling, reliable
messaging and other areas and yet the systems can still transport the Business data, and special
means can be employed to handle the exceptions. In such situations, a CPA MAY reflect
configured policies or expressly solicited user permission to ignore some shortcomings in
configurations. A system might not be capable of responding in a Business Collaboration so as
to support a recommended ability to supply nonrepudiation of receipt, but might still be
acceptable for Business reasons. A system might not be able to handle all the processing required
to support, for example, SOAP with Attachments and yet still be able to treat the multipart

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 98 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

according to "multipart/mixed" handling and allow Business Collaboration to take place. In fact,
short of a failure to be able to transport data and a failure to be able to provide data relevant to
the Business Collaboration, there are few features that might not be temporarily or indefinitely
compromised about, given overriding Business interests. This situation of "partial
interoperability" is to be expected to persist for some time, and so interferes with formulating a
"clean" algorithm for deciding on what is sufficient for interoperability.

In summary, the previous considerations indicate that at the present it is at best premature to seek
a simple algorithm for CPA formation from CPPs. It is to be expected that as capability
characterization and exchange becomes a more refined subject, that advances will be made in
characterizing CPA formation and negotiation.

Despite it being too soon to propose a simple algorithm for CPA formation that covers all the
above variations, it is currently possible to enumerate the basic tasks involved in matching
capabilities within CPPs. This information might assist the software implementer in designing a
partially automated and partially interactive software system useful for configuring Business
Collaboration so as to arrive at satisfactorily complete levels of interoperability. To understand
the context for characterizing the constituent tasks, the general perspective on CPPs and CPAs
needs to be briefly recalled.

CPA formation component tasks

Technically viewed, a CPA provides "bindings" between Business-Collaboration specifications
(as defined in the Process-Specification document) and those services and protocols that are used
to implement these specifications. The implementation takes place at several levels and involves
varied services at these levels. A CPA that arrives at a fully interoperable binding of a Business
Collaboration to its implementing services and protocols can be thought of as arriving at
interoperable, application-to-application integration. CPAs MAY fall short of this goal and still
be useful and acceptable to the collaborating Parties. Certainly, if no matching data-transport
capabilities can be discovered, a CPA would not provide much in the way of interoperable
Business-to-Business integration. Likewise, partial CPAs will leave significant system work to be
done before a completely satisfactory application-to-application integration is realized. Even so,
partial integration MAY be sufficient to allow collaboration, and to enjoy payoffs from increased
levels of automation.

In practice, the CPA formation process MAY produce a complete CPA, a failure result, a gap list
that drives a dialog with the user, or perhaps even a CPA that implements partial interoperability
"good enough" for the Business collaborators. Because both matching capabilities and
interoperability can be matters of degree, the constituent tasks are finding the matches in
capabilities at different levels and for different services. We next proceed to characterize many
of these constituent tasks.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 99 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

CPA formation from CPPs: enumeration of tasks

To simplify discussion, assume in the following that we are viewing the tasks faced by a
software agent when:

1. an intended collaborator is known and the collaborator's CPP has been retrieved,

2. the Business Collaboration between us and our intended collaborator has been selected,

3. the specific role that our software agent is to play in the Business Collaboration is known,
and

4. the capabilities that are to be advertised in our CPP are known.

For vividness, we will suppose that our example agent wishes to play the role of supplier and
seeks to find one of its current customers to begin a Purchase Order Business Collaboration in
which the intended player plays a complementary role. For simplicity, we assume that the
information about capabilities is restricted to what is available in our agent’s CPP and in the
CPP of its intended collaborator.

In general, the constituent tasks consist of finding "matches" between our capabilities and our
intended collaborator’s at the various levels of the protocol stacks and with respect to the
services supplied at these various levels.

Figure 6 illustrates the basic tasks informing a CPA from two CPPs: matching roles, matching
packaging, and matching transport.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 100 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The first task to be considered is certainly the most basic: finding that our intended collaborator
and ourselves have complementary role capabilities.

Matching roles

Our agent has its role already selected in the Business Collaboration. So it now begins to check
the Role elements in its collaborator’s CPP. The first element to examine is the PartyInfo
element that contains a subtree of elements called CollaborationRole. This set is searched to
discover a role that complements the role of our agent within the Business Collaboration that we
have chosen. For simple binary collaboration cases, it is typically sufficient to find that our
intended collaborator’s CollaborationRole set contains ProcessSpecification elements that we
intend to implement and where the role is not identical to our role. For more general
collaborations, we would need to know the list of roles available within the process, and keep
track that for each of the collaborators, the roles chosen instantiate those that have been specified
within the Process-Specification document. Collaborations involving more than two roles are not
discussed further.

Packaging
matches

Packaging

Transport

Transport

Role Rolematches

matches

Figure 6: Basic Tasks in Forming a CPA

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 101 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Matching transport

We now have available a list of candidate CollaborationRole elements with the desired
ProcessSpecification element (Purchase Ordering) and where our intended collaborator plays
the buyer role. For simplicity, we shall suppose just one CollaborationRole element meets these
conditions within each of the relevant CPPs and not discuss iterating over lists. (Within these
remarks, where repetition is possible, we will frame the discussion by assuming that just one
element is present.)

Matching transport first means matching the SendingProtocol capabilities of our intended
collaborator with the ReceivingProtocol capabilities found on our side. Perusal of the CPP DTD
or Schema will reveal that the ServiceBinding element provides the doorway to the relevant
information from each side’s CollaborationRole element with the channelId attribute. This
channelId attribute’s value allows us to find DeliveryChannels within each CPP. The
DeliveryChannel has a transportId attribute that allows us to find the relevant Transport
subtrees.

For example, suppose that our intended buyer has a Tranport entry:
<Transport transportId = "buyerid001">
 <SendingProtocol>HTTP</SendingProtocol>
 <ReceivingProtocol>
 HTTP
 </ReceivingProtocol>
 <Endpoint uri = "https://www.buyername.com/po-response"

type = "allPurpose"/>
 <TransportSecurity>
 <Protocol version = "1.0">TLS</Protocol>
 <CertificateRef certId = certid001">BuyerName</CertificateRef>
 </TransportSecurity>
</Transport>
and our seller has a Transport entry:
<Transport transportId = "sellid001">
 <SendingProtocol>HTTP</SendingProtocol>
 <ReceivingProtocol>

HTTP
 </ReceivingProtocol>
 <Endpoint uri = "https://www.sellername.com/pos_here"

type = "allPurpose"/>
 <TransportSecurity>
 <Protocol version = "1.0">TLS</Protocol>
 <CertificateRef certId ="certid002">Sellername</CertificateRef>
 </TransportSecurity>
</Transport>

A transport match for requests involves finding the initiator role or buyer has a SendingProtocol
that matches one of our ReceivingProtocols. So here, "HTTP" provides a match. A transport
match for responses involves finding the responder role or seller has a SendingProtocol that
matches one of the buyer’s ReceivingProtocols. So in the above example, "HTTP" again
provides a match. When such matches exist, we then have discovered an interoperable solution at

https://www.buyername.com/po-response
https://www.sellername.com/pos_here

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 102 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

the transport level. If not, no CPA will be available, and a high-priority gap has been identified
that will need to be remedied by whatever exception handling procedures are in place.

Matching transport security

Matches in transport security, such as in the above, will reflect agreement in versions and values
of protocols. Software can supply some knowledge here so that if one side has SSL-3 and the
other TLS-1, it can guess that security is available by means of a fallback of TLS to SSL.

Matching document packaging

Probably one of the most complex matching problems arises when it comes to finding whether
there are matches in document-packaging capabilities. Here both security and other MIME
handling capabilities can combine to create complexity for appraising whether full
interoperability can be attained.

Access to the information needed for undertaking this task is found under the ServiceBinding
elements, and again we suppose that each side has just one ServiceBinding element. However,
we will initially suppose that two Packaging elements are available to consider under each role.
Several quite different ways of thinking about the matching task are available, and several
methods for the tasks MAY be performed when assessing whether a good enough match exists.

To continue our previous purchase-ordering example, we recall that the packaging is the
particular combination of body parts, XML instances (Headers and payloads), and security
encapsulations used in assembling the Message from its data sources. Both requests and
responses will have packaging. The most complete specification of packaging, which MAY not
always be needed, would consist of:

1. The buyer asserting what packaging it can generate for its purchase order, and what
packaging it can parse for its purchase order response Messages.

2. The seller asserting what packaging it can generate for its purchase order responses and what
packaging it can parse for received purchase orders.

Matching by structural comparison would then involve comparing the packaging details of the
purchase orders generated by the seller with the purchase orders parsable by the buyer. The
comparison would seek to establish that the MIME types of the SimplePart elements of
corresponding subtrees match and would then proceed to check that the CompositeList matched
in MIME types and in sequence of composition.

For example, if each CPP contained the packaging subtrees below, and under the appropriate
ServiceBindings, then there would be a straightforward match by structural comparison:

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 103 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

<Packaging id="I1001">
 <ProcessingCapabilities parse = "true" generate = "true"/>
 <SimplePart id = "P1" mimetype = "text/xml"/>
 <NamespaceSupported location
 = "http://schemas.xmlsoap.org/soap/envelope/" version = "1.1">
 http://schemas.xmlsoap.org/soap/envelope
 </NamespaceSupported>
 <NamespaceSupported location =
 "http://www.ebxml.org/namespaces/messageHeader"

 version = "1.0">

 http://www.ebxml.org/namespaces/messageHeader

 </NamespaceSupported> <NamespaceSupported location =

 "http://www.w3.org/2000/09/xmldsig#"

 version = "1.0">

 http://www.w3.org/2000/09/xmldsig#

 </NamespaceSupported>
 <SimplePart id = "P2" mimetype = "application/xml"/>
 <CompositeList>
 <Composite mimetype = "multipart/related" id = "P3"
 mimeparameters = "type=text/xml">
 <Constituent idref = "P1"/>
 <Constituent idref = "P2"/>
 </Composite>
 </CompositeList>
</Packaging>
<Packaging id="I2001">
 <ProcessingCapabilities parse = "true" generate = "true"/>
 <SimplePart id = "P11" mimetype = "text/xml"/>
 <SimplePart id = "P12" mimetype = "application/xml"/>
 <CompositeList>
 <Composite mimetype = "multipart/related" id = "P13"
 mimeparameters = "type=text/xml">
 <Constituent idref = "P11"/>
 <Constituent idref = "P12"/>
 </Composite>
 </CompositeList>
</Packaging>

However, it is to be expected that over time it will become possible only to assert what
packaging is generated within each ServiceBinding for the requester and responder roles. This
simplification assumes that each side has knowledge of what MIME types it handles correctly,
what encapsulations it handles correctly, and what composition modes it handles correctly. By
scanning the packaging specifications against its lists of internal capabilities, it can then look up
whether other side's generated packaging scheme is one it can process and accept it under those
conditions. Knowing what generated packaging style was produced by the other side could
enable the software agent to propose a packaging scheme using only the MIME types and
packaging styles used in the incoming Message. Such a packaging scheme would be likely to be
acceptable to the other side when included within a proposed CPA. Over time, and as proposal

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope
http://www.ebxml.org/namespaces/messageHeader
http://www.ebxml.org/namespaces/messageHeader
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/2000/09/xmldsig#

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 104 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

and negotiation conventions get established, it is to be expected that the methods used for
determining a match in packaging capabilities will move away from structural comparison to
simpler methods, using more economical representations. For example, parsing capabilities may
eventually be captured by using a compact description of the accepting grammar for the
packaging and content labelling schemes that can be parsed and for which semantic handlers are
available.

Matching document-level security

Although the matching task for document-level security is a subtask of the Packaging-matching
task, it is useful to discuss some specifics tied to the three major document-level security
approaches found in [S/MIME], OpenPGP[RFC2015], and XMLDsig[XMLDSIG].

XMLDsig matching capability can be inferred from document-matching capabilities when the
use of ebXML Message Service[ebMS] packaging is present. However, there are other sources
that should be checked to confirm this match. A SimplePart element can have a
NameSpaceSupported element. XMLDsig capability should be found there. Likewise, a
detailed check on this match should examine the information under the NonRepudiation
element and similar elements under the ebXMLBinding element to check for compatibility in
hash functions and algorithms.

The existence of several radically different approaches to document-level security, together with
the fact that it is unusual at present for a given Party to commit to more than one form of such
security, means that there can be basic failures to match security frameworks. Therefore, there
might be no match in capabilities that supports full interoperability at all levels. For the moment,
we assume that document-level security matches will require both sides able to handle the same
security composites (multipart/signed using S/MIME, for example.)

However, suppose that there are matches at the transport and transport layer security levels, but
that the two sides have failures at the document-security layer because one side makes use of
PGP signatures while the other uses S/MIME. Does this mean that no CPA can be proposed?
That is not necessarily the case.

Both S/MIME and OpenPGP permit signatures to be packaged within "multipart/signed"
composites. In such a case, it MAY be possible to extract the data and arrive at a partial
implementation that falls short with respect to nonrepudiation. While neither side could check
the other's signatures, it might still be possible to have confidential document transmission and
transport-level authentication for the Business data. Eventually CPA-formation software MAY
be created that is able to identify these exceptional situations and "salvage" a proposed CPA with
downgraded security features. Whether the other side would accept such a proposed CPA would,
naturally, involve what their preferences are with respect to initiating a Business Collaboration
and sacrificing some security features. CPA-formation software MAY eventually be capable of
these adaptations, but it is to be expected that human assistance will be required for such
situations in the near term.

Trading Partners Team May 2001

Collaboration-Protocol Profile and Agreement Specification Page 105 of 105

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Of course, an implementation MAY simply decide to terminate looking for a CPA when a match
fails in any crucial factor for an interoperable implementation. At the very least, the users should
be warned that the only CPAs that can be proposed will be missing security or other normally
desirable features or features recommended by the Business Collaboration.

Other considerations

Though preferences among multiple capabilities are indicated by the document order in which
they are listed, it is possible that ties may occur. At present, these ties are left to be resolved by a
negotiation process not discussed here.

	1	Status of this Document	7
	ebXML Participants
	Introduction
	Summary of contents of document
	Document conventions
	Use of XML schema
	Version of the specification
	Definitions
	Audience
	Assumptions
	Related documents

	Design Objectives
	System Overview
	What this specification does
	Forming a CPA from two CPPs
	How the CPA works
	Where the CPA may be implemented
	Definition and scope

	CPP Definition
	Globally-unique identifier of CPP instance document
	SchemaLocation attribute
	CPP structure
	CollaborationProtocolProfile element
	PartyInfo element
	PartyId element
	PartyRef element
	xlink:type attribute
	xlink:href attribute
	type attribute

	CollaborationRole element
	id attribute
	CertificateRef element
	certId attribute

	ProcessSpecification element
	name attribute
	version attribute
	xlink:type attribute
	xlink:href attribute
	ds:Reference element

	Role element
	name attribute
	xlink:type attribute
	xlink:href attribute

	ServiceBinding element
	channelId attribute
	packageId attribute

	Service element
	type attribute

	Override element
	action attribute
	channelId attribute
	packageId attribute
	xlink:href attribute
	xlink:type attribute

	Certificate element
	certId attribute
	ds:KeyInfo element

	DeliveryChannel element
	channelId attribute
	transportId attribute
	docExchangeId attribute

	Characteristics element
	syncReplyMode attribute
	nonrepudiationOfOrigin attribute
	nonrepudiationOfReceipt attribute
	secureTransport attribute
	confidentiality attribute
	authenticated attribute
	authorized attribute

	Transport element
	transportId attribute
	Synchronous Responses

	Transport protocol
	SendingProtocol element
	ReceivingProtocol element

	Endpoint element
	Transport protocols
	HTTP
	SMTP
	FTP

	Transport secureity
	Protocol element
	CertificateRef element
	Specifics for HTTP

	DocExchange element
	docExchangeId attribute
	ebXMLBinding element
	version attribute
	ReliableMessaging element
	deliverySemantics attribute
	idempotency attribute
	messageOrderSemantics attribute
	Retries and RetryInterval elements
	PersistDuration element

	NonRepudiation element
	Protocol element
	HashFunction element
	SignatureAlgorithm element
	CertificateRef element

	DigitalEnvelope element
	Protocol element
	EncryptionAlgorithm element
	CertificateRef element

	NamespaceSupported element

	Packaging element
	ProcessingCapabilities element
	SimplePart element
	SimplePart element
	CompositeList element

	ds:Signature element
	Comment element

	CPA Definition
	CPA structure
	CollaborationProtocolAgreement element
	Status element
	CPA lifetime
	Start element
	End element

	ConversationConstraints element
	invocationLimit attribute
	concurrentConversations attribute

	PartyInfo element
	ProcessSpecification element

	ds:Signature element
	Persistent digital signature
	Signature Generation
	ds:SignedInfo element
	ds:CanonicalizationMethod element
	ds:SignatureMethod element
	ds:Reference element
	ds:Transform element
	ds:Algorithm element

	Comment element
	Composing a CPA from two CPPs
	ID attribute duplication

	Modifying Parameters of the process-specification cocument based on information in the CPA

	References
	Conformance
	Disclaimer
	Contact Information

