

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

Message Service Specification 1

ebXML Transport, Routing & Packaging 2

Version 1.0 3

 11 May 2001 4

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 2 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

1 Status of this Document 5

This document specifies an ebXML DRAFT for the eBusiness community. Distribution of this 6
document is unlimited. 7

The document formatting is based on the Internet Society’s Standard RFC format converted to 8
Microsoft Word 2000 format. 9

Note: implementers of this specification should consult the ebXML web site for current status and revisions to 10
the specification (http://www.ebxml.org). 11

 12

Specification 13

This Technical Specification document has been approved by the ebXML Plenary. 14

This material fulfils requirements of the ebXML Requirements document. 15

 16

This version 17

http://www.ebxml.org/specs/ebMS.pdf 18

Latest version 19

http://www.ebxml.org/specs/ebMS.pdf 20

 21

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 3 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

2 ebXML Participants 22

The authors wish to acknowledge the support of the members of the Transport, Routing and Packaging 23
Project Team who contributed ideas to this specification by the group’s discussion eMail list, on 24
conference calls and during face-to-face meeting. 25

 26

 27
Ralph Berwanger – bTrade.com 28
Jonathan Borden – Author of XMTP 29
Jon Bosak – Sun Microsystems 30
Marc Breissinger – webMethods 31
Dick Brooks – Group 8760 32
Doug Bunting – Ariba 33
David Burdett – Commerce One 34
David Craft – VerticalNet 35
Philippe De Smedt – Viquity 36
Lawrence Ding – WorldSpan 37
Rik Drummond – Drummond Group 38
Andrew Eisenberg – Progress Software 39
Colleen Evans –Progress / Sonic Software 40
David Fischer – Drummond Group 41
Christopher Ferris – Sun Microsystems 42
Robert Fox – Softshare 43
Brian Gibb – Sterling Commerce 44
Maryann Hondo – IBM 45
Jim Hughes – Fujitsu 46
John Ibbotson – IBM 47
Ian Jones – British Telecommunications 48

Ravi Kacker – Kraft Foods 49
Henry Lowe – OMG 50
Jim McCarthy – webXI 51
Bob Miller – GXS 52
Dale Moberg – Sterling Commerce 53
Joel Munter – Intel 54
Shumpei Nakagaki – NEC Corporation 55
Farrukh Najmi – Sun Microsystems 56
Akira Ochi – Fujitsu 57
Martin Sachs, IBM 58
Saikat Saha – Commerce One 59
Masayoshi Shimamura – Fujitsu 60
Prakash Sinha – Netfish Technologies 61
Rich Salz – Zolera Systems 62
Tae Joon Song – eSum Technologies, Inc. 63
Kathy Spector – Extricity 64
Nikola Stojanovic – Encoda Systems, Inc. 65
David Turner - Microsoft 66
Gordon Van Huizen – Progress Software 67
Martha Warfelt – DaimlerChrysler Corporation 68
Prasad Yendluri – Web Methods 69

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 4 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

3 Table of Contents 70

1 Status of this Document ..2 71

2 ebXML Participants ..2 72

3 Table of Contents ...4 73

4 Introduction..8 74
4.1 Summary of Contents of Document..8 75
4.2 Document Conventions ...8 76
4.3 Audience..9 77
4.4 Caveats and Assumptions ...9 78
4.5 Related Documents ..9 79

5 Design Objectives ..10 80

6 System Overview ...11 81
6.1 Message Service Purpose...11 82
6.2 Message Service Overview ...11 83
6.3 Use of version attribute ...12 84

7 Packaging Specification..13 85
7.1 Introduction ..13 86

7.1.1 SOAP Structural Conformance..14 87
7.2 Message Package ..14 88
7.3 Header Container ...14 89

7.3.1 Content-Type..14 90
7.3.2 Header Container Example..15 91

7.4 Payload Container ..15 92
7.4.1 Example of a Payload Container...15 93

7.5 Additional MIME Parameters ...15 94
7.6 Reporting MIME Errors..15 95

8 ebXML SOAP Extensions ...16 96
8.1 XML Prolog ..16 97

8.1.1 XML Declaration..16 98
8.1.2 Encoding Declaration..16 99

8.2 ebXML SOAP Envelope extensions ...16 100
8.2.1 Namespace pseudo attribute...16 101
8.2.2 xsi:schemaLocation attribute ...17 102
8.2.3 ebXML SOAP Extensions ..18 103
8.2.4 #wildcard element content..18 104
8.2.5 id attributes ...18 105

8.3 SOAP Header element ..18 106
8.4 MessageHeader element ..19 107

8.4.1 From and To elements..19 108
8.4.2 CPAId element...20 109
8.4.3 ConversationId element..20 110
8.4.4 Service element...21 111
8.4.5 Action element..21 112
8.4.6 MessageData element..21 113
8.4.7 QualityOfServiceInfo element..22 114

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 5 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.4.8 SequenceNumber element..23 115
8.4.9 Description element...24 116
8.4.10 version attribute..24 117
8.4.11 SOAP mustUnderstand attribute...24 118
8.4.12 MessageHeader Sample..25 119

8.5 TraceHeaderList element ..25 120
8.5.1 SOAP actor attribute ...25 121
8.5.2 TraceHeader element...25 122
8.5.3 Single Hop TraceHeader Sample ...27 123
8.5.4 Multi-hop TraceHeader Sample..28 124

8.6 Acknowledgment Element ...29 125
8.6.1 Timestamp element...29 126
8.6.2 From element...29 127
8.6.3 ds:Reference element...30 128
8.6.4 SOAP actor attribute ...30 129
8.6.5 Acknowledgement Sample...30 130

8.7 Via element ..30 131
8.7.1 SOAP mustUnderstand attribute...30 132
8.7.2 SOAP actor attribute ...31 133
8.7.3 syncReply attribute ..31 134
8.7.4 reliableMessagingMethod attribute...31 135
8.7.5 ackRequested attribute...31 136
8.7.6 CPAId element...31 137
8.7.7 Service and Action elements ...31 138
8.7.8 Via element Sample ..32 139

8.8 ErrorList element ..32 140
8.8.1 id attribute ...32 141
8.8.2 highestSeverity attribute ...32 142
8.8.3 Error element..32 143
8.8.4 ErrorList Sample ..33 144
8.8.5 errorCode values ...33 145

8.9 Signature element...34 146
8.10 SOAP Body Extensions...35 147
8.11 Manifest element ..35 148

8.11.1 id attribute ...35 149
8.11.2 #wildcard element..35 150
8.11.3 Reference element..35 151
8.11.4 References included in a Manifest..36 152
8.11.5 Manifest Validation ..36 153
8.11.6 Manifest Sample ..37 154

8.12 StatusRequest Element ...37 155
8.12.1 StatusRequest Sample...37 156

8.13 StatusResponse element ..37 157
8.13.1 RefToMessageId element..37 158
8.13.2 Timestamp element...37 159
8.13.3 messageStatus attribute...37 160
8.13.4 StatusResponse Sample..38 161

8.14 DeliveryReceipt element ...38 162
8.14.1 Timestamp element...38 163
8.14.2 ds:Reference element...38 164
8.14.3 DeliveryReceipt Sam ple...38 165

8.15 Combining ebXML SOAP Extension Elements..39 166
8.15.1 Manifest element..39 167
8.15.2 MessageHeader element...39 168
8.15.3 TraceHeaderList element...39 169
8.15.4 StatusRequest element..39 170
8.15.5 StatusResponse element...39 171
8.15.6 ErrorList element..39 172

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 6 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.15.7 Acknowledgment element..39 173
8.15.8 Delivery Receipt element..39 174
8.15.9 Signature element..39 175
8.15.10 Via element...39 176

9 Message Service Handler Services ..40 177
9.1 Message Status Request Service ..40 178

9.1.1 Message Status Request Message..40 179
9.1.2 Message Status Response Message...40 180
9.1.3 Security Considerations..41 181

9.2 Message Service Handler Ping Service..41 182
9.2.1 Message Service Handler Ping Message..41 183
9.2.2 Message Service Handler Pong Message..41 184
9.2.3 Security Considerations..42 185

10 Reliable Messaging..43 186
10.1.1 Persistent Storage and System Failure...43 187
10.1.2 Methods of Implementing Reliable Messaging...43 188

10.2 Reliable Messaging Parameters ..43 189
10.2.1 Delivery Semantics..43 190
10.2.2 mshTimeAccuracy...44 191
10.2.3 TimeToLive ...44 192
10.2.4 reliableMessagingMethod..44 193
10.2.5 ackRequested..44 194
10.2.6 retries ...44 195
10.2.7 retryInterval...45 196
10.2.8 persistDuration...45 197

10.3 ebXML Reliable Messaging Protocol ..45 198
10.3.1 Sending Message Behavior...45 199
10.3.2 Receiving Message Behavior..46 200
10.3.3 Generating an Acknowledgement Message...46 201
10.3.4 Resending Lost Messages and Duplicate Filtering..47 202
10.3.5 Duplicate Message Handling...48 203

10.4 Failed Message Delivery ...49 204

11 Error Reporting and Handling ...50 205
11.1 Definitions ..50 206
11.2 Types of Errors ...50 207
11.3 When to generate Error Messages ...50 208

11.3.1 Security Considerations..51 209
11.4 Identifying the Error Reporting Location..51 210
11.5 Service and Action Element Values..51 211

12 Security..52 212
12.1 Security and Management ...52 213
12.2 Collaboration Protocol Agreement..52 214
12.3 Countermeasure Technologies ..52 215

12.3.1 Persistent Digital Signature..52 216
12.3.2 Persistent Signed Receipt..54 217
12.3.3 Non-persistent Authentication...54 218
12.3.4 Non-persistent Integrity...55 219
12.3.5 Persistent Confidentiality..55 220
12.3.6 Non-persistent Confidentiality..55 221
12.3.7 Persistent Authorization..55 222
12.3.8 Non-persistent Authorization..55 223
12.3.9 Trusted Timestamp..55 224
12.3.10 Supported Security Services..55 225

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 7 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

13 References ..58 226
13.1 Normative References ..58 227
13.2 Non-Normative References ...59 228

14 Contact Information..60 229

Appendix A ebXML SOAP Extension Elements Schema62 230

Appendix B Communication Protocol Bindings...68 231
B.1 Introduction ..68 232
B.2 HTTP ...68 233
B.2.1 Minimum level of HTTP protocol ..68 234
B.2.2 Sending ebXML Service messages over HTTP ...68 235
B.2.3 HTTP Response Codes ..70 236
B.2.4 SOAP Error conditions and Synchronous Exchanges ..70 237
B.2.5 Synchronous vs. Asynchronous ...70 238
B.2.6 Access Control ...70 239
B.2.7 Confidentiality and Communication Protocol Level Security71 240
B.3 SMTP ..71 241
B.3.1 Minimum level of supported protocols ..71 242
B.3.2 Sending ebXML Messages over SMTP ..72 243
B.3.3 Response Messages ..73 244
B.3.4 Access Control ...74 245
B.3.5 Confidentiality and Communication Protocol Level Security74 246
B.3.6 SMTP Model ..74 247
B.4 Communication Errors during Reliable Messaging ..74 248

Disclaimer..75 249

Copyright Statement ..75 250

251

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 8 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

4 Introduction 251

This specification is one of a series of specifications that realize the vision of creating a single global 252
electronic marketplace where enterprises of any size and in any geographical location can meet and 253
conduct business with each other through the exchange of XML based messages. The set of 254
specifications enable a modular, yet complete electronic business framework. 255

This specification focuses on defining a communications-protocol neutral method for exchanging the 256
electronic business messages. It defines specific enveloping constructs that support reliable, secure 257
delivery of business information. Furthermore, the specification defines a flexible enveloping technique 258
that permits ebXML-compliant messages to contain payloads of any format type. This versatility ensures 259
that legacy electronic business systems employing traditional syntaxes (i.e. UN/EDIFACT, ASC X12, or 260
HL7) can leverage the advantages of the ebXML infrastructure along with users of emerging technologies 261

4.1 Summary of Contents of Document 262

This specification defines the ebXML Message Service Protocol that enables the secure and reliable 263
exchange of messages between two parties. It includes descriptions of: 264
• the ebXML Message structure used to package payload data for transport between parties 265
• the behavior of the Message Service Handler that sends and receives those messages over a data 266

communication protocol. 267

This specification is independent of both the payload and the communication protocol used, although 268
Appendices to this specification describe how to use this specification with [HTTP] and [SMTP]. 269

This specification is organized around the following topics: 270
• Packaging Specification – A description of how to package an ebXML Message and its associated 271

parts into a form that can sent using a communications protocol such as HTTP or SMTP (section 7) 272
• ebXML SOAP Extensions – A specification of the structure and composition of the information 273

necessary for an ebXML Message Service to successfully generate or process an ebXML Message 274
(section 8) 275

• Message Service Handler Services – A description of two services that enable one service to 276
discover the status of another Message Service Handler (MSH) or an individual message (section 9) 277

• Reliable Messaging – The Reliable Messaging function defines an interoperable protocol such that 278
any two Message Service implementations can “reliably” exchange messages that are sent using 279
“reliable messaging” once-and-only-once delivery semantics (section 10) 280

• Error Handling – This section describes how one ebXML Message Service reports errors it detects 281
to another ebXML Message Service Handler (section 11) 282

• Security – This provides a specification of the security semantics for ebXML Messages (section12). 283

Appendices to this specification cover the following: 284
• Appendix A Schema – This normative appendix contains [XMLSchema] for the ebXML SOAP 285

Header and Body. 286
• Appendix B Communication Protocol Envelope Mappings – This normative appendix describes 287

how to transport ebXML Message Service compliant messages over [HTTP] and [SMTP] 288

4.2 Document Conventions 289

Terms in Italics are defined in the ebXML Glossary of Terms [ebGLOSS]. Terms listed in Bold Italics 290
represent the element and/or attribute content. Terms listed in Courier font relate to MIME 291
components. Notes are listed in Times New Roman font and are informative (non-normative). 292

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 9 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, 293
RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as 294
described in [RFC2119] as quoted here: 295

Note: the force of these words is modified by the requirement level of the document in which they are 296
used. 297
• MUST: This word, or the terms “REQUIRED” or “SHALL”, means that the definition is an absolute 298

requirement of the specification. 299
• MUST NOT: This phrase, or the phrase “SHALL NOT”, means that the definition is an absolute 300

prohibition of the specification. 301
• SHOULD: This word, or the adjective “RECOMMENDED”, means that there may exist valid reasons 302

in particular circumstances to ignore a particular item, but the full implications must be understood 303
and carefully weighed before choosing a different course. 304

• SHOULD NOT: This phrase, or the phrase “NOT RECOMMENDED”, means that there may exist 305
valid reasons in particular circumstances when the particular behavior is acceptable or even useful, 306
but the full implications should be understood and the case carefully weighed before implementing 307
any behavior described with this label. 308

• MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may 309
choose to include the item because a particular marketplace requires it or because the vendor feels 310
that it enhances the product while another vendor may omit the same item. An implementation which 311
does not include a particular option MUST be prepared to interoperate with another implementation 312
which does include the option, though perhaps with reduced functionality. In the same vein an 313
implementation which does include a particular option MUST be prepared to interoperate with another 314
implementation which does not include the option (except, of course, for the feature the option 315
provides.) 316

4.3 Audience 317

The target audience for this specification is the community of software developers who will implement the 318
ebXML Message Service. 319

4.4 Caveats and Assumptions 320

It is assumed that the reader has an understanding of transport protocols, MIME, XML, SOAP, SOAP 321
Messages with Attachments and security technologies. 322

All examples are to be considered non-normative. If inconsistencies exist between the specification and 323
the examples, the specification supersedes the examples. 324

4.5 Related Documents 325

The following set of related specifications are developed independent of this specification as part of the 326
ebXML initiative: 327
• ebXML Message Services Requirements Specification[ebMSREQ] – defines the requirements of 328

these Message Services 329
• ebXML Technical Architecture Specification[ebTA] – defines the overall technical architecture for 330

ebXML 331
• ebXML Technical Architecture Security Specification[ebTASEC] – defines the security 332

mechanisms necessary to negate anticipated, selected threats 333
• ebXML Collaboration Protocol Profile and Agreement Specification[ebCPP] - defines how one 334

party can discover and/or agree upon the information that party needs to know about another party 335
prior to sending them a message that complies with this specification 336

• ebXML Registry/Repository Services Specification[ebRS] – defines a registry service for the 337
ebXML environment 338

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 10 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

5 Design Objectives 339

The design objectives of this specification are to define a wire format and protocol for a Message Service 340
to support XML-based electronic business between small, medium, and large enterprises. While the 341
specification has been primarily designed to support XML-based electronic business, the authors of the 342
specification have made every effort to ensure that the exchange of non-XML business information is fully 343
supported. This specification is intended to enable a low cost solution, while preserving a vendor's ability 344
to add unique value through added robustness and superior performance. It is the intention of the 345
Transport, Routing and Packaging Project Team to keep this specification as straightforward and succinct 346
as possible. 347

Every effort has been made to ensure that the REQUIRED functionality described in this specification has 348
been prototyped by the ebXML Proof of Concept Team in order to ensure the clarity, accuracy and 349
efficiency of this specification. 350

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 11 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

6 System Overview 351

This document defines the ebXML Message Service component of the ebXML infrastructure. The ebXML 352
Message Service defines the message enveloping and header document schema used to transfer ebXML 353
Messages over a communication protocol such as HTTP, SMTP, etc. This document provides sufficient 354
detail to develop software for the packaging, exchange and processing of ebXML Messages. 355

The ebXML Message Service is defined as a set of layered extensions to the base Simple Object Access 356
Protocol [SOAP] and SOAP Messages with Attachments [SOAPATTACH] specifications that have a 357
broad industry acceptance, and that serve as the foundation of the work of the W3C XML Protocol Core 358
working group. The ebXML Message Service provides the security and reliability features necessary to 359
support international electronic business that are not provided in the SOAP and SOAP Messages with 360
Attachments specifications. 361

6.1 Message Service Purpose 362

The ebXML Message Service defines robust, yet basic, functionality to transfer messages between 363
trading parties using various existing communication protocols. The ebXML Message Service is 364
structured to allow for messaging reliability, persistence, security and extensibility. 365

The ebXML Message Service is provided for environments requiring a robust, yet low cost solution to 366
enable electronic business. It is one of the four "infrastructure" components of ebXML. The other three 367
are: Registry/Repository [ebRS], Collaboration Protocol Profile/Agreement [ebCPP] and ebXML 368
Technical Architecture [ebTA]. 369

6.2 Message Service Overview 370

The ebXML Message Service may be conceptually broken down into following three parts: (1) an abstract 371
Service Interface, (2) functions provided by the Message Service Handler (MSH), and (3) the mapping to 372
underlying transport service(s). 373

The following diagram depicts a logical arrangement of the functional modules that exist within one 374
possible implementation of the ebXML Message Services architecture. These modules are arranged in a 375
manner to indicate their inter-relationships and dependencies. 376
• Header Processing - the creation of the SOAP Header elements for the ebXML Message uses input 377

from the application, passed through the Message Service Interface, information from the 378
Collaboration Protocol Agreement (CPA defined in [ebCPP]) that governs the message, and 379
generated information such as digital signature, timestamps and unique identifiers. 380

• Header Parsing - extracting or transforming information from a received SOAP Header or Body 381
element into a form that is suitable for processing by the MSH implementation. 382

• Security Services - digital signature creation and verification, authentication and authorization. 383
These services MAY be used by other components of the MSH including the Header Processing and 384
Header Parsing components. 385

• Reliable Messaging Services - handles the delivery and acknowledgment of ebXML Messages sent 386
with deliverySemantics of OnceAndOnlyOnce. The service includes handling for persistence, 387
retry, error notification and acknowledgment of messages requiring reliable delivery. 388

• Message Packaging - the final enveloping of an ebXML Message (SOAP Header or Body elements 389
and payload) into its SOAP Messages with Attachments [SOAPATTACH] container. 390

• Error Handling - this component handles the reporting of errors encountered during MSH or 391
Application processing of a message. 392

• Message Service Interface - an abstract service interface that applications use to interact with the 393
MSH to send and receive messages and which the MSH uses to interface with applications that 394
handle received messages. 395

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 12 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

 396
Figure 6-1 Typical Relationship between ebXML Message Service Handler Components 397

6.3 Use of version attribute 398

Each ebXML SOAP extension element has its own version attribute, with a value that matches the 399
ebXML Message Service Specification version level, to allow for elements to change in semantic meaning 400
individually without changing the entire specification. 401

Use of multiple versions of ebXML SOAP extensions elements within the same ebXML SOAP document, 402
while supported, should only be used in extreme cases where it becomes necessary to semantically 403
change an element, which cannot wait for the next ebXML Message Service Specification version 404
release. 405

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 13 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

7 Packaging Specification 406

7.1 Introduction 407

An ebXML Message is a communication protocol independent MIME/Multipart message envelope, 408
structured in compliance with the SOAP Messages with Attachments [SOAPATTACH] specification, 409
referred to as a Message Package. 410

There are two logical MIME parts within the Message Package: 411
• A MIME part, referred to as the Header Container, containing one SOAP 1.1 compliant message. 412

This XML document is referred to as a SOAP Message for the remainder of this specification, 413
• zero or more MIME parts, referred to as Payload Containers, containing application level payloads. 414

The SOAP Message is an XML document that consists of the SOAP Envelope element. This is the root 415
element of the XML document representing the SOAP Message. The SOAP Envelope element consists 416
of the following: 417
• One SOAP Header element. This is a generic mechanism for adding features to a SOAP Message, 418

including ebXML specific header elements. 419
• One SOAP Body element. This is a container for message service handler control data and 420

information related to the payload parts of the message. 421

The general structure and composition of an ebXML Message is described in the following figure. 422
 423

 424
Figure 7-1 ebXML Message Structure 425

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 14 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

7.1.1 SOAP Structural Conformance 426

ebXML Message packaging SHALL comply with the following specifications: 427

• Simple Object Access Protocol (SOAP) 1.1 [SOAP] 428

• SOAP Messages with Attachments [SOAPATTACH] 429

Carrying ebXML headers in SOAP Messages does not mean that ebXML overrides existing semantics of 430
SOAP, but rather that the semantics of ebXML over SOAP maps directly onto SOAP semantics. 431

7.2 Message Package 432

All MIME header elements of the Message Package MUST be in conformance with the SOAP Messages 433
with Attachments [SOAPATTACH] specification. In addition, the Content-Type MIME header in the 434
Message Package MUST contain a type attribute that matches the MIME media type of the MIME body 435
part that contains the SOAP Message document. In accordance with the [SOAP] specification, the MIME 436
media type of the SOAP Message MUST have the value “text/xml.” 437

It is strongly RECOMMENDED that the root part contain a Content-ID MIME header structured in 438
accordance with [RFC2045], and that in addition to the required parameters for the Multipart/Related 439
media type, the start parameter (OPTIONAL in [RFC2387]) always be present. This permits more 440
robust error detection. For example the following fragment: 441
 442
 Content-Type: multipart/related; type=”text/xml”; boundary=”boundaryValue”; 443
 start=messagepackage-123@example.com 444
 445
 --boundaryValue 446
 Content-ID: messagepackage-123@example.com 447

7.3 Header Container 448

The root body part of the Message Package is referred to in this specification as the Header Container. 449
The Header Container is a MIME body part that MUST consist of one SOAP Message as defined in the 450
SOAP Messages with Attachments [SOAPATTACH] specification. 451

7.3.1 Content-Type 452
The MIME Content-Type header for the Header Container MUST have the value “text/xml” in 453
accordance with the [SOAP] specification. The Content-Type header MAY contain a “charset” 454
attribute. For example: 455
 456
 Content-Type: text/xml; charset="UTF-8" 457

7.3.1.1 charset Attribute 458

The MIME charset attribute identifies the character set used to create the SOAP Message. The 459
semantics of this attribute are described in the “charset parameter / encoding considerations” of 460
text/xml as specified in [XMLMedia]. The list of valid values can be found at http://www.iana.org/. 461

If both are present, the MIME charset attribute SHALL be equivalent to the encoding declaration of the 462
SOAP Message. If provided, the MIME charset attribute MUST NOT contain a value conflicting with the 463
encoding used when creating the SOAP Message. 464

For maximum interoperability it is RECOMMENDED that [UTF -8] be used when encoding this document. 465
Due to the processing rules defined for media types derived from text/xml [XMLMedia], this MIME 466
attribute has no default. For example: 467
 468
 charset="UTF-8" 469

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 15 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

7.3.2 Header Container Example 470
 The following fragment represents an example of a Header Container: 471
 472
Content-ID: messagepackage-123@example.com ---| Header 473
Content-Type: text/xml; | 474
 charset=”UTF-8” | 475
 | 476
<SOAP-ENV:Envelope --|SOAP Message | 477
 xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”> | | 478
 <SOAP-ENV:Header> | | 479
 … | | 480
 </SOAP-ENV:Header> | | 481
 <SOAP-ENV:Body> | | 482
 … | | 483
 </SOAP-ENV:Body> | | 484
</SOAP-ENV:Envelope> --| | 485
---boundaryValue ---| 486

7.4 Payload Container 487

Zero or more Payload Containers MAY be present within a Message Package in conformance with the 488
SOAP Messages with Attachments [SOAPATTACH] specification. 489

If the Message Package contains an application payload, it MUST be enclosed within a Payload 490
Container. 491

If there is no application payload within the Message Package then a Payload Container MUST NOT be 492
present. 493

The contents of each Payload Container MUST be identified by the ebXML Message Manifest element 494
within the SOAP Body (see section 8.11). 495

The ebXML Message Service Specification makes no provision, nor limits in any way, the structure or 496
content of application payloads. Payloads MAY be a simple-plain-text object or complex nested multipart 497
objects. The specification of the structure and composition of payload objects is the prerogative of the 498
organization that defines the business process or information exchange that uses the ebXML Message 499
Service. 500

7.4.1 Example of a Payload Container 501

The following fragment represents an example of a Payload Container and a payload: 502

 503
 Content-ID: <domainname.example.com> -------------| ebXML MIME | 504
 Content-Type: application/xml -------------| | 505
 | Payload 506
 <Invoice> -------------| | Container 507
 <Invoicedata> | Payload | 508
 … | | 509
 </Invoicedata> | | 510
 </Invoice> -------------| | 511

7.5 Additional MIME Parameters 512

Any MIME part described by this specification MAY contain additional MIME headers in conformance with 513
the [RFC2045] specification. Implementations MAY ignore any MIME header not defined in this 514
specification. Implementations MUST ignore any MIME header that they do not recognize. 515

For example, an implementation could include content-length in a message. However, a recipient of 516
a message with content-length could ignore it. 517

7.6 Reporting MIME Errors 518

If a MIME error is detected in the Message Package then it MUST be reported as specified in [SOAP]. 519

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 16 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8 ebXML SOAP Extensions 520

The ebXML Message Service Specification defines a set of namespace-qualified SOAP Header and 521
Body element extensions within the SOAP Envelope. In general, separate ebXML SOAP extension 522
elements are used where: 523
• different software components are likely to be used to generate ebXML SOAP extension elements, 524
• an ebXML SOAP extension element is not always present or, 525
• the data contained in the ebXML SOAP extension element MAY be digitally signed separately from 526

the other ebXML SOAP extension elements. 527

8.1 XML Prolog 528

The SOAP Message’s XML Prolog, if present, MAY contain an XML declaration. This specification has 529
defined no additional comments or processing instructions that may appear in the XML prolog. For 530
example: 531
 532
 Content-Type: text/xml; charset=”UTF-8” 533
 534
 <?xml version="1.0" encoding="UTF-8"?> 535

8.1.1 XML Declaration 536

The XML declaration MAY be present in a SOAP Message. If present, it MUST contain the version 537
specification required by the XML Recommendation [XML]: version=’1.0’ and MAY contain an encoding 538
declaration. The semantics described below MUST be implemented by a compliant ebXML Message 539
Service. 540

8.1.2 Encoding Declaration 541

If both the encoding declaration and the Header Container MIME charset are present, the XML prolog for 542
the SOAP Message SHALL contain the encoding declaration that SHALL be equivalent to the charset 543
attribute of the MIME Content-Type of the Header Container (see section 7.3). 544

If provided, the encoding declaration MUST NOT contain a value conflicting with the encoding used when 545
creating the SOAP Message. It is RECOMMENDED that UTF-8 be used when encoding the SOAP 546
Message. 547

If the character encoding cannot be determined by an XML processor using the rules specified in section 548
4.3.3 of [XML], the XML declaration and its contained encoding declaration SHALL be provided in the 549
ebXML SOAP Header Document. 550

Note: the encoding declaration is not required in an XML document according to XML v1.0 specification [XML]. 551

8.2 ebXML SOAP Envelope extensions 552

In conformance with the [SOAP] specification, all extension element content MUST be namespace 553
qualified. All of the ebXML SOAP extension element content defined in this specification MUST be 554
namespace qualified to the ebXML SOAP Envelope extensions namespace as defined in section 8.2.1. 555

Namespace declarations (xmlns psuedo attribute) for the ebXML SOAP extensions MAY be included in 556
the SOAP Envelope, Header or Body elements, or directly in each of the ebXML SOAP extension 557
elements. 558

8.2.1 Namespace pseudo attribute 559

The namespace declaration for the ebXML SOAP Envelope extensions (xmlns pseudo attribute) (see 560
[XML Namespace]) has a REQUIRED value of "http://www.ebxml.org/namespaces/messageHeader". 561

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 17 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.2.2 xsi:schemaLocation attribute 562

The SOAP namespace: 563
 564
 http://schemas.xmlsoap.org/soap/envelope/ 565

resolves to a schema that conforms to an early Working Draft version of the W3C XML Schema 566
specification, specifically identified by the following URI: 567
 568
 http://www.w3.org/1999/XMLSchema 569

The W3C XML Schema specification[XMLSchema] has since gone to Candidate Recommendation 570
status, effective October 24, 2000 and more recently to Proposed Recommendation effective March 30, 571
2001. Many, if not most, tool support for schema validation and validating XML parsers available at the 572
time that this specification was written have been designed to support the Candidate Recommendation 573
draft of the XML Schema specification[XMLSchema]. In addition, the ebXML SOAP extension element 574
schema has been defined using the Candidate Recommendation draft of the XML Schema 575
specification[XMLSchema] (see Appendix A). 576

In order to enable validating parsers and various schema validating tools to correctly process and parse 577
ebXML SOAP Messages, it has been necessary that the ebXML TR&P team adopt an equivalent, but 578
updated version of the SOAP schema that conforms to the W3C Candidate Recommendation draft of the 579
XML Schema specification[XMLSchema]. ebXML MSH implementations are strongly RECOMMENDED to 580
include the XMLSchema-instance namespace qualified schemaLocation attribute in the SOAP 581
Envelope element to indicate to validating parsers the location of the schema document that should be 582
used to validate the document. Failure to include the schemaLocation attribute will possibly preclude 583
Receiving MSH implementations from being able to validate messages received. 584

For example: 585
 586
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 587
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance" 588
 xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/ 589
 http://ebxml.org/project_teams/transport/envelope.xsd" ...> 590

In addition, ebXML SOAP Header and Body extension element content must be similarly qualified so as 591
to identify the location that validating parsers can find the schema document that contains the ebXML 592
namespace qualified SOAP extension element definitions. Thus, the XMLSchema-instance namespace 593
qualified schemaLocation attribute should include a mapping of the ebXML SOAP Envelope extensions 594
namespace to its schema document in the same element that declares the ebXML SOAP Envelope 595
extensions namespace. 596

It is RECOMMENDED that use of a separate schemaLocation attribute be used so that tools that may 597
not correctly use the schemaLocation attribute to resolve schema for more than one namespace will still 598
be capable of validating an ebXML SOAP message. For example: 599
 600
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 601
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance" 602
 xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/ 603
 http://ebxml.org/project_teams/transport/envelope.xsd" ...> 604
 <SOAP-ENV:Header xmlns:eb="http://www.ebxml.org/namespaces/messageHeader" 605
 xsi:schemaLocation="http://www.ebxml.org/namespaces/messageHeader 606
 http://ebxml.org/project_teams/transport/messageHeaderv0_99.xsd" ...> 607
 <eb:MessageHeader ...> ... 608
 </eb:MessageHeader> 609
 </SOAP-ENV:Header> 610
 <SOAP-ENV:Body xmlns:eb="http://www.ebxml.org/namespaces/messageHeader" 611
 xsi:schemaLocation="http://www.ebxml.org/namespaces/messageHeader 612
 http://ebxml.org/project_teams/transport/messageHeaderv0_99.xsd" ...> 613
 <eb:Manifest ...> ... 614
 </eb:Manifest> 615
 </SOAP-ENV:Body> 616
 </SOAP-ENV:Envelope> 617

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 18 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.2.3 ebXML SOAP Extensions 618

An ebXML Message extends the SOAP Message with the following principal extension elements: 619
• SOAP Header extensions: 620

- MessageHeader – a REQUIRED element that contains routing information for the message 621
(To/From, etc.) as well as other context information about the message. 622

- TraceHeaderList – an element that contains entries that identifies the Message Service 623
Handler(s) that sent and should receive the message. This element MAY be omitted. 624

- ErrorList – an element that contains a list of the errors that are being reported against a previous 625
message. The ErrorList element is only used if reporting an error on a previous message. This 626
element MAY be omitted. 627

- Signature – an element that contains a digital signature that conforms to [XMLDSIG] that signs 628
data associated with the message. This element MAY be omitted. 629

- Acknowledgment– an element that is used by a Receiving MSH to acknowledge to the Sending 630
MSH that a previous message has been received. This element MAY be omitted. 631

- Via– an element that is used to convey information to the next ebXML Message Service Handler 632
that receives the message. This element MAY be omitted. 633

• SOAP Body extensions: 634
- Manifest – an element that points to any data present either in the Payload Container or 635

elsewhere, e.g. on the web. This element MAY be omitted. 636
- StatusRequest – an element that is used to identify a message whose status is being requested. 637

This element MAY be omitted. 638
- StatusResponse – an element that is used by a MSH when responding to a request on the 639

status of a message that was previously received. This element MAY be omitted. 640
- DeliveryReceipt – an element used by the To Party that received a message, to let the From 641

Party that sent the message know the message was received. This element MAY be omitted. 642

8.2.4 #wildcard element content 643

Some ebXML SOAP extension elements allow for foreign namespace-qualified element content to be 644
added to provide for extensibility. The extension element content MUST be namespace-qualified in 645
accordance with [XMLNamespaces] and MUST belong to a foreign namespace. A foreign namespace is 646
one that is NOT http://www.ebxml.org/namespaces/messageHeader. 647

Any foreign namespace-qualified element added SHOULD include the SOAP mustUnderstand attribute. 648
If the SOAP mustUnderstand attribute is NOT present, the default value implied is ‘0’ (false). If an 649
implementation of the MSH does not recognize the namespace of the element and the value of the SOAP 650
mustUnderstand attribute is ‘1’ (true), the MSH SHALL report an error (see section 11) with errorCode 651
set to NotSupported and severity set to error. If the value of the mustUnderstand attribute is ‘0' or if 652
the mustUnderstand attribute is not present, then an implementation of the MSH MAY ignore the 653
namespace-qualified element and its content. 654

8.2.5 id attributes 655

Each of the ebXML SOAP extension elements listed above has an optional id attribute which is an XML 656
ID that MAY be added to provide for the ability to uniquely identify the element within the SOAP Message. 657
This MAY be used when applying a digital signature to the ebXML SOAP Message as individual ebXML 658
SOAP extension elements can be targeted for inclusion or exclusion by specifying a URI of "#<idvalue>" 659
in the Reference element. 660

8.3 SOAP Header element 661

The SOAP Header element is the first child element of the SOAP Envelope element. It MUST have a 662
namespace qualifier that matches the SOAP Envelope namespace declaration for the namespace 663
"http://schemas.xmlsoap.org/soap/envelope/". For example: 664
 665

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 19 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" …> 666
 <SOAP-ENV:Header>…</SOAP-ENV:Header> 667
 <SOAP-ENV:Body>…</SOAP-ENV:Body> 668
 </SOAP-ENV:Envelope> 669

The SOAP Header element contains the ebXML SOAP Header extension element content identified 670
above and described in the following sections. 671

8.4 MessageHeader element 672

The MessageHeader element is REQUIRED in all ebXML Messages. It MUST be present as a child 673
element of the SOAP Header element. 674

The MessageHeader element is a composite element comprised of the following ten subordinate 675
elements: 676
• From 677
• To 678
• CPAId 679
• ConversationId 680
• Service 681
• Action 682
• MessageData 683
• QualityOfServiceInfo 684
• SequenceNumber 685
• Description 686

The MessageHeader element has two REQUIRED attributes as follows: 687
• SOAP mustUnderstand 688
• Version 689

In addition, the MessageHeader element MAY include an id attribute. See section 8.2.5 for details. 690

8.4.1 From and To elements 691

The REQUIRED From element identifies the Party that originated the message. The REQUIRED To 692
element identifies the Party that is the intended recipient of the message. Both To and From can contain 693
logical identifiers such as a DUNS number, or identifiers that also imply a physical location such as an 694
eMail address. 695

The From and the To elements each contain one or more PartyId child elements. 696

If either the From or To elements contain multiple PartyId elements, all members of the list must identify 697
the same organisation. Unless a single type value refers to multiple identification systems, a type 698
attribute value must not appear more than once in a single list of PartyId elements. 699

Note: This mechanism is particularly useful when transport of a message between the parties may involve multiple 700
intermediaries (see Sections 8.5.4, Multi-hop TraceHeader Sample and 10.3, ebXML Reliable Messaging Protocol). 701
More generally, the From Party should provide identification in all domains it knows in support of intermediaries 702
and destinations that may give preference to particular identification systems. 703

8.4.1.1 PartyID element 704

The PartyId element has a single attribute, type and content that is a string value. The type attribute 705
indicates the domain of names to which the string in the content of the PartyId element belongs. The 706
value of the type attribute MUST be mutually agreed and understood by each of the Parties. It is 707
RECOMMENDED that the value of the type attribute be a URI. It is further recommended that these 708
values be taken from the EDIRA (ISO 6523), EDIFACT ISO 9735 or ANSI ASC X12 I05 registries. 709

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 20 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

If the PartyId type attribute is not present, the content of the PartyId element MUST be a URI 710
[RFC2396], otherwise the Receiving MSH SHOULD report an error (see section 11) with errorCode set 711
to Inconsistent and severity set to Error. It is strongly RECOMMENDED that the content of the PartyID 712
element be a URI. 713

The following fragment demonstrates usage of the From and To elements. 714
 715
 <eb:From> 716
 <eb:PartyId eb:type="urn:duns">123456789</eb:PartyId> 717
 <eb:PartyId eb:type="SCAC">RDWY</PartyId> 718
 </eb:From> 719
 <eb:To> 720
 <eb:PartyId>mailto:joe@example.com</eb:PartyId> 721
 </eb:To> 722

8.4.2 CPAId element 723

The REQUIRED CPAId element is a string that identifies the parameters governing the exchange of 724
messages between the parties. The recipient of a message MUST be able to resolve the CPAId to an 725
individual set of parameters, taking into account the sender of the message. 726

The value of a CPAId element MUST be unique within a namespace that is mutually agreed by the two 727
parties. This could be a concatenation of the From and To PartyId values, a URI that is prefixed with the 728
Internet domain name of one of the parties, or a namespace offered and managed by some other naming 729
or registry service. It is RECOMMENDED that the CPAId be a URI. 730

The CPAId MAY reference an instance of a CPA as defined in the ebXML Collaboration Protocol Profile 731
and Agreement Specification [ebCPP]. An example of the CPAId element follows: 732
 <eb:CPAId>http://example.com/cpas/ourcpawithyou.xml</eb:CPAId> 733

If the parties are operating under a CPA, then the reliable messaging parameters are determined by the 734
appropriate elements from that CPA, as identified by the CPAId element. 735

If a receiver determines that a message is in conflict with the CPA, the appropriate handling of this conflict 736
is undefined by this specification. Therefore, senders SHOULD NOT generate such messages unless 737
they have prior knowledge of the receiver's capability to deal with this conflict. 738

If a receiver chooses to generate an error as a result of a detected inconsistency, then it MUST report it 739
with an errorCode of Inconsistent and a severity of Error. If it chooses to generate an error because 740
the CPAId is not recognized, then it MUST report it with an errorCode of NotRecognized and a severity 741
of Error. 742

8.4.3 ConversationId element 743

The REQUIRED ConversationId element is a string identifying the set of related messages that make up 744
a conversation between two Parties. It MUST be unique within the From and To party pair. The Party 745
initiating a conversation determines the value of the ConversationId element that SHALL be reflected in 746
all messages pertaining to that conversation. 747

The ConversationId enables the recipient of a message to identify the instance of an application or 748
process that generated or handled earlier messages within a conversation. It remains constant for all 749
messages within a conversation. 750

The value used for a ConversationId is implementation dependent. An example of the ConversationId 751
element follows: 752
 <eb:ConversationId>20001209-133003-28572</eb:ConversationId> 753

Note: Implementations are free to choose how they will identify and store conversational state related to a specific 754
conversation. Implementations SHOULD provide a facility for mapping between their identification schema and a 755
ConversationId generated by another implementation. 756

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 21 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.4.4 Service element 757

The REQUIRED Service element identifies the service that acts on the message and it is specified by the 758
designer of the service. The designer of the service may be: 759
• a standards organization, or 760
• an individual or enterprise 761

Note: In the context of an ebXML business process model, an action equates to the lowest possible role based 762
activity in the [ebBPSS] (requesting or responding role) and a service is a set of related actions for an authorized 763
role within a party. 764

An example of the Service element follows: 765
 766
 <eb:Service>urn:services:SupplierOrderProcessing</eb:Service> 767

Note: URIs in the Service element that start with the namespace: uri:www.ebxml.org/messageService/ are reserved 768
for use by this specification. 769

The Service element has a single type attribute. 770

8.4.4.1 type attribute 771

If the type attribute is present, it indicates the parties sending and receiving the message know, by some 772
other means, how to interpret the content of the Service element. The two parties MAY use the value of 773
the type attribute to assist in the interpretation. 774

If the type attribute is not present, the content of the Service element MUST be a URI [RFC2396]. If it is 775
not a URI then report an error with an errorCode of Inconsistent and a severity of Error (see section 776
11). 777

8.4.5 Action element 778

The REQUIRED Action element identifies a process within a Service that processes the Message. 779
Action SHALL be unique within the Service in which it is defined. An example of the Action element 780
follows: 781
 782

 <eb:Action>NewOrder</eb:Action> 783

8.4.6 MessageData element 784

The REQUIRED MessageData element provides a means of uniquely identifying an ebXML Message. It 785
contains the following four subordinate elements: 786
• MessageId 787
• Timestamp 788
• RefToMessageId 789
• TimeToLive 790

The following fragment demonstrates the structure of the MessageData element: 791
 792
 <eb:MessageData> 793
 <eb:MessageId>20001209-133003-28572@example.com</eb:MessageId> 794
 <eb:Timestamp>2001-02-15T11:12:12Z</eb:Timestamp> 795
 <eb:RefToMessageId>20001209-133003-28571@example.com</eb:RefToMessageId> 796
 </eb:MessageData> 797

8.4.6.1 MessageId element 798

The REQUIRED element MessageId is a unique identifier for the message conforming to [RFC2392]. 799
The "local part" of the identifier as defined in [RFC2392] is implementation dependent. 800

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 22 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.4.6.2 Timestamp element 801

The REQUIRED Timestamp is a value representing the time that the message header was created 802
conforming to an [XMLSchema] timeInstant. 803

8.4.6.3 RefToMessageId element 804

The RefToMessageId element has a cardinality of zero or one. When present, it MUST contain the 805
MessageId value of an earlier ebXML Message to which this message relates. If there is no earlier 806
related message, the element MUST NOT be present. 807

For Error messages, the RefToMessageId element is REQUIRED and its value MUST be the 808
MessageId value of the message in error (as defined in section 11). 809

For Acknowledgment Messages, the RefToMessageId element is REQUIRED, and its value MUST be 810
the MessageId value of the ebXML Message being acknowledged. See also sections 8.13.4 and 10. 811

When RefToMessageId is contained inside either a StatusRequest or a StatusResponse element then 812
it identifies a Message whose current status is being queried (see section 9.1) 813

8.4.6.4 TimeToLive element 814

The TimeToLive element indicates the time by which a message should be delivered to and processed 815
by the To Party. The TimeToLive element is discussed under Reliable Messaging in section 10. 816

8.4.7 QualityOfServiceInfo element 817

The QualityOfServiceInfo element identifies the quality of service with which the message is delivered. 818
This element has three attributes: 819
• deliverySemantics 820
• messageOrderSemantics 821
• deliveryReceiptRequested 822

The QualityOfServiceInfo element SHALL be present if any of the attributes within the element need to 823
be set to their non-default value. The deliverySemantics attribute supports Reliable Messaging and is 824
discussed in detail in section 10. The deliverySemantics attribute indicates whether or not a message is 825
sent reliably. 826

8.4.7.1 deliveryReceiptRequested attribute 827

The deliveryReceiptRequested attribute is used by a From Party to indicate whether a message 828
received by the To Party should result in the To Party returning an acknowledgment message containing 829
a DeliveryReceipt element. 830

Note: To clarify the distinction between an acknowledgement message containing a DeliveryReceipt and a Reliable 831
Messaging Acknowledgement: (1) An acknowledgement message containing a Delivery Receipt indicates the To 832
Party has received the message. (2) The Reliable Messaging Acknowledgment indicates a MSH, possibly only an 833
intermediate MSH, has received the message. 834

Before setting the value of deliveryReceiptRequested, the From Party SHOULD check if the To Party 835
supports Delivery Receipts of the type requested (see also [ebCPP]). 836

Valid values for deliveryReceiptRequested are: 837
• Unsigned - requests that an unsigned Delivery Receipt is requested 838
• Signed - requests that a signed Delivery Receipt is requested, or 839
• None - indicates that no Delivery Receipt is requested. 840

The default value for deliveryReceiptRequested is None. 841

When a To Party receives a message with deliveryReceiptRequested attribute set to Signed or 842
Unsigned then it should verify that it is able to support the type of Delivery Receipt requested. 843

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 23 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

If the To Party can produce the Delivery Receipt of the type requested, then it MUST return to the From 844
Party a message containing a DeliveryReceipt element. 845

If the To Party cannot return a Delivery Receipt of the type requested then it MUST report the error to the 846
From Party using an errorCode of NotSupported and a severity of Error. 847

If there are no errors in the message received and a DeliveryReceipt is being sent on its own, not as part 848
of message containing payload data, then the Service and Action MUST be set as follows: 849
• the Service element MUST be set to uri:www.ebXML.org/messageService/ 850
• the Action element MUST be set to DeliveryReceipt 851

An example of deliveryReceiptRequested follows: 852
 853
 <eb:QualityOfServiceInfo eb:deliverySemantics="OnceAndOnlyOnce" 854
 eb:messageOrderSemantics="Guaranteed" 855
 eb:deliveryReceiptRequested="Unsigned"/> 856

8.4.7.2 messageOrderSemantics attribute 857

The messageOrderSemantics attribute is used to indicate whether the message is passed to the 858
receiving application in the order the sending application specified. Valid Values are: 859
• Guaranteed - The messages are passed to the receiving application in the order that the sending 860

application specified. 861
• NotGuaranteed - The messages may be passed to the receiving application in different order from 862

the order the sending application specified. 863

The default value for messageOrderSemantics is specified in the CPA or in MessageHeader. If a value 864
is not specified, the default value is NotGuaranteed. 865

If messageOrderSemantics is set to Guaranteed, the To Party MSH MUST correct invalid order of 866
messages using the value of SequenceNumber in the conversation specified by the ConversationId. 867
The Guaranteed semantics can be set only when deliverySemantics is OnceAndOnlyOnce. If 868
messageOrderSemantics is set to Guaranteed the SequenceNumber element MUST be present. 869

If deliverySemantics is not OnceAndOnlyOnce and messageOrderSemantics is set to Guaranteed 870
then report the error to the From Party with an errorCode of Inconsistent and a severity of Error (see 871
sections 10 and 11). 872

All messages sent within the same conversation, as identified by the ConversationId element, that have 873
a deliverySemantics attribute with a value of OnceandOnlyOnce SHALL each have the same value 874
messageOrderSemantics (either Guaranteed or NotGuaranteed). 875

If messageOrderSemantics is set to NotGuaranteed, then the To Party MSH does not need to correct 876
invalid order of messages. 877

If the To Party is unable to support the type of messageOrderSemantics requested, then the To Party 878
MUST report the error to the From Party using an errorCode of NotSupported and a severity of Error. 879
A sample of messageOrderSemantics follows. 880
 881
 <eb:QualityOfServiceInfo eb:deliverySemantics=”OnceAndOnlyOnce” 882
 eb:messageOrderSemantics=”Guaranteed”/> 883

8.4.8 SequenceNumber element 884

The SequenceNumber element indicates the sequence in which messages MUST be processed by a 885
Receiving MSH. The SequenceNumber is unique within the ConversationId and MSH. The From Party 886
MSH and the To Party MSH each set an independent SequenceNumber as the Sending MSH within the 887
ConversationID. It is set to zero on the first message from that MSH for a conversation and then 888
incremented by one for each subsequent message sent. 889

The SequenceNumber element MUST appear only when deliverySemantics has a value of 890
OnceAndOnlyOnce and messageOrderSemantics has a value of Guaranteed. If this criterion is not 891

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 24 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

met, an error MUST be reported to the From Party MSH with an errorCode of Inconsistent and a 892
severity of Error. 893

A MSH that receives a message with a SequenceNumber element MUST NOT pass the message to an 894
application as long as the storage required to save out-of-sequence messages is within the 895
implementation defined limits and until all the messages with lower SequenceNumbers have been 896
received and passed to the application. 897

If the implementation defined limit for saved out-of-sequence messages is reached, then the Receiving 898
MSH MUST indicate a delivery failure to the Sending MSH with errorCode set to DeliveryFailure and 899
severity set to Error (see section 11). 900

The SequenceNumber element is an integer value that is incremented by the Sending MSH (e.g. 0, 1, 2, 901
3, 4...) for each application-prepared message sent by that MSH within the ConversationId . The next 902
value of 99999999 in the increment is “0”. The value of SequenceNumber consists of ASCII numerals in 903
the range 0-99999999. In following cases, SequenceNumber takes the value “0”: 904

1) First message from the Sending MSH within the conversation 905

2) First message after resetting SequenceNumber information by the Sending MSH 906

3) First message after wraparound (next value after 99999999) 907

The SequenceNumber element has a single attribute, status. This attribute is an enumeration, which 908
SHALL have one of the following values: 909
• Reset – the SequenceNumber is reset as shown in 1 or 2 above 910
• Continue – the SequenceNumber continues sequentially (including 3 above) 911

When the SequenceNumber is set to “0” because of 1 or 2 above, the Sending MSH MUST set the 912
status attribute of the message to Reset. In all other cases, including 3 above, the status attribute 913
MUST be set to Continue. 914

A Sending MSH MUST wait before resetting the SequenceNumber of a conversation until it has received 915
all of the Acknowledgement Messages for Messages previously sent for the conversation. Only when all 916
the sent Messages are acknowledged, can the Sending MSH reset the SequenceNumber. An example 917
of SequenceNumber follows. 918
 919
 <eb:SequenceNumber eb:status=”Reset”>0</eb:SequenceNumber> 920

8.4.9 Description element 921

The Description element is present zero or more times as a child element of MessageHeader. Its 922
purpose is to provide a human readable description of the purpose or intent of the message. The 923
language of the description is defined by a required xml:lang attribute. The xml:lang attribute MUST 924
comply with the rules for identifying languages specified in [XML]. Each occurrence SHOULD have a 925
different value for xml:lang. 926

8.4.10 version attribute 927

The REQUIRED version attribute indicates the version of the ebXML Message Service Header 928
Specification to which the ebXML SOAP Header extensions conform. Its purpose is to provide future 929
versioning capabilities. The value of the version attribute MUST be “1.0”. Future versions of this 930
specification SHALL require other values of this attribute. The version attribute MUST be namespace 931
qualified for the ebXML SOAP Envelope extensions namespace defined above. 932

8.4.11 SOAP mustUnderstand attribute 933

The REQUIRED SOAP mustUnderstand attribute, namespace qualified to the SOAP namespace 934
(http://schemas.xmlsoap.org/soap/envelope/), indicates that the contents of the MessageHeader element 935
MUST be understood by a receiving process or else the message MUST be rejected in accordance with 936
[SOAP]. This attribute MUST have a value of '1' (true). 937

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 25 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.4.12 MessageHeader Sample 938

The following fragment demonstrates the structure of the MessageHeader element within the SOAP 939
Header: 940
 941
<eb:MessageHeader id="…" eb:version="1.0" SOAP-ENV:mustUnderstand="1"> 942
 <eb:From><eb:PartyId>uri:example.com</eb:PartyId></eb:From> 943
 <eb:To eb:type="someType"> 944
 <eb:PartyId eb:type="someType">QRS543</eb:PartyId> 945
 </eb:To> 946
 <eb:CPAId>http://www.ebxml.org/cpa/123456</eb:CPAId> 947
 <eb:ConversationId>987654321</eb:ConversationId> 948
 <eb:Service eb:type="myservicetypes">QuoteToCollect</eb:Service> 949
 <eb:Action>NewPurchaseOrder</eb:Action> 950
 <eb:MessageData> 951
 <eb:MessageId>mid:UUID-2</eb:MessageId> 952
 <eb:Timestamp>2000-07-25T12:19:05Z</eb:Timestamp> 953
 <eb:RefToMessageId>mid:UUID-1</eb:RefToMessageId> 954
 </eb:MessageData> 955
 <eb:QualityOfServiceInfo 956
 eb:deliverySemantics=”OnceAndOnlyOnce” 957
 eb:deliveryReceiptRequested=”Signed”/> 958
</eb:MessageHeader> 959

8.5 TraceHeaderList element 960

A TraceHeaderList element consists of one or more TraceHeader elements. Exactly one TraceHeader 961
is appended to the TraceHeaderList following any pre-existing TraceHeader before transmission of a 962
message over a data communication protocol. 963

The TraceHeaderList element MAY be omitted from the header if: 964
• the message is being sent over a single hop (see section 8.5.3), and 965
• the message is not being sent reliably (see section 10) 966

The TraceHeaderList element has three REQUIRED attributes as follows: 967
• SOAP mustUnderstand (See section 8.4.11 for details) 968
• SOAP actor attribute with the value "http://schemas.xmlsoap.org/soap/actor/next" 969
• Version (See section 8.4.10 for details) 970

In addition, the TraceHeaderList element MAY include an id attribute. See section 8.2.5 for details. 971

8.5.1 SOAP actor attribute 972

The TraceHeaderList element MUST contain a SOAP actor attribute with the value 973
http://schemas.xmlsoap.org/soap/actor/next and be interpreted and processed as defined in the [SOAP] 974
specification. This means that the TraceHeaderList element MUST be processed by the MSH that 975
receives the message and SHOULD NOT be forwarded to the next MSH. A MSH that handles the 976
TraceHeaderList element is REQUIRED to perform the function of appending a new TraceHeader 977
element to the TraceHeaderList and (re)inserting it into the message for the next MSH. 978

8.5.2 TraceHeader element 979

The TraceHeader element contains information about a single transmission of a message between two 980
instances of a MSH. If a message traverses multiple hops by passing through one or more intermediate 981
MSH nodes as it travels between the From Party MSH and the To Party MSH, then each transmission 982
over each successive “hop” results in the addition of a new TraceHeader element by the Sending MSH. 983

The TraceHeader element is a composite element comprised of the following subordinate elements: 984
• Sender 985
• Receiver 986
• Timestamp 987
• #wildcard 988

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 26 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

In addition, the TraceHeader element MAY include an id attribute. See section 8.2.5 for details. 989

8.5.2.1 Sender element 990

The Sender element is a composite element comprised of the following subordinate elements: 991
• PartyId 992
• Location 993

As with the From and To elements, multiple PartyId elements may be listed in the Sender element. This 994
allows receiving systems to resolve those identifiers to organizations using a preferred identification 995
scheme without prior agreement among all parties to a single scheme. 996

8.5.2.1.1 PartyId element 997

This element has the syntax and semantics described in Section 8.4.1.1, PartyId element. In this case, 998
the identified party is the sender of the message. This element may be used in a later message 999
addressed to this party by including it in the To element of that message. 1000

8.5.2.1.2 Location element 1001

This element contains the URL of the Sender’s Message Service Handler. Unless there is another URL 1002
identified within the CPA or in MessageHeader (section 8.4.2), the recipient of the message uses the 1003
URL to send a message, when required that: 1004
• responds to an earlier message 1005
• acknowledges an earlier message 1006
• reports an error in an earlier message. 1007

8.5.2.2 Receiver element 1008

The Receiver element is a composite element comprised of the following subordinate elements: 1009
• PartyId 1010
• Location 1011

As with the From and To elements, multiple PartyId elements may be listed in the Receiver element. 1012
This allows sending systems to resolve those identifiers to organisations using a preferred identification 1013
scheme without prior agreement among all parties to a single scheme. 1014

The descendant elements of the Receiver element (PartyId and Location) are implemented in the same 1015
manner as the Sender element (see sections 8.5.2.1.1 and 8.5.2. 1.2). 1016

8.5.2.3 Timestamp element 1017

The Timestamp element is the time the individual TraceHeader was created. It is in the same format as 1018
in the Timestamp element in the MessageData element (section 8.4.6.2). 1019

8.5.2.4 #wildcard element 1020

Refer to section 8.2.4 for discussion of #wildcard element handling. 1021

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 27 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.5.3 Single Hop TraceHeader Sample 1022

A single hop message is illustrated by the diagram below. 1023

Party B

MSH

Application

Party A

MSH
Message X

Message Y

Application

1

2 1024

Figure 8-1 Single Hop Message 1025

The content of the corresponding messages could include: 1026
• Transmission 1 - Message X From Party A To Party B 1027

 1028
<eb:MessageHeader eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1"> 1029
 <eb:From> 1030
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId> 1031
 </eb:From> 1032
 <eb:To> 1033
 <eb:PartyId>urn:myscheme.com:id:PartyB-id</eb:PartyId> 1034
 </eb:To> 1035
 <eb:ConversationId>219cdj89dj2398djfjn</eb:ConversationId> 1036
 ... 1037
 <eb:MessageData> 1038
 <eb:MessageId>29dmridj103kvna</eb:MessageId> 1039
 ... 1040
 </eb:MessageData> 1041
 ... 1042
</eb:MessageHeader> 1043
 1044
<eb:TraceHeaderList eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1"> 1045
 <eb:TraceHeader> 1046
 <eb:Sender> 1047
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId> 1048
 <eb:Location>http://PartyA.com/PartyAMsh</eb:Location> 1049
 </eb:Sender> 1050
 <eb:Receiver> 1051
 <eb:PartyId>urn:myscheme.com:id:PartyB-id</eb:PartyId> 1052
 <eb:Location>http://PartyB.com/PartyBMsh</eb:Location> 1053
 </eb:Receiver> 1054
 <eb:Timestamp>2000-12-16T21:19:35Z</eb:Timestamp> 1055
 </eb:TraceHeader> 1056
</eb:TraceHeaderList> 1057

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 28 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.5.4 Multi-hop TraceHeader Sample 1058

Multi-hop messages are not sent directly from one party to another, instead they are sent via an 1059
intermediate party, as illustrated by the diagram below: 1060

Party C

MSH

Application

Party A

MSH
Message X

Application

Party B

MSH

Routing
Application

MSH
Message Y

Message X

Message Y

1 2

34 1061

Figure 8-2 Multi-hop Message 1062

The content of the corresponding messages could include: 1063
• Transmission 1 - Message X From Party A To Party B 1064

 1065
<eb:MessageHeader eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1"> 1066
 <eb:From> 1067
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId> 1068
 </eb:From> 1069
 <eb:To> 1070
 <eb:PartyId>urn:myscheme.com:id:PartyC-id</eb:PartyId> 1071
 </eb:To> 1072
 <eb:ConversationId>219cdj89dj2398djfjn</eb:ConversationId> 1073
 ... 1074
 <eb:MessageData> 1075
 <eb:MessageId>29dmridj103kvna</eb:MessageId> 1076
 ... 1077
 </eb:MessageData> 1078
 ... 1079
</eb:MessageHeader> 1080
 1081
<eb:TraceHeaderList eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1" 1082
 SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next"> 1083
 <eb:TraceHeader> 1084
 <eb:Sender> 1085
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId> 1086
 <eb:Location>http://PartyA.com/PartyAMsh</eb:Location> 1087
 </eb:Sender> 1088
 <eb:Receiver> 1089
 <eb:Location>http://PartyB.com/PartyBMsh</eb:Location> 1090
 </eb:Receiver> 1091
 <eb:Timestamp>2000-12-16T21:19:35Z</eb:Timestamp> 1092
 </eb:TraceHeader> 1093
</eb:TraceHeaderList> 1094
• 1095

Transmission 2 - Message X From Party B To Party C 1096
<eb:MessageHeader eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1"> 1097
 <eb:From> 1098
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId> 1099
 </eb:From> 1100
 <eb:To> 1101
 <eb:PartyId>urn:myscheme.com:id:PartyC-id</eb:PartyId> 1102
 </eb:To> 1103
 <eb:ConversationId>219cdj89dj2398djfjn</eb:ConversationId> 1104
 ... 1105
 <eb:MessageData> 1106

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 29 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

 <eb:MessageId>29dmridj103kvna</eb:MessageId> 1107
 ... 1108
 </eb:MessageData> 1109
 ... 1110
</eb:MessageHeader> 1111
 1112
<eb:TraceHeaderList eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1" 1113
 SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next"> 1114
 <eb:TraceHeader> 1115
 <eb:Sender> 1116
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId> 1117
 <eb:Location>http://PartyA.com/PartyAMsh</eb:Location> 1118
 </eb:Sender> 1119
 <eb:Receiver> 1120
 <eb:PartyId>urn:myscheme.com:id:PartyB-id</eb:PartyId> 1121
 <eb:Location>http://PartyB.com/PartyBMsh</eb:Location> 1122
 </eb:Receiver> 1123
 <eb:Timestamp>2000-12-16T21:19:35Z</eb:Timestamp> 1124
 </eb:TraceHeader> 1125
 <eb:TraceHeader> 1126
 <eb:Sender> 1127
 <eb:PartyId>urn:myscheme.com:id:PartyB-id</eb:PartyId> 1128
 <eb:Location>http://PartyB.com/PartyAMsh</eb:Location> 1129
 </eb:Sender> 1130
 <eb:Receiver> 1131
 <eb:PartyId>urn:myscheme.com:id:PartyC-id</eb:PartyId> 1132
 <eb:Location>http://PartyC.com/PartyBMsh</eb:Location> 1133
 </eb:Receiver> 1134
 <eb:Timestamp>2000-12-16T21:19:45Z</eb:Timestamp> 1135
 </eb:TraceHeader> 1136
</eb:TraceHeaderList> 1137

8.6 Acknowledgment Element 1138

The Acknowledgment element is an optional element that is used by one Message Service Handler to 1139
indicate that another Message Service Handler has received a message. The RefToMessageId in a 1140
message containing an Acknowledgement element is used to identify the message being acknowledged 1141
by its MessageId. 1142

The Acknowledgment element consists of the following elements and attributes: 1143
• a Timestamp element 1144
• a From element 1145
• zero or more ds:Reference element(s) 1146
• a REQUIRED SOAP mustUnderstand attribute (See section 8.4.11 for details) 1147
• a REQUIRED SOAP actor attribute 1148
• a REQUIRED version attribute (See section 8.4.10 for details) 1149
• an id attribute (See section 8.2.5 for details) 1150

8.6.1 Timestamp element 1151

The Timestamp element is a value representing the time that the message being acknowledged was 1152
received by the Party generating the acknowledgment message. It must conform to an [XMLSchema] 1153
timeInstant (section 8.4.6.2). 1154

8.6.2 From element 1155

This is the same element as the From element within MessageHeader element (see section 8.4.1). 1156
However, when used in the context of an Acknowledgment element, it contains the identifier of the Party 1157
that is generating the acknowledgment message. 1158

If the From element is omitted then the Party that is sending the element is identified by the From 1159
element in the MessageHeader element. 1160

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 30 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.6.3 ds:Reference element 1161

An Acknowledgment MAY be used to enable non-repudiation of receipt by a MSH by including one or 1162
more Reference elements from the [XMLDSIG] namespace (http://www.w3.org/2000/09/xmldsig#) taken, 1163
or derived, from the message being acknowledged. The Reference element(s) MUST be namespace 1164
qualified to the aforementioned namespace and MUST conform to the XML Signature[XMLDSIG] 1165
specification. 1166

8.6.4 SOAP actor attribute 1167

The Acknowledgment element MUST contain a SOAP actor attribute with the value 1168
http://schemas.xmlsoap.org/soap/actor/next and be interpreted and processed as defined in the [SOAP] 1169
specification. This means that the Acknowledgment element MUST be processed by the MSH that 1170
receives the message and SHOULD NOT be forwarded to the next MSH. 1171

8.6.5 Acknowledgement Sample 1172

An example of the Acknowledgement element is given below: 1173
 1174
 <eb:Acknowledgment SOAP-ENV:mustUnderstand="1" eb:version="1.0" 1175
 SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next"> 1176
 <eb:Timestamp>2001-03-09T12:22:30Z</eb:Timestamp> 1177
 <eb:From> 1178
 <eb:PartyId>uri:www.example.com</eb:PartyId> 1179
 </eb:From> 1180
 </eb:Acknowledgment> 1181

8.7 Via element 1182

The Via element is an ebXML extension to the SOAP Header that is used to convey information to the 1183
next ebXML Message Service Handler (MSH) that receives the message. 1184

Note: this MSH can be a MSH operated by an intermediary or by the To Party. In particular, the Via element is used 1185
to hold data that can vary from one hop to another. 1186

The Via element MUST contain the following attributes: 1187
• id attribute (See section 8.2.5) 1188
• version attribute (See section 8.4.10 for details) 1189
• SOAP MustUnderstand attribute 1190
• SOAP actor attribute 1191

The Via element MUST also contain one or more of the following elements or attributes: 1192
• syncReply attribute 1193
• reliableMessagingMethod attribute 1194
• ackRequested attribute 1195
• CPAId element 1196

The Via element MAY also contain the following elements: 1197
• Service element 1198
• Action element 1199

8.7.1 SOAP mustUnderstand attribute 1200

The REQUIRED SOAP mustUnderstand attribute, namespace qualified to the SOAP Envelope 1201
namespace (http://schemas.xmlsoap.org/soap/envelope/), indicates that the contents of the Via element 1202
MUST be understood by a receiving process or else the message MUST be rejected in accordance with 1203
[SOAP]. This attribute MUST have a value of '1' (true). In accordance with the [SOAP] specification, a 1204
receiving ebXML Message Service implementation that does not provide support for the Via element 1205
MUST respond with a SOAP Fault with a faultCode of MustUnderstand. 1206

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 31 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.7.2 SOAP actor attribute 1207

The Via element MUST contain a SOAP actor attribute with the value 1208
http://schemas.xmlsoap.org/soap/actor/next and be interpreted and processed as defined in the [SOAP] 1209
specification. This means that the Via element MUST be processed by the MSH that receives the 1210
message and SHOULD NOT be forwarded to the next MSH. 1211

8.7.3 syncReply attribute 1212

The syncReply attribute is used only if the data communication protocol is synchronous (e.g. HTTP). It is 1213
an [XMLSchema] boolean. If the communication protocol is not synchronous, then the value of 1214
syncReply is ignored. If the syncReply attribute is not present, it is semantically equivalent to its 1215
presence with a value of "false". If the syncReply attribute is present with a value of true, the MSH must 1216
return the response from the application or business process in the payload of the synchronous reply 1217
message. See also the description of syncReply in the [ebCPP] specification. 1218

8.7.4 reliableMessagingMethod attribute 1219

The reliableMessagingMethod attribute is an enumeration that SHALL have one of the following values: 1220
• ebXML 1221
• Transport 1222

The default implied value for this attribute is ebXML. 1223

8.7.5 ackRequested attribute 1224

The ackRequested attribute is an enumeration that SHALL have one of the following values: 1225
• Signed 1226
• Unsigned 1227
• None 1228

The default implied value for this attribute is None. This attribute is used to indicate to the Receiving MSH 1229
whether an acknowledgment message is expected, and if so, whether the acknowledgment message 1230
should be signed by the Receiving MSH. Refer to section 10.2.5 for a complete discussion as to the use 1231
of this attribute. 1232

8.7.6 CPAId element 1233

The CPAId element is a string that identifies the parameters that govern the exchange of messages 1234
between two MSH instances. It has the same meaning as the CPAId in the MessageHeader except that 1235
the parameters identified by the CPAId apply just to the exchange of messages between the two MSH 1236
instances rather than between the Parties identified in the To and From elements of the MessageHeader 1237
(section 8.4.2). This allows different parameters, transport protocols, etc, to be used on different hops 1238
when a message is passed through intermediaries. 1239

If the CPAId element is present, the identified parameter values SHOULD be used instead of the values 1240
identified by the CPAId in the MessageHeader element. 1241

8.7.7 Service and Action elements 1242

The Service and Action elements have the same meaning as the Service and Action elements in the 1243
MessageHeader element (see sections 8.4.4 and 8.4.5) except that they are interpreted and acted on by 1244
the next MSH whether or not the MSH is operated by the To Party. 1245

The designer of the service or business process that is using the ebXML Message Service defines the 1246
values used for Service and Action. 1247

The Service and Action elements are OPTIONAL. However, if the Service element is present then the 1248
Action element MUST also be present and vice versa. 1249

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 32 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.7.8 Via element Sample 1250

The following is a sample Via element. 1251
 1252
 <eb:Via SOAP-ENV:mustUnderstand="1" eb:version="1.0" 1253
 SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next" 1254
 eb:syncReply="false"> 1255
 <eb:CPAId>yaddaydda</eb:CPAId> 1256
 <eb:Service>urn:services:Proxy</eb:Service> 1257
 <eb:Action>LogActivity</eb:Action> 1258
 </eb:Via> 1259

8.8 ErrorList element 1260

The existence of an ErrorList element within the SOAP Header element indicates that the message that 1261
is identified by the RefToMessageId in the MessageHeader element has an error. 1262

The ErrorList element consists of one or more Error elements and the following attributes: 1263
• id attribute 1264
• SOAP mustUnderstand attribute (See section 8.4.11 for details) 1265
• version attribute (See section 8.4.10 for details) 1266
• highestSeverity attribute 1267

If there are no errors to be reported then the ErrorList element MUST NOT be present. 1268

8.8.1 id attribute 1269

The id attribute uniquely identifies the ErrorList element within the document (See section 8.2.5). 1270

8.8.2 highestSeverity attribute 1271

The highestSeverity attribute contains the highest severity of any of the Error elements. Specifically, if 1272
any of the Error elements have a severity of Error then highestSeverity must be set to Error, otherwise 1273
set highestSeverity to Warning. 1274

8.8.3 Error element 1275

An Error element consists of the following attributes: 1276
• codeContext 1277
• errorCode 1278
• severity 1279
• location 1280
• xml:lang 1281
• id (See section 8.2.5 for details) 1282

The content of the Error element contains an error message. 1283

8.8.3.1 codeContext attribute 1284

The REQUIRED codeContext attribute identifies the namespace or scheme for the errorCodes. It 1285
MUST be a URI. Its default value is http://www.ebxml.org/messageServiceErrors. If it does not have 1286
the default value, then it indicates that an implementation of this specification has used its own 1287
errorCodes. 1288

Use of non-ebXML values for errorCodes is NOT RECOMMENDED. In addition, an implementation of 1289
this specification MUST NOT use its own errorCodes if an existing errorCode as defined in this section 1290
has the same or very similar meaning. 1291

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 33 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.8.3.2 errorCode attribute 1292

The REQUIRED errorCode attribute indicates the nature of the error in the message in error. Valid 1293
values for the errorCode and a description of the code’s meaning are given in sections 8.8.5.1 and 1294
8.8.5.2 1295

8.8.3.3 severity attribute 1296

The REQUIRED severity attribute indicates the severity of the error. Valid values are: 1297
• Warning - This indicates that although there is an error, other messages in the conversation will still 1298

be generated in the normal way. 1299
• Error - This indicates that there is an unrecoverable error in the message and no further messages 1300

will be generated as part of the conversation. 1301

8.8.3.4 location attribute 1302

The location attribute points to the part of the message that is in error. 1303

If an error exists in an ebXML element and the element is “well formed” (see [XML]), then the content of 1304
the location attribute MUST be an [XPointer]. 1305

If the error is associated with the MIME envelope that wraps the SOAP envelope and the ebXML 1306
Payload, then location contains the content-id of the MIME part that is in error, in the format 1307
cid:23912480wsr, where the text after the”:” is the value of the MIME part’s content-id. 1308

8.8.3.5 Error element Content 1309

The content of the error message provides a narrative description of the error in the language defined by 1310
the xml:lang attribute. Typically, it will be the message generated by the XML parser or other software 1311
that is validating the message. This means that the content is defined by the vendor/developer of the 1312
software that generated the Error element. 1313

The xml:lang attribute must comply with the rules for identifying languages specified in [XML]. 1314

The content of the Error element can be empty. 1315

8.8.4 ErrorList Sample 1316

An example of an ErrorList element is given below. 1317
 1318
 <eb:ErrorList eb:id=’3490sdo9’, eb:highestSeverity=”error” eb:version="1.0" 1319
 SOAP-ENV:mustUnderstand="1"> 1320
 <eb:Error eb:errorCode=’SecurityFailure’ eb:severity=”Error” 1321
 eb:location=’URI_of_ds:Signature_goes_here’ xml:lang=”us-en”> 1322
 Validation of signature failed </eb:Error> 1323
 <eb:Error ...> ... </eb:Error> 1324
 </eb:ErrorList> 1325

8.8.5 errorCode values 1326

This section describes the values for the errorCode element (see section 8.8.3.2) used in a message 1327
reporting an error. They are described in a table with three headings: 1328
• the first column contains the value to be used as an errorCode, e.g. SecurityFailure 1329
• the second column contains a "Short Description" of the errorCode. 1330

Note: this narrative MUST NOT be used in the content of the Error element. 1331
• the third column contains a "Long Description" that provides an explanation of the meaning of the 1332

error and provides guidance on when the particular errorCode should be used. 1333

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 34 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.8.5.1 Reporting Errors in the ebXML Elements 1334

The following list contains error codes that can be associated with ebXML elements: 1335
 1336

Error Code Short Description Long Description

ValueNotRecognized Element content or
attribute value not
recognized.

Although the document is well formed and valid,
the element/attribute contains a value that could
not be recognized and therefore could not be
used by the ebXML Message Service.

NotSupported Element or attribute
not supported

Although the document is well formed and valid,
an element or attribute is present that is
consistent with the rules and constraints
contained in this specification, but is not
supported by the ebXML Message Service
processing the message.

Inconsistent Element content or
attribute value
inconsistent with
other elements or
attributes.

Although the document is well formed and valid,
according to the rules and constraints contained
in this specification the content of an element or
attribute is inconsistent with the content of other
elements or their attributes.

OtherXml Other error in an
element content or
attribute value.

Although the document is well formed and valid,
the element content or attribute value contains
values that do not conform to the rules and
constraints contained in this specification and is
not covered by other error codes. The content
of the Error element should be used to indicate
the nature of the problem.

8.8.5.2 Non-XML Document Errors 1337

The following are error codes that identify errors not associated with the ebXML elements: 1338
 1339

 Error Code Short Description Long Description

DeliveryFailure Message Delivery
Failure

A message has been received that either
probably or definitely could not be sent to its
next destination. Note: if severity is set to Warning
then there is a small probability that the message
was delivered.

TimeToLiveExpired Message Time To
Live Expired

A message has been received that arrived after
the time specified in the TimeToLive element of
the MessageHeader element

SecurityFailure Message Security
Checks Failed

Validation of signatures or checks on the
authenticity or authority of the sender of the
message have failed.

Unknown Unknown Error Indicates that an error has occurred that is not
covered explicitly by any of the other errors.
The content of the Error element should be
used to indicate the nature of the problem.

8.9 ds:Signature element 1340

An ebXML Message may be digitally signed to provide security countermeasures. Zero or more 1341
ds:Signature elements, belonging to the [XMLDSIG] defined namespace MAY be present in the SOAP 1342

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 35 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

Header. The ds:Signature element MUST be namespace qualified in accordance with [XMLDSIG]. The 1343
structure and content of the ds:Signature element MUST conform to the [XMLDSIG] specification. If 1344
there is more than one ds:Signature element contained within the SOAP Header, the first MUST 1345
represent the digital signature of the ebXML Message as signed by the From Party MSH in conformance 1346
with section 12. Additional ds:Signature elements MAY be present, but their purpose is undefined by 1347
this specification. 1348

Refer to section 12 for a detailed discussion on how to construct the ds:Signature element when digitally 1349
signing an ebXML Message. 1350

8.10 SOAP Body Extensions 1351

The SOAP Body element is the second child element of the SOAP Envelope element. It MUST have a 1352
namespace qualifier that matches the SOAP Envelope namespace declaration for the namespace 1353
"http://schemas.xmlsoap.org/soap/envelope/". For example: 1354
 1355
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" …> 1356
 <SOAP-ENV:Header>…</SOAP-ENV:Header> 1357
 <SOAP-ENV:Body>…</SOAP-ENV:Body> 1358
 </SOAP-ENV:Envelope> 1359

The SOAP Body element contains the ebXML SOAP Body extension element content as follows: 1360
• Manifest element 1361
• StatusRequest element 1362
• StatusResponse element 1363
• DeliveryReceipt element 1364

Each is defined in the following sections. 1365

8.11 Manifest element 1366

The Manifest element is a composite element consisting of one or more Reference elements. Each 1367
Reference element identifies data associated with the message, whether included as part of the 1368
message as payload document(s) contained in a Payload Container, or remote resources accessible via 1369
a URL. It is RECOMMENDED that no payload data be present in the SOAP Body. The purpose of the 1370
Manifest is as follows: 1371
• to make it easier to directly extract a particular payload associated with this ebXML Message, 1372
• to allow an application to determine whether it can process the payload without having to parse it. 1373

The Manifest element is comprised of the following attributes and elements, each of which is described 1374
below: 1375
• an id attribute 1376
• a REQUIRED version attribute (See section 8.4.10 for details) 1377
• one or more Reference elements 1378
• #wildcard 1379

8.11.1 id attribute 1380

The Manifest element MUST have an id attribute that is an XML ID (See section 8.2.5). 1381

8.11.2 #wildcard element 1382

Refer to section 8.2.4 for discussion of #wildcard element handling. 1383

8.11.3 Reference element 1384

The Reference element is a composite element consisting of the following subordinate elements: 1385
• Schema - information about the schema(s) that define the instance document identified in the parent 1386

Reference element 1387

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 36 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

• Description - a textual description of the payload object referenced by the parent Reference element 1388
• #wildcard - any namespace-qualified element content belonging to a foreign namespace 1389

The Reference element itself is an [XLINK] simple link. XLINK is presently a Candidate Recommendation 1390
(CR) of the W3C. It should be noted that the use of XLINK in this context is chosen solely for the purpose 1391
of providing a concise vocabulary for describing an association. Use of an XLINK processor or engine is 1392
NOT REQUIRED, but MAY prove useful in certain implementations. 1393

The Reference element has the following attribute content in addition to the element content described 1394
above: 1395
• id - an XML ID for the Reference element, 1396
• xlink:type - this attribute defines the element as being an XLINK simple link. It has a fixed value of 1397

'simple', 1398
• xlink:href - this REQUIRED attribute has a value that is the URI of the payload object referenced. It 1399

SHALL conform to the [XLINK] specification criteria for a simple link. 1400
• xlink:role - this attribute identifies some resource that describes the payload object or its purpose. If 1401

present, then it SHALL have a value that is a valid URI in accordance with the [XLINK] specification, 1402
• Any other namespace-qualified attribute MAY be present. A Receiving MSH MAY choose to ignore 1403

any foreign namespace attributes other than those defined above. 1404

8.11.3.1 Schema element 1405

If the item being referenced has schema(s) of some kind that describe it (e.g. an XML Schema, DTD, or a 1406
database schema), then the Schema element SHOULD be present as a child of the Reference element. 1407
It provides a means of identifying the schema and its version defining the payload object identified by the 1408
parent Reference element. The Schema element contains the following attributes: 1409
• location - the REQUIRED URI of the schema 1410
• version – a version identifier of the schema 1411

8.11.3.2 Description element 1412

The Reference element MAY contain zero or more Description elements. The Description is a textual 1413
description of the payload object referenced by the parent Reference element. The language of the 1414
description is defined by a REQUIRED xml:lang attribute. The xml:lang attribute MUST comply with the 1415
rules for identifying languages specified in [XML]. This element is provided to allow a human readable 1416
description of the payload object identified by the parent Reference element. If multiple Description 1417
elements are present, each SHOULD have a unique xml:lang attribute value. An example of a 1418
Description element follows. 1419
 1420
 <eb:Description xml:lang=”en-gb”>Purchase Order for 100,000 widgets</eb:Description> 1421

8.11.3.3 #wildcard element 1422

Refer to section 8.2.4 for discussion of #wildcard element handling. 1423

8.11.4 References included in a Manifest 1424

The designer of the business process or information exchange that is using ebXML Messaging decides 1425
what payload data is referenced by the Manifest and the values to be used for xlink:role. 1426

8.11.5 Manifest Validation 1427

If an xlink:href attribute contains a URI that is a content id (URI scheme "cid") then a MIME part with 1428
that content-id MUST be present in the Payload Container of the message. If it is not, then the error 1429
SHALL be reported to the From Party with an errorCode of MimeProblem and a severity of Error. 1430

If an xlink:href attribute contains a URI that is not a content id (URI scheme "cid"), and that URI cannot 1431
be resolved, then it is an implementation decision on whether to report the error. If the error is to be 1432

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 37 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

reported, then it SHALL be reported to the From Party with an errorCode of MimeProblem and a 1433
severity of Error. 1434

8.11.6 Manifest Sample 1435

The following fragment demonstrates a typical Manifest for a message with a single payload MIME body 1436
part: 1437
 1438
 <eb:Manifest eb:id="Manifest" eb:version="1.0"> 1439
 <eb:Reference eb:id="pay01" 1440
 xlink:href="cid:payload-1" 1441
 xlink:role="http://regrep.org/gci/purchaseOrder"> 1442
 <eb:Schema eb:location="http://regrep.org/gci/purchaseOrder/po.xsd" eb:version="1.0"/> 1443
 <eb:Description xml:lang="en-us">Purchase Order for 100,000 widgets</eb:Description> 1444
 </eb:Reference> 1445
 </eb:Manifest> 1446

8.12 StatusRequest Element 1447

The StatusRequest element is an immediate child of a SOAP Body and is used to identify an earlier 1448
message whose status is being requested (see section 9.1). 1449

The StatusRequest element consists of the following elements and attributes: 1450
• a REQUIRED RefToMessageId element 1451
• a REQUIRED version attribute (See section 8.4.10 for details) 1452
• an id attribute (See section 8.2.5 for details) 1453

8.12.1 StatusRequest Sample 1454

An example of the StatusRequest element is given below: 1455
 1456
 <eb:StatusRequest eb:version="1.0" > 1457
 <eb:RefToMessageId>323210:e52151ec74:-7ffc@xtacy</eb:RefToMessageId> 1458
 </eb:StatusRequest> 1459

8.13 StatusResponse element 1460

The StatusResponse element is used by one MSH to respond to a request on the status of the 1461
processing of a message that was previously sent (see also section 9.1). 1462

The StatusResponse element consists of the following elements and attributes: 1463
• a REQUIRED RefToMessageId element 1464
• a Timestamp element 1465
• a REQUIRED version attribute (See section 8.4.10 for details) 1466
• a messageStatus attribute 1467
• an id attribute (See section 8.2.5 for details) 1468

8.13.1 RefToMessageId element 1469

A REQUIRED RefToMessageId element that contains the MessageId of the message whose status is 1470
being reported. 1471

8.13.2 Timestamp element 1472

The Timestamp element contains the time that the message, whose status is being reported, was 1473
received (section 8.4.6.2.). This MUST be omitted if the message whose status is being reported is 1474
NotRecognized or the request was UnAuthorized. 1475

8.13.3 messageStatus attribute 1476

The messageStatus attribute identifies the status of the message that is identified by the 1477
RefToMessageId element. It SHALL be set to one of the following values: 1478

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 38 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

• UnAuthorized – the Message Status Request is not authorized or accepted 1479
• NotRecognized – the message identified by the RefToMessageId element in the StatusResponse 1480

element is not recognized 1481
• Received – the message identified by the RefToMessageId element in the StatusResponse 1482

element has been received by the MSH 1483

Note: if a Message Status Request is sent after the elapsed time indicated by persistDuration has passed since the 1484
message being queried was sent, then the Message Status Response may indicate that the MessageId was 1485
NotRecognized as the MessageId is no longer in persistent storage. 1486

8.13.4 StatusResponse Sample 1487

An example of the StatusResponse element is given below: 1488
 1489
 <eb:StatusResponse eb:version="1.0" eb:messageStatus="Received"> 1490
 <eb:RefToMessageId>323210:e52151ec74:-7ffc@xtacy</eb:RefToMessageId> 1491
 <eb:Timestamp>2001-03-09T12:22:30Z</eb:Timestamp> 1492
 </eb:StatusResponse> 1493

8.14 DeliveryReceipt element 1494

The DeliveryReceipt element is an optional element that is used by the To Party that received a 1495
message, to let the From Party that sent the original message, know that the message was received. The 1496
RefToMessageId in a message containing a DeliveryReceipt element is used to identify the message 1497
being for which the receipt is being generated by its MessageId. 1498

The DeliveryReceipt element consists of the following elements and attributes: 1499
• an id attribute (See section 8.2.5) 1500
• a REQUIRED version attribute (See section 8.4.10 for details) 1501
• a Timestamp element 1502
• zero or more ds:Reference element(s) 1503

8.14.1 Timestamp element 1504

The Timestamp element is a value representing the time that the message for which a DeliveryReceipt 1505
element is being generated was received by the To Party. It must conform to an [XMLSchema] 1506
timeInstant. 1507

8.14.2 ds:Reference element 1508

An Acknowledgment MAY be used to enable non-repudiation of receipt by a MSH by including one or 1509
more Reference elements from the [XMLDSIG] namespace (http://www.w3.org/2000/09/xmldsig#) taken, 1510
or derived, from the message being acknowledged. The Reference element(s) MUST be namespace 1511
qualified to the aforementioned namespace and MUST conform to the XML Signature [XMLDSIG] 1512
specification. 1513

8.14.3 DeliveryReceipt Sample 1514

An example of the DeliveryReceipt element is given below: 1515
 1516
 <eb:DeliveryReceipt eb:version="1.0"> 1517
 <eb:Timestamp>2001-03-09T12:22:30Z</eb:Timestamp> 1518
 <ds:Reference URI="cid://blahblahblah/"> 1519
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/> 1520
 <ds:DigestValue>...</ds:DigestValue> 1521
 </ds:Reference> 1522
 </eb:DeliveryReceipt> 1523

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 39 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

8.15 Combining ebXML SOAP Extension Elements 1524

This section describes how the various ebXML SOAP extension elements may be used in combination. 1525

8.15.1 Manifest element 1526

The Manifest element MUST be present if there is any data associated with the message that is not 1527
present in the Header Container. This applies specifically to data in the Payload Container or elsewhere, 1528
e.g. on the web. 1529

8.15.2 MessageHeader element 1530

The MessageHeader element MUST be present in every message. 1531

8.15.3 TraceHeaderList element 1532

The TraceHeaderList element MAY be present in any message. It MUST be present if the message is 1533
being sent reliably (see section 10) or over multiple hops (see section 8.5.4). 1534

8.15.4 StatusRequest element 1535

A StatusRequest element MUST NOT be present with the following elements: 1536
• a Manifest element 1537
• an ErrorList element 1538

8.15.5 StatusResponse element 1539

This element MUST NOT be present with the following elements: 1540
• a Manifest element 1541
• a StatusRequest element 1542
• an ErrorList element with a highestSeverity attribute set to Error 1543

8.15.6 ErrorList element 1544

If the highestSeverity attribute on the ErrorList is set to Warning, then this element MAY be present 1545
with any other element. 1546

If the highestSeverity attribute on the ErrorList is set to Error, then this element MUST NOT be present 1547
with the following: 1548
• a Manifest element 1549
• a StatusResponse element 1550

8.15.7 Acknowledgment element 1551

An Acknowledgment element MAY be present on any message. 1552

8.15.8 Delivery Receipt element 1553

A DeliveryReceipt element may be present on any message. 1554

8.15.9 Signature element 1555

One or more ds:Signature elements MAY be present on any message. 1556

8.15.10 Via element 1557

One-and-only-one Via element MAY be present in any message.1558

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 40 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

9 Message Service Handler Services 1559

The Message Service Handler MAY support two services that are designed to help provide smooth 1560
operation of a Message Handling Service implementation: 1561
• Message Status Request 1562
• Message Service Handler Ping 1563

If a Receiving MSH does not support the service requested, it SHOULD return a SOAP fault with a 1564
faultCode of MustUnderstand. Each service is described below. 1565

9.1 Message Status Request Service 1566

The Message Status Request Service consists of the following: 1567
• A Message Status Request message containing details regarding a message previously sent is sent 1568

to a Message Service Handler (MSH) 1569
• The Message Service Handler receiving the request responds with a Message Status Response 1570

message. 1571

A Message Service Handler SHOULD respond to Message Status Requests for messages that have 1572
been sent reliably (see section 10) and the MessageId in the RefToMessageId is present in persistent 1573
storage (see section 10.1.1). 1574

A Message Service Handler MAY respond to Message Status Requests for messages that have not been 1575
sent reliably. 1576

A Message Service SHOULD NOT use the Message Status Request Service to implement Reliable 1577
Messaging. 1578

9.1.1 Message Status Request Message 1579

A Message Status Request message consists of an ebXML Message containing no ebXML Payload and 1580
the following elements in the SOAP Header: 1581
• a MessageHeader element 1582
• a TraceHeaderList element 1583
• a StatusRequest element 1584
• a ds:Signature element 1585

The TraceHeaderList and the ds:Signature elements MAY be omitted (see sections 8.5 and 8.15.8). 1586

The MessageHeader element MUST contain the following: 1587
• a From element that identifies the Party that created the message status request message 1588
• a To element identifying a Party who should receive the message. If a TraceHeader was present on 1589

the message whose status is being checked, this MUST be set using the Receiver of the message. 1590
All PartyId elements present in the Receiver element SHOULD be included in this To element. 1591

• a Service element that contains: uri:www.ebxml.org/messageService/ 1592
• an Action element that contains StatusRequest 1593

The message is then sent to the To Party. 1594

The RefToMessageId element in StatusRequest element in the SOAP Body contains the MessageId of 1595
the message whose status is being queried. 1596

9.1.2 Message Status Response Message 1597

Once the To Party receives the Message Status Request message, they SHOULD generate a Message 1598
Status Response message consisting of no ebXML Payload and the following elements in the SOAP 1599
Header and Body. 1600

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 41 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

• a MessageHeader element 1601
• a TraceHeaderList element 1602
• an Acknowledgment element 1603
• a StatusResponse element (see section 8.13) 1604
• a ds:Signature element 1605

The TraceHeaderList, Acknowledgment and ds:Signature elements MAY be omitted (see sections 1606
8.5, 8.15.7 and 8.15.8). 1607

The MessageHeader element MUST contain the following: 1608
• a From element that identifies the sender of the Message Status Response message 1609
• a To element that is set to the value of the From element in the Message Status Request message 1610
• a Service element that contains the value: uri:www.ebxml.org/messageService/ 1611
• an Action element that contains StatusResponse 1612
• a RefToMessageId that identifies the Message Status Request message. 1613

The message is then sent to the To Party. 1614

9.1.3 Security Considerations 1615

Parties who receive a Message Status Request message SHOULD always respond to the message. 1616
However, they MAY ignore the message instead of responding with messageStatus set to 1617
UnAuthorized if they consider that the sender of the message is unauthorized. The decision process 1618
that results in this course of action is implementation dependent. 1619

9.2 Message Service Handler Ping Service 1620

The Message Service Handler Ping Service enables one MSH to determine if another MSH is operating. 1621
It consists of: 1622
• sending a Message Service Handler Ping message to a MSH, and 1623
• the MSH that receives the Ping responding with a Message Service Handler Pong message. 1624

9.2.1 Message Service Handler Ping Message 1625

A Message Service Handler Ping (MSH Ping) message consists of an ebXML Message containing no 1626
ebXML Payload and the following elements in the SOAP Header: 1627
• a MessageHeader element 1628
• a TraceHeaderList element 1629
• a ds:Signature element 1630

The TraceHeaderList and the ds:Signature elements MAY be omitted (see sections 8.5 and 8.15.8). 1631

The MessageHeader element MUST contain the following: 1632
• a From element that identifies the Party creating the MSH Ping message 1633
• a To element that identifies the Party that is being sent the MSH Ping message 1634
• a CPAId element 1635
• a ConversationId element 1636
• a Service element that contains: uri:www.ebxml.org/messageService/ 1637
• an Action element that contains Ping 1638

The message is then sent to the To Party. 1639

9.2.2 Message Service Handler Pong Message 1640

Once the To Party receives the MSH Ping message, they MAY generate a Message Service Handler 1641
Pong (MSH Pong) message consisting of an ebXML Message containing no ebXML Payload and the 1642
following elements in the SOAP Header: 1643

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 42 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

• a MessageHeader element 1644
• a TraceHeaderList element 1645
• an Acknowledgment element 1646
• an OPTIONAL ds:Signature element 1647

The TraceHeaderList, Acknowledgment and ds:Signature elements MAY be omitted (see sections 1648
8.5, 8.15.7 and 8.15.8). 1649

The MessageHeader element MUST contain the following: 1650
• a From element that identifies the creator of the MSH Pong message 1651
• a To element that identifies a Party that generated the MSH Ping message 1652
• a CPAId element 1653
• a ConversationId element 1654
• a Service element that contains the value: uri:www.ebxml.org/messageService/ 1655
• an Action element that contains the value Pong 1656
• a RefToMessageId that identifies the MSH Ping message. 1657

The message is then sent to the To Party. 1658

9.2.3 Security Considerations 1659

Parties who receive a MSH Ping message SHOULD always respond to the message. However, there is 1660
a risk that some parties might use the MSH Ping message to determine the existence of a Message 1661
Service Handler as part of a security attack on that MSH. Therefore, recipients of a MSH Ping MAY 1662
ignore the message if they consider that the sender of the message received is unauthorized or part of 1663
some attack. The decision process that results in this course of action is implementation dependent. 1664

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 43 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

10 Reliable Messaging 1665

Reliable Messaging defines an interoperable protocol such that the two Message Service Handlers 1666
(MSH) can “reliably” exchange messages that are sent using “reliable messaging” semantics, resulting in 1667
the To Party receiving the message once and only once. 1668

Reliability is achieved by a Receiving MSH responding to a message with an Acknowledgment Message. 1669

10.1.1 Persistent Storage and System Failure 1670

A MSH that supports Reliable Messaging MUST keep messages that are sent or received reliably in 1671
persistent storage. In this context persistent storage is a method of storing data that does not lose 1672
information after a system failure or interruption. 1673

This specification recognizes that different degrees of resilience may be realized depending on the 1674
technology that is used to persist the data. However, as a minimum, persistent storage that has the 1675
resilience characteristics of a hard disk (or equivalent) SHOULD be used. It is strongly RECOMMENDED 1676
though that implementers of this specification use technology that is resilient to the failure of any single 1677
hardware or software component. 1678

After a system interruption or failure, a MSH MUST ensure that messages in persistent storage are 1679
processed in the same way as if the system failure or interruption had not occurred. How this is done is 1680
an implementation decision. 1681

In order to support the filtering of duplicate messages, a Receiving MSH SHOULD save the MessageId 1682
in persistent storage. It is also RECOMMENDED that the following be kept in Persistent Storage: 1683
• the complete message, at least until the information in the message has been passed to the 1684

application or other process that needs to process it 1685
• the time the message was received, so that the information can be used to generate the response to 1686

a Message Status Request (see section 9.1) 1687
• complete response message 1688

10.1.2 Methods of Implementing Reliable Messaging 1689

Support for Reliable Messaging MAY be implemented in one of the following two ways: 1690
• using the ebXML Reliable Messaging protocol, or 1691
• using ebXML SOAP structures together with commercial software products that are designed to 1692

provide reliable delivery of messages using alternative protocols. 1693

10.2 Reliable Messaging Parameters 1694

This section describes the parameters required to control reliable messaging. This parameter information 1695
can be specified in the CPA or in the MessageHeader (section 8.4.2). 1696

10.2.1 Delivery Semantics 1697

The deliverySemantics value MUST be used by the From Party MSH to indicate whether the Message 1698
MUST be sent reliably. Valid values are: 1699
• OnceAndOnlyOnce - The message must be sent using a reliableMessagingMethod that will result 1700

in the application or other process at the To Party receiving the message once and only once 1701
• BestEffort - The reliable delivery semantics are not used. In this case, the value of 1702

reliableMessagingMethod is ignored. 1703

The value for deliverySemantics is specified in the CPA or in MessageHeader (section 8.4.2). The 1704
default value for deliverySemantics is BestEffort. 1705

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 44 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

If deliverySemantics is set to OnceAndOnlyOnce, the From Party MSH and the To Party MSH must 1706
adopt a reliable messaging behavior that describes how messages are resent in the case of failure. The 1707
deliverySemantic value of OnceAndOnlyOnce will cause duplicate messages to be ignored. 1708

If deliverySemantics is set to BestEffort, a MSH that received a message that it is unable to deliver 1709
MUST NOT take any action to recover or otherwise notify anyone of the problem. The MSH that sent the 1710
message MUST NOT attempt to recover from any failure. This means that duplicate messages might be 1711
delivered to an application and persistent storage of messages is not required. 1712

If the To Party is unable to support the type of delivery semantics requested, the To Party SHOULD 1713
report the error to the From Party using an ErrorCode of NotSupported and a Severity of Error. 1714

10.2.2 mshTimeAccuracy 1715

The mshTimeAccuracy parameter indicates the minimum accuracy a Receiving MSH keeps the clocks it 1716
uses when checking, for example, TimeToLive. Its value is in the format “mm:ss” which indicates the 1717
accuracy in minutes and seconds. 1718

10.2.3 TimeToLive 1719

The TimeToLive value indicates the time by which a message should be delivered to and processed by 1720
the To Party. It must conform to an XML Schema timeInstant. 1721

In this context, the TimeToLive has expired if the time of the internal clock of the Receiving MSH is 1722
greater than the value of TimeToLive for the message. 1723

When setting a value for TimeToLive it is RECOMMENDED that the From Party’s MSH takes into 1724
account the accuracy of its own internal clocks as well as the mshTimeAccuracy parameter for the 1725
Receiving MSH indicating the accuracy to which a MSH will keep its internal clocks. How a MSH ensures 1726
that its internal clocks are kept sufficiently accurate is an implementation decision. 1727

If the To Party’s MSH receives a message where TimeToLive has expired, it SHALL send a message to 1728
the From Party MSH, reporting that the TimeToLive of the message has expired. This message SHALL 1729
be comprised of an ErrorList containing an error that has the errorCode attribute set to 1730
TimeToLiveExpired, and the severity attribute set to Error. 1731

10.2.4 reliableMessagingMethod 1732

The reliableMessagingMethod attribute SHALL have one of the following values: 1733
• ebXML 1734
• Transport 1735

The default implied value for this attribute is ebXML and is case sensitive. Refer to section 8.7.4 for 1736
discussion of the use of this attribute. 1737

10.2.5 ackRequested 1738

The ackRequested value is used by the Sending MSH to request that the Receiving MSH returns an 1739
acknowledgment message with an Acknowledgment element. 1740

Valid values for ackRequested are: 1741

• Unsigned - requests that an unsigned Acknowledgement is requested 1742

• Signed - requests that a signed Acknowledgement is requested, or 1743

• None - indicates that no Acknowledgement is requested. 1744

The default value is None. 1745

10.2.6 retries 1746

The retries value is an integer value that specifies the maximum number of times a Sending MSH 1747
SHOULD attempt to redeliver an unacknowledged message using the same Communications Protocol. 1748

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 45 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

10.2.7 retryInterval 1749

The retryInterval value is a time value, expressed as a duration in accordance with the [XMLSchema] 1750
timeDuration data type. This value specifies the minimum time the Sending MSH MUST wait between 1751
retries, if an Acknowledgment Message is not received. 1752

10.2.8 persistDuration 1753

The persistDuration value is the minimum length of time, expressed as a [XMLSchema] timeDuration, 1754
that data from a reliably sent Message, is kept in Persistent Storage by a Receiving MSH. 1755

If the persistDuration has passed since the message was first sent, a Sending MSH SHOULD NOT 1756
resend a message with the same MessageId. 1757

If a message cannot be sent successfully before persistDuration has passed, then the Sending MSH 1758
should report a delivery failure (see section 10.4). 1759

10.3 ebXML Reliable Messaging Protocol 1760

The ebXML Reliable Messaging Protocol described in this section MUST be followed if the 1761
deliverySemantics parameter/element is set to OnceAndOnlyOnce and the reliableMessagingMethod 1762
parameter/element is set to ebXML (the default). 1763

The ebXML Reliable Messaging Protocol is illustrated by the figure below. 1764

 1765

Figure 10-1 Indicating that a message has been received 1766

The receipt of the Acknowledgment Message indicates that the message being acknowledged has been 1767
successfully received and either processed or persisted by the Receiving MSH. 1768

An Acknowledgment Message MUST contain a MessageData element with a RefToMessageId that 1769
contains the same value as the MessageId element in the message being acknowledged. 1770

10.3.1 Sending Message Behavior 1771

If a MSH is given data by an application that needs to be sent reliably (i.e. the deliverySemantics is set 1772
to OnceAndOnlyOnce), then the MSH MUST do the following: 1773

1. Create a message from components received from the application that includes a TraceHeader 1774
element identifying the sender and the receiver as described in Section 8.5.2 TraceHeader element. 1775

2. Save the message in persistent storage (see section 10.1.1) 1776

3. Send the message to the Receiver MSH 1777

4. Wait for the Receiver MSH to return an Acknowledgment Message and, if it does not or a transient 1778
error is returned, then take the appropriate action as described in section 10.3.4 1779

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 46 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

10.3.2 Receiving Message Behavior 1780

If the deliverySemantics for the received message is set to OnceAndOnlyOnce then do the following: 1781

1. If the message is just an acknowledgement (i.e. the Service element is set to 1782
http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment and Action is set to 1783
Acknowledgment), then: 1784

a) Look for a message in persistent storage that has a MessageId that is the same as the value of 1785
RefToMessageId on the received Message 1786

b) If a message is found in persistent storage then mark the persisted message as delivered 1787

2. Otherwise, if the message is not just an acknowledgement, then check to see if the message is a 1788
duplicate (e.g. there is a MessageId held in persistent storage that was received earlier that 1789
contains the same value for the MessageId) 1790

c) If the message is not a duplicate then do the following: 1791

i) Save the MessageId of the received message in persistent storage. As an implementation 1792
decision, the whole message MAY be stored if there are other reasons for doing so. 1793

ii) If the received message contains a RefToMessageId element then do the following: 1794

(1) Look for a message in persistent storage that has a MessageId that is the same as the 1795
value of RefToMessageId on the received Message 1796

(2) If a message is found in persistent storage then mark the persisted message as delivered 1797

iii) Generate an Acknowledgement Message in response (see section 10.3.3). 1798

d) If the message is a duplicate, then do the following: 1799

i) Look in persistent storage for the first response to the received message and resend it (i.e. it 1800
contains a RefToMessageId that matches the MessageId of the received message) 1801

ii) If a message was found in persistent storage then resend the persisted message back to the 1802
MSH that sent the received message, 1803

iii) If no message was found in persistent storage, then: 1804

(1) if syncReply is set to True and if the CPA indicates an application response is included, 1805
ignore the received message (i.e. no message was generated in response to the 1806
message, or the processing of the earlier message is not yet complete) 1807

(2) if syncReply is set to False then generate an Acknowledgement Message (see section 1808
10.3.3). 1809

10.3.3 Generating an Acknowledgement Message 1810

An Acknowledgement Message MUST be generated whenever a message is received with: 1811
• deliverySemantics set to OnceAndOnlyOnce and 1812
• reliableMessagingMethod set to ebXML (the default). 1813

As a minimum, it MUST contain a MessageData element with a RefToMessageId that contains the same 1814
value as the MessageId element in the message being acknowledged. 1815

If ackRequested in the Via of the received message is set to Signed or Unsigned then the 1816
acknowledgement message MUST also contain an Acknowledgement element. 1817

Depending on the value of the syncReply parameter, the Acknowledgement Message can also be sent 1818
at the same time as the response to the received message. In this case, the values for the 1819
MessageHeader elements of the Acknowledgement Message are set by the designer of the Service. 1820

If an Acknowledgment element is being sent on its own, then the value of the MessageHeader 1821
elements MUST be set as follows: 1822

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 47 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

• The Service element MUST be set to: uri:www.ebxml.org/messageService/ 1823
• The Action element MUST be set to Acknowledgment. 1824
• The From element MAY be populated with the To element extracted from the message received, or it 1825

MAY be set using the Receiver from the last TraceHeader in the message that has just been 1826
received. In either case, all PartyId elements from the message received SHOULD be included in this 1827
From element. 1828

• The To element MAY be populated with the From element extracted from the message received, or it 1829
MAY be set using the Sender from the last TraceHeader in the message that has just been received. 1830
In either case, all PartyId elements from the message received SHOULD be included in this To 1831
element. 1832

• The RefToMessageId element MUST be set to the MessageId of the message that has just been 1833
received 1834

10.3.4 Resending Lost Messages and Duplicate Filtering 1835

This section describes the behavior that is required by the sender and receiver of a message in order to 1836
handle when messages are lost. A message is "lost" when a Sending MSH does not receive a response 1837
to a message. For example, it is possible that a message was lost, for example: 1838

 1839

Figure 10-2 Undelivered Message 1840

It is also possible that the Acknowledgment Message was lost, for example: 1841

 1842

Figure 10-3 Lost Acknowledgment Message 1843

The rules that apply are as follows: 1844

• The Sending MSH MUST resend the original message if an Acknowledgment Message has not been 1845
received from the Receiving MSH and the following are both true: 1846

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 48 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

a) At least the time specified in the retryInterval has passed since the message was last sent, and 1847

b) The message has been resent less than the number of times specified in the retries Parameter 1848

• If the Sending MSH does not receive an Acknowledgment Message after the maximum number of 1849
retries, the Sending MSH SHOULD notify the application and/or system administrator function of the 1850
failure to receive an acknowledgement. 1851

• If the Sending MSH detects an unrecoverable communications protocol error at the transport protocol 1852
level, the Sending MSH SHOULD resend the message. 1853

10.3.5 Duplicate Message Handling 1854

In the context of this specification, a duplicate message is: 1855
• an “identical message” is a message that contains, apart from an additional TraceHeader element, 1856

the same ebXML SOAP Header, Body and ebXML Payload as the earlier message that was sent. 1857
• a “duplicate message” is a message that contains the same MessageId as an earlier message that 1858

was received. 1859
• the “first message” is the message with the earliest Timestamp in the MessageData element that 1860

has the same RefToMessageId as the duplicate message. 1861

 1862

 1863

Figure 10-4 Resending Unacknowledged Messages 1864

The diagram above shows the behavior that MUST be followed by the sending and Receiving MSH that 1865
are sent with deliverySemantics of OnceAndOnlyOnce. Specifically: 1866

1) The sender of the message (e.g. Party A) MUST resend the “identical message” if no 1867
Acknowledgment Message is received. 1868

2) When the recipient (Party B) of the message receives a “duplicate message”, it MUST resend to the 1869
sender (Party A) a message identical to the first message that was sent to the sender Party A). 1870

3) The recipient of the message (Party B) MUST NOT forward the message a second time to the 1871
application/process. 1872

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 49 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

10.4 Failed Message Delivery 1873

If a message sent with deliverySemantics set to OnceAndOnlyOnce cannot be delivered, the MSH or 1874
process SHOULD send a delivery failure notification to the From Party. The delivery failure notification 1875
message contains: 1876
• a From element that identifies the Party who detected the problem 1877
• a To element that identifies the From Party that created the message that could not be delivered 1878
• a Service element and Action element set as described in 11.5 1879
• an Error element with a severity of: 1880

- Error if the party who detected the problem could not transmit the message (e.g. the 1881
communications transport was not available) 1882

- Warning if the message was transmitted, but an acknowledgment message was not received. 1883
This means the message probably was not delivered although there is a small probability it was. 1884

• an ErrorCode of DeliveryFailure 1885

It is possible that an error message with an Error element with an ErrorCode set to DeliveryFailure 1886
cannot be delivered successfully for some reason. If this occurs, then the From Party that is the ultimate 1887
destination for the error message SHOULD be informed of the problem by other means. How this is done 1888
is outside the scope of this specification. 1889

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 50 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

11 Error Reporting and Handling 1890

This section describes how one ebXML Message Service Handler (MSH) reports errors it detects in an 1891
ebXML Message to another MSH. The ebXML Message Service error reporting and handling is to be 1892
considered as a layer of processing above the SOAP processor layer. This means the ebXML MSH is 1893
essentially an application-level handler of a SOAP Message from the perspective of the SOAP Processor. 1894
The SOAP processor MAY generate SOAP Fault messages if it is unable to process the message. A 1895
Sending MSH MUST be prepared to accept and process these SOAP Faults. 1896

It is possible for the ebXML MSH software to cause a SOAP fault to be generated and returned to the 1897
sender of a SOAP Message. In this event, the returned message MUST conform to the [SOAP] 1898
specification processing guidelines for SOAP Faults. 1899

An ebXML SOAP Message that reports an error that has a highestSeverity of Warning SHALL NOT be 1900
reported or returned as a SOAP Fault. 1901

11.1 Definitions 1902

For clarity, two phrases are defined that are used in this section: 1903
• “message in error” - A message that contains or causes an error of some kind 1904
• “message reporting the error” - A message that contains an ebXML ErrorList element that describes 1905

the error(s) found in a message in error. 1906

11.2 Types of Errors 1907

One MSH needs to report to another MSH errors in a message in error. For example, errors associated 1908
with: 1909
• ebXML namespace qualified content of the SOAP Message document (see section 8) 1910
• reliable messaging failures (see section 10) 1911
• security (see section 12) 1912

Unless specified to the contrary, all references to "an error" in the remainder of this specification imply 1913
any or all of the types of errors listed above. 1914

Errors associated with Data Communication protocols are detected and reported using the standard 1915
mechanisms supported by that data communication protocol and do not use the error reporting 1916
mechanism described here. 1917

11.3 When to generate Error Messages 1918

When a MSH detects an error in a message it is strongly RECOMMENDED that the error is reported to 1919
the MSH that sent the message that had an error if: 1920
• the Error Reporting Location (see section 11.4) to which the message reporting the error should be 1921

sent can be determined, and 1922
• the message in error does not have an ErrorList element with highestSeverity set to Error. 1923

If the Error Reporting Location cannot be found or the message in error has an ErrorList element with 1924
highestSeverity set to Error, it is RECOMMENDED that: 1925
• the error is logged, and 1926
• the problem is resolved by other means, and 1927
• no further action is taken. 1928

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 51 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

11.3.1 Security Considerations 1929

Parties that receive a Message containing an error in the header SHOULD always respond to the 1930
message. However, they MAY ignore the message and not respond if they consider that the message 1931
received is unauthorized or is part of some security attack. The decision process resulting in this course 1932
of action is implementation dependent. 1933

11.4 Identifying the Error Reporting Location 1934

The Error Reporting Location is a URI that is specified by the sender of the message in error that 1935
indicates where to send a message reporting the error. 1936

The ErrorURI implied by the CPA, identified by the CPAId on the message, SHOULD be used. If no 1937
ErrorURI is implied by the CPA and a TraceHeaderList is present in the message in error, the value of 1938
the Location element in the Sender of the topmost TraceHeader MUST be used. Otherwise, the 1939
recipient MAY resolve an ErrorURI using the From element of the message in error. If this is not 1940
possible, no error will be reported to the sending Party. 1941

Even if the message in error cannot be successfully analyzed or parsed, MSH implementers SHOULD try 1942
to determine the Error Reporting Location by other means. How this is done is an implementation 1943
decision. 1944

11.5 Service and Action Element Values 1945

An ErrorList element can be included in a SOAP Header that is part of a message being sent as a result 1946
of processing of an earlier message. In this case, the values for the Service and Action elements are 1947
set by the designer of the Service. 1948

An ErrorList element can also be included in an SOAP Header that is not being sent as a result of the 1949
processing of an earlier message. In this case, if the highestSeverity is set to Error, the values of the 1950
Service and Action elements MUST be set as follows: 1951
• The Service element MUST be set to: uri:www.ebxml.org/messageService/ 1952
• The Action element MUST be set to MessageError. 1953

If the highestSeverity is set to Warning, the Service and Action elements MUST NOT be used. 1954

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 52 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

12 Security 1955

The ebXML Message Service, by its very nature, presents certain security risks. A Message Service may 1956
be at risk by means of: 1957
• Unauthorized access 1958
• Data integrity and/or confidentiality attacks (e.g. through man-in-the-middle attacks) 1959
• Denial-of-Service and spoofing 1960

Each security risk is described in detail in the ebXML Technical Architecture Security Specification 1961
[ebTASEC]. 1962

Each of these security risks MAY be addressed in whole, or in part, by the application of one, or a 1963
combination, of the countermeasures described in this section. This specification describes a set of 1964
profiles, or combinations of selected countermeasures, selected to address key risks based upon 1965
commonly available technologies. Each of the specified profiles includes a description of the risks that 1966
are not addressed. 1967

Application of countermeasures SHOULD be balanced against an assessment of the inherent risks and 1968
the value of the asset(s) that might be placed at risk. 1969

12.1 Security and Management 1970

No technology, regardless of how advanced it might be, is an adequate substitute to the effective 1971
application of security management policies and practices. 1972

It is strongly RECOMMENDED that the site manager of an ebXML Message Service apply due diligence 1973
to the support and maintenance of its; security mechanism, site (or physical) security procedures, 1974
cryptographic protocols, update implementations and apply fixes as appropriate. (See 1975

1905w (1973)ha 0.2895 45 Tw () Tj18 -17.25 TD 0.11 7c 0.3174 Tw (the value of the asset(s) th TD 0w () 6.2895 Tw22) Tj-2 Tj21 0 defini TD -0s6fcllows:et(sÈ Tw (1967) Tj21 0 TD 0 Tc 0.28970 Tw () Tj18 -17.25 TD 0.11 7 Tf-0.213 Tc 0 Tw (12.1) Tj23.25 02 Tw -13.Tc -0.335111 0 TD /F0to addre191871 171c 0.2857 () T j18 -17.25 TD 0.11 8c 0.1713 Tw (No technology, regardless0) gement pol i

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 53 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

An ebXML Message requiring a digital signature SHALL be signed following the process defined in this 1996
section of the specification and SHALL be in full compliance with [XMLDSIG]. 1997

12.3.1.1 Signature Generation 1998

1) Create a ds:SignedInfo element with ds:SignatureMethod, ds:CanonicalizationMethod, and 1999
ds:Reference elements for the SOAP Header and any required payload objects, as prescribed by 2000
[XMLDSIG]. 2001

2) Canonicalize and then calculate the ds:SignatureValue over ds:SignedInfo based on algorithms 2002
specified in ds:SignedInfo as specified in [XMLDSIG]. 2003

3) Construct the ds:Signature element that includes the ds:SignedInfo, ds:KeyInfo 2004
(RECOMMENDED), and ds:SignatureValue elements as specified in [XMLDSIG]. 2005

4) Include the namespace qualified ds:Signature element in the SOAP Header just signed, following 2006
the TraceHeaderList element. 2007

The ds:SignedInfo element SHALL be composed of zero or one ds:CanonicalizationMethod element, 2008
the ds:SignatureMethod and one or more ds:Reference elements. 2009

The ds:CanonicalizationMethod element is defined as OPTIONAL in [XMLDSIG], meaning that the 2010
element need not appear in an instance of a ds:SignedInfo element. The default canonicalization 2011
method that is applied to the data to be signed is [XMLC14N] in the absence of a ds:Canonicalization 2012
element that specifies otherwise. This default SHALL also serve as the default canonicalization method 2013
for the ebXML Message Service. 2014

The ds:SignatureMethod element SHALL be present and SHALL have an Algorithm attribute. The 2015
RECOMMENDED value for the Algorithm attribute is: 2016

 http://www.w3.org/2000/09/xmldsig#dsa-sha1 2017

This RECOMMENDED value SHALL be supported by all compliant ebXML Message Service software 2018
implementations. 2019

The ds:Reference element for the SOAP Header document SHALL have a URI attribute value of "" to 2020
provide for the signature to be applied to the document that contains the ds:Signature element (the 2021
SOAP Header). 2022

The ds:Reference element for the SOAP Header MAY include a Type attribute that has a value 2023
"http://www.w3.org/2000/09/xmldsig#Object" in accordance with [XMLDSIG]. This attribute is purely 2024
informative. It MAY be omitted. Implementations of the ebXML MSH SHALL be prepared to handle 2025
either case. The ds:Reference element MAY include the optional id attribute. 2026

The ds:Reference element for the SOAP Header SHALL include a child ds:Transforms element. The 2027
ds:Transforms element SHALL include two ds:Transform child elements. The first ds:Transform 2028
element SHALL have a ds:Algorithm attribute that has a value of: 2029

http://www.w3.org/2000/09/xmldsig#enveloped-signature 2030

The second ds:Transform element SHALL have a child ds:XPath element that has a value of: 2031

not(ancestor-or-self::eb:TraceHeaderList or 2032
 ancestor-or-self::eb:Via) 2033

The result of the first [XPath] statement excludes the ds:Signature element within which it is contained, 2034
and all its descendants, and the second [XPath] statement excludes the TraceHeaderList and Via 2035
elements and all their descendants, as these elements are subject to change. 2036

Each payload object that requires signing SHALL be represented by a ds:Reference element that SHALL 2037
have a URI attribute that resolves to that payload object. This MAY be either the Content-Id URI of the 2038
MIME body part of the payload object, or a URI that matches the Content-Location of the MIME body part 2039
of the payload object, or a URI that resolves to an external payload object external to the Message 2040

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 54 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

Package. It is strongly RECOMMENDED that the URI attribute value match the xlink:href URI value of the 2041
corresponding Manifest/Reference element for that payload object. However, this is NOT REQUIRED. 2042

Example of digitally signed ebXML SOAP Message: 2043
 2044
<?xml version="1.0" encoding="utf-8"?> 2045
<SOAP-ENV:Envelope 2046
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 2047
 xmlns:eb="http://www.ebxml.org/namespaces/messageHeader" 2048
 xmlns:xlink="http://www.w3.org/1999/xlink"> 2049
 <SOAP-ENV:Header> 2050
 <eb:MessageHeader eb:id="…" eb:version="1.0"> 2051
 ... 2052
 </eb:MessageHeader> 2053
 <eb:TraceHeaderList eb:id="…" eb:version="1.0"> 2054
 <eb:TraceHeader> 2055
 ... 2056
 </eb:TraceHeader> 2057
 </eb:TraceHeaderList> 2058
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 2059
 <ds:SignedInfo> 2060
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/> 2061
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/> 2062
 <ds:Reference URI=""> 2063
 <Transforms> 2064
 <Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116"> 2065
 <XPath xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"> 2066
 not(ancestor-or-self::eb:TraceHeaderList or 2067
 ancestor-or-self::eb:Via) 2068
 </XPath> 2069
 </Transform> 2070
 </Transforms> 2071
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/> 2072
 <ds:DigestValue>...</ds:DigestValue> 2073
 </ds:Reference> 2074
 <ds:Reference URI="cid://blahblahblah/"> 2075
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/> 2076
 <ds:DigestValue>...</ds:DigestValue> 2077
 </ds:Reference> 2078
 </ds:SignedInfo> 2079
 <ds:SignatureValue>...</ds:SignatureValue> 2080
 <ds:KeyInfo>...</ds:KeyInfo> 2081
 </ds:Signature> 2082
 </SOAP-ENV:Header> 2083
 <SOAP-ENV:Body> 2084
 <eb:Manifest eb:id="Mani01" eb:version="1.0"> 2085
 <eb:Reference xlink:href="cid://blahblahblah" 2086
 xlink:role="http://ebxml.org/gci/invoice"> 2087
 <eb:Schema eb:version="1.0" eb:location="http://ebxml.org/gci/busdocs/invoice.dtd"/> 2088
 </eb:Reference> 2089
 </eb:Manifest> 2090
 </SOAP-ENV:Body> 2091
</SOAP-ENV:Envelope> 2092

12.3.2 Persistent Signed Receipt 2093

An ebXML Message that has been digitally signed MAY be acknowledged with a DeliveryReceipt 2094
acknowledgment message that itself is digitally signed in the manner described in the previous section. 2095
The acknowledgment message MUST contain a ds:Reference element contained in the ds:Signature 2096
element of the original message within the Acknowledgment element. 2097

12.3.3 Non-persistent Authentication 2098

Non-persistent authentication is provided by the communications channel used to transport the ebXML 2099
Message. This authentication MAY be either in one direction, from the session initiator to the receiver, or 2100
bi-directional. The specific method will be determined by the communications protocol used. For 2101
instance, the use of a secure network protocol, such as [RFC2246] or [IPSEC] provides the sender of an 2102
ebXML Message with a way to authenticate the destination for the TCP/IP environment. 2103

ebXML Transport, Routing and Packaging May 2001

Message Service Specification 1.0 Page 55 of 75
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

12.3.4 Non-persistent Integrity 2104

Use of a secure network protocol such as [RFC2246] or [IPSEC] MAY be configured to provide for 2105
integrity check CRCs of the packets transmitted vi a the network connection. 2106

12.3.5 Persistent Confidentiality 2107

XML Encryption is a W3C/IETF joint activity that is actively engaged in the drafting of a specification for 2108
the selective encryption of an XML document(s). It is anticipated that this specification will be completed 2109
within the next year. The ebXML Transport, Routing and Packaging team has identified this technology 2110
as the only viable means of providing persistent, selective confidentiality of elements within an ebXML 2111
Message including the SOAP Header. 2112

Confidentiality for ebXML Payloads MAY be provided by functionality possessed by a MSH. However, 2113
this specification states that it is not the responsibility of the MSH to provide security for the ebXML 2114
````Payloads.  Payload confidentiality MAY be provided by using XML Encryption (when available) or 2115 
some other cryptographic process (such as [S/MIME], [S/MIMEV3], or [PGP/MIME]) bilaterally agreed 2116 
upon by the parties involved.  Since XML Encryption is not currently available, it is RECOMMENDED that 2117 
[S/MIME] encryption methods be used for ebXML Payloads.  The XML Encryption standard SHALL be 2118 
the default encryption method when XML Encryption has achieved W3C Recommendation status. 2119 

12.3.6 Non-persistent Confidentiality 2120 

Use of a secure network protocol such as [RFC2246] or [IPSEC] provides transient confidentiality of a 2121 
message as it is transferred between two ebXML MSH nodes. 2122 

12.3.7 Persistent Authorization 2123 

The OASIS Security Services Technical Committee (TC) is actively engaged in the definition of a 2124 
specification that provides for the exchange of security credentials, including NameAssertion and 2125 
Entitlements that is based on [SAML].  Use of technology that is based on this anticipated specification 2126 
MAY be used to provide persistent authorization for an ebXML Message once it becomes available.  2127 
ebXML has a formal liaison to this TC. There are also many ebXML member organizations and 2128 
contributors that are active members of the OASIS Security Services TC such as Sun, IBM, 2129 
CommerceOne, Cisco and others that are endeavoring to ensure that the specification meets the 2130 
requirements of providing persistent authorization capabilities for the ebXML Message Service. 2131 

12.3.8 Non-persistent Authorization 2132 

Use of a secure network protocol such as [RFC2246] or [IPSEC] MAY be configured to provide for 2133 
bilateral authentication of certificates prior to establishing a session.  This provides for the ability for an 2134 
ebXML MSH to authenticate the source of a connection that can be used to recognize the source as an 2135 
authorized source of ebXML Messages. 2136 

12.3.9 Trusted T imestamp 2137 

At the time of this specification, services that offer trusted timestamp capabilities are becoming available.  2138 
Once these become more widely available, and a standard has been defined for their use and 2139 
expression, these standards, technologies and services will be evaluated and considered for use to 2140 
provide this capability. 2141 

12.3.10 Supported Security Services 2142 

The general architecture of the ebXML Message Service Specification is intended to support all the 2143 
security services required for electronic business.  The following table combines the security services of 2144 
the Message Service Handler into a set of security profiles.  These profiles, or combinations of these 2145 
profiles, support the specific security policy of the ebXML user community.  Due to the immature state of 2146 
XML security specifications, this version of the specification requires support for profiles 0 and 1 only.  2147 
This does not preclude users from employing additional security features to protect ebXML exchanges; 2148 
however, interoperability between parties using any profiles other than 0 and 1 cannot be guaranteed. 2149 

 2150 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 56 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

P
re

se
nt

 in
 b

as
el

in
e 

M
S

H 

  P
er

si
st

en
t d

ig
ita

l s
ig

na
tu

re
 

N
on

-p
er

si
st

en
t a

ut
he

nt
ic

at
io

n 

P
er

si
st

en
t s

ig
ne

d 
re

ce
ip

t 

N
on

-p
er

si
st

en
t i

nt
eg

rit
y 

P
er

si
st

en
t c

on
fid

en
tia

lit
y 

N
on

-p
er

si
st

en
t c

on
fid

en
tia

lit
y 

P
er

si
st

en
t a

ut
ho

riz
at

io
n 

N
on

-p
er

si
st

en
t a

ut
ho

riz
at

io
n 

T
ru

st
ed

 ti
m

st
am

p 

 

 

 

 

 

 

 

Description of Profile 

ü Profile 0          no security services are applied to data 

ü Profile 1 ü         Sending MSH applies XML/DSIG structures to 
message 

  Profile 2  ü      ü  
Sending MSH authenticates and Receiving MSH 
authorizes sender based on communication 
channel credentials. 

  Profile 3  ü    ü    Sending MSH authenticates and both MSHs 
negotiate a secure channel to transmit data 

  Profile 4  ü  ü      
Sending MSH authenticates, the Receiving MSH 
performs integrity checks using communications 
protocol 

  Profile 5  ü        Sending MSH authenticates the communication 
channel only (e.g., SSL 3.0 over TCP/IP) 

  Profile 6 ü     ü    
Sending MSH applies XML/DSIG structures to 
message and passes in secure communications 
channel 

  Profile 7 ü  ü       
Sending MSH applies XML/DSIG structures to 
message and Receiving MSH returns a signed 
receipt 

  Profile 8 ü  ü   ü    combination of profile 6 and 7 

  Profile 9 ü        ü Profile 5 with a trusted timestamp applied 

  Profile 10 ü  ü      ü Profile 9 with Receiving MSH returning a signed 
receipt 

  Profile 11 ü     ü   ü Profile 6 with the Receiving MSH applying a 
trusted timestamp 

  Profile 12 ü  ü   ü   ü Profile 8 with the Receiving MSH applying a 
trusted timestamp 

  Profile 13 ü    ü     
Sending MSH applies XML/DSIG structures to 
message and applies confidentiality structures 
(XML-Encryption) 

  Profile 14 ü  ü  ü     Profile 13 with a signed receipt 

  Profile 15 ü  ü      ü 
Sending MSH applies XML/DSIG structures to 
message, a trusted timestamp is added to 
message, Receiving MSH returns a signed 
receipt 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 57 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

P
re

se
nt

 in
 b

as
el

in
e 

M
S

H 

  P
er

si
st

en
t d

ig
ita

l s
ig

na
tu

re
 

N
on

-p
er

si
st

en
t a

ut
he

nt
ic

at
io

n 

P
er

si
st

en
t s

ig
ne

d 
re

ce
ip

t 

N
on

-p
er

si
st

en
t i

nt
eg

rit
y 

P
er

si
st

en
t c

on
fid

en
tia

lit
y 

N
on

-p
er

si
st

en
t c

on
fid

en
tia

lit
y 

P
er

si
st

en
t a

ut
ho

riz
at

io
n 

N
on

-p
er

si
st

en
t a

ut
ho

riz
at

io
n 

T
ru

st
ed

 ti
m

st
am

p 

 

 

 

 

 

 

 

Description of Profile 
receipt 

  Profile 16 ü    ü    ü Profile 13 with a trusted timestamp applied 

  Profile 17 ü  ü  ü    ü Profile 14 with a trusted timestamp applied 

  Profile 18 ü      ü   
Sending MSH applies XML/DSIG structures to 
message and forwards authorization credentials 
[SAML] 

  Profile 19 ü  ü    ü   Profile 18 with Receiving MSH returning a signed 
receipt 

  Profile 20 ü  ü    ü  ü Profile 19 with the a trusted timestamp being 
applied to the Sending MSH message 

  Profile 21 ü  ü  ü  ü  ü Profile 19 with the Sending MSH applying 
confidentiality structures (XML-Encryption) 

  Profile 22     ü     Sending MSH encapsulates the message within 
confidentiality structures (XML-Encryption) 

 2151 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 58 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

13  References 2152 

13.1 Normative References 2153 

[RFC2119]  Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering 2154 
Task Force RFC 2119, March 1997  2155 

[HTTP] IETF RFC 2068 - Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. 2156 
Mogul, H. Frystyk, T. Berners-Lee, January 1997 2157 

[RFC822]  Standard for the Format of ARPA Internet text messages. D. Crocker. August 1982. 2158 

[RFC2045]  IETF RFC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: Format of 2159 
Internet Message Bodies, N Freed & N Borenstein, Published November 1996 2160 

[RFC2046]  Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. N. Freed, N. 2161 
Borenstein. November 1996. 2162 

[RFC2246]  RFC 2246 - Dierks, T. and C. Allen, "The TLS Protocol", January 1999. 2163 

[RFC2387]   The MIME Multipart/Related Content -type. E. Levinson. August 1998. 2164 

[RFC2392]  IETF RFC 2392. Content-ID and Message-ID Uniform Resource Locators. E. 2165 
Levinson, Published August 1998 2166 

[RFC2396]  IETF RFC 2396. Uniform Resource Identifiers (URI): Generic Syntax.  T Berners-Lee, 2167 
Published August 1998 2168 

[RFC2487]  SMTP Service Extension for Secure SMTP over TLS. P. Hoffman.      January 1999. 2169 

[RFC2554]  SMTP Service Extension for Authentication. J. Myers. March 1999. 2170 

[RFC2616]  RFC 2616 - Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and 2171 
T. Berners-Lee, "Hypertext Transfer Protocol, HTTP/1.1", , June 1999. 2172 

[RFC2617]  RFC2617 - Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., 2173 
Luotonen, A., Sink, E. and L. Stewart, "HTTP Authentication: Basic and Digest 2174 
Access Authentication",  June 1999. 2175 

[RFC2817]  RFC 2817 - Khare, R. and S. Lawrence, "Upgrading to TLS Within HTTP/1.1",  May 2176 
2000. 2177 

[RFC2818]  RFC 2818 - Rescorla, E., "HTTP Over TLS", May 2000 [SOAP] Simple Object 2178 
Access Protocol 2179 

[SMTP] IETF RFC 822, Simple Mail Transfer Protocol, D Crocker, August 1982 2180 

[SOAP] W3C-Draft-Simple Object Access Protocol (SOAP) v1.1, Don Box, DevelopMentor; 2181 
David Ehnebuske, IBM; Gopal Kakivaya, Andrew Layman, Henrik Frystyk Nielsen, 2182 
Satish Thatte, Microsoft; Noah Mendelsohn, Lotus Development Corp.; Dave Winer, 2183 
UserLand Software, Inc.; W3C Note 08 May 2000, http://www.w3.org/TR/SOAP 2184 

[SOAPATTACH]  SOAP Messages with Attachments, John J. Barton, Hewlett Packard Labs; Satish 2185 
Thatte and Henrik Frystyk Nielsen, Microsoft, Published Oct 09 2000 2186 
http://www.w3.org/TR/SOAP-attachments 2187 

[SSL3] A. Frier, P. Karlton, and P. Kocher, "The SSL 3.0 Protocol", Netscape 2188 
Communications Corp., Nov 18, 1996. 2189 

[UTF-8]  UTF-8 is an encoding that conforms to ISO/IEC 10646. See [XML] for usage 2190 
conventions. 2191 

[XLINK] W3C XML Linking Candidate Recommendation, http://www.w3.org/TR/xlink/ 2192 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 59 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

[XML]  W3C Recommendation: Extensible Markup Language (XML) 1.0 (Second Edition), 2193 
October 2000, http://www.w3.org/TR/2000/REC-xml-20001006 2194 

[XML Namespace]  W3C Recommendation for Namespaces in XML, World Wide Web Consortium, 14 2195 
January 1999, http://www.w3.org/TR/REC-xml-names 2196 

[XMLDSIG] Joint W3C/IETF XML-Signature Syntax and Processing specification, 2197 
http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/ 2198 

[XMLMedia]  IETF RFC 3023, XML Media Types. M. Murata, S. St.Laurent, January 2001 2199 

13.2 Non-Normative References 2200 

[ebCPP] ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, 2201 
published 11 May, 2001 2202 

[ebBPSS] ebXML Business Process Specification Schema, version 1.0, published 27 April 2203 
2001. 2204 

 [ebTA] ebXML Technical Architecture, version 1.04 published 16 February, 2001 2205 

[ebTASEC]  ebXML Technical Architecture Risk Assessment Technical Report, version 0.36 2206 
published 20 April 2001 2207 

[ebRS] ebXML Registry Services Specification, version 0.84 2208 

[ebMSREQ]  ebXML Transport, Routing and Packaging: Overview and Requirements, Version 2209 
0.96, Published 25 May 2000 2210 

[ebGLOSS] ebXML Glossary, http://www.ebxml.org, published 11 May, 2001. 2211 

[IPSEC] IETF RFC2402 IP Authentication Header. S. Kent, R. Atkinson. November 1998. 2212 
RFC2406 IP Encapsulating Security Payload (ESP). S. Kent, R. Atkinson. November 2213 
1998. 2214 

[PGP/MIME] IETF RFC2015, "MIME Security with Pretty Good Privacy (PGP)", M. Elkins. October 2215 
1996. 2216 

[SAML] Security Assertion Markup Language,  2217 
http://www.oasis-open.org/committees/security/docs/draft -sstc-use-strawman-03.html 2218 

[S/MIME] IETF RFC2311, “S/MIME Version 2 Message Specification”, S. Dusse, P. Hoffman, 2219 
B. Ramsdell, L. Lundblade, L. Repka. March 1998. 2220 

[S/MIMECH]  IETF RFC 2312, “S/MIME Version 2 Certificate Handling”, S. Dusse, P. Hoffman, B. 2221 
Ramsdell, J. Weinstein. March 1998. 2222 

[S/MIMEV3] IETF RFC 2633 S/MIME Version 3 Message Specification. B. Ramsdell, Ed.. June 2223 
1999. 2224 

[TLS] RFC2246, T. Dierks, C. Allen. January 1999. 2225 

[XMLSchema]  W3C XML Schema Candidate Recommendation, 2226 
http://www.w3.org/TR/xmlschema-0/ 2227 
http://www.w3.org/TR/xmlschema-1/  2228 
http://www.w3.org/TR/xmlschema-2/ 2229 

[XMTP] XMTP - Extensible Mail Transport Protocol 2230 
http://www.openhealth.org/documents/xmtp.htm 2231 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 60 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

14 Contact Information 2232 

Team Leader 2233 
Name    Rik Drummond 2234 
Company   Drummond Group, Inc. 2235 
Street    5008 Bentwood Ct. 2236 
City, State, Postal Code Fort Worth, Texas 76132 2237 
Country   USA 2238 
Phone    +1 (817) 294-7339 2239 
EMail:    rik@drummondgroup.com 2240 
 2241 
Vice Team Leader 2242 
Name    Christopher Ferris 2243 
Company   Sun Microsystems 2244 
Street    One Network Drive 2245 
City, State, Postal Code Burlington, MA 01803-0903 2246 
Country   USA 2247 
Phone:    +1 (781) 442-3063 2248 
EMail:    chris.ferris@sun.com 2249 
 2250 
Team Editor 2251 
Name    David Burdett 2252 
Company   Commerce One 2253 
Street    4400 Rosewood Drive 2254 
City, State, Postal Code Pleasanton, CA 94588 2255 
Country   USA 2256 
Phone:    +1 (925) 520-4422 2257 
EMail:    david.burdett@commerceone.com 2258 
 2259 
Authors 2260 
Name    Dick Brooks 2261 
Company   Group 8760 2262 
Street    110 12th Street North, Suite F103 2263 
City, State, Postal Code Birmingham, Alabama 35203 2264 
Phone:    +1 (205) 250-8053 2265 
Email:    dick@8760.com 2266 
 2267 
Name    David Burdett 2268 
Company   Commerce One 2269 
Street    4400 Rosewood Drive 2270 
City, State, Postal Code Pleasanton, CA 94588 2271 
Country   USA 2272 
Phone:    +1 (925) 520-4422 2273 
EMail:    david.burdett@commerceone.com 2274 
 2275 
Name    Christopher Ferris 2276 
Company   Sun Microsystems 2277 
Street    One Network Drive 2278 
City, State, Postal Code Burlington, MA 01803-0903 2279 
Country   USA 2280 
Phone:    +1 (781) 442-3063 2281 
EMail:    chris.ferris@east.sun.com 2282 
 2283 
Name    John Ibbotson 2284 
Company   IBM UK Ltd 2285 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 61 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

Street    Hursley Park 2286 
City, State, Postal Code Winchester SO21 2JN 2287 
Country   United Kingdom 2288 
Phone:    +44 (1962) 815188 2289 
Email:    john_ibbotson@uk.ibm.com 2290 
 2291 
Name    Masayoshi Shimamura 2292 
Company   Fujitsu Limited 2293 
Street    Shinyokohama Nikko Bldg., 15-16, Shinyokohama 2-chome 2294 
City, State, Postal Code Kohoku-ku, Yokohama 222-0033, Japan 2295 
Phone:    +81-45-476-4590 2296 
EMail:    shima@rp.open.cs.fujitsu.co.jp 2297 
 2298 
Document Editing Team 2299 
Name    Ralph Berwanger 2300 
Company   bTrade.com 2301 
Street    2324 Gateway Drive 2302 
City, State, Postal Code Irving, TX 75063 2303 
Country   USA 2304 
Phone:    +1 (972) 580-3970 2305 
EMail:    rberwanger@btrade.com 2306 
    2307 
Name   Colleen Evans 2308 
Company   Progress/Sonic Software 2309 
Street    14 Oak Park 2310 
City,State,Postal Code Bedford, MA 01730 2311 
Country    USA 2312 
Phone   +1 (720) 480-3919 2313 
Email   cevans@progress.com 2314 
 2315 
Name    Ian Jones 2316 
Company   British Telecommunications 2317 
Street    Enterprise House, 84-85 Adam Street 2318 
City, State, Postal Code Cardiff, CF24 2XF 2319 
Country   United Kingdom 2320 
Phone:    +44 29 2072 4063 2321 
EMail:    ian.c.jones@bt.com 2322 
 2323 
Name    Martha Warfelt 2324 
Company   DaimlerChrysler Corporation 2325 
Street    800 Chrysler Drive 2326 
City, State, Postal Code Auburn Hills, MI 2327 
Country   USA 2328 
Phone:    +1 (248) 944-5481 2329 
EMail:    maw2@daimlerchrysler.com 2330 
 2331 
Name   David Fischer 2332 
Company   Drummond Group, Inc 2333 
Street    5008 Bentwood Ct 2334 
City, State, Postal Code Fort Worth, TX  76132 2335 
Phone   +1 (817-294-7339 2336 
EMail   david@drummondgroup.com 2337 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 62 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

Appendix A ebXML SOAP Extension Elements Schema 2338 

The ebXML SOAP extension elements schema has been specified using the Candidate 2339 
Recommendation draft of the XML Schema specification[XMLSchema].  Because ebXML has adopted 2340 
SOAP 1.1 for the message format, and because the SOAP 1.1 schema resolved by the SOAP 1.1 2341 
namespace URI was written to an earlier draft of the XML Schema specification, the ebXML TRP team 2342 
has created a version of the SOAP 1.1 envelope schema that is specified using the schema vocabulary 2343 
that conforms to the W3C XML Schema Candidate Recommendation specification[XMLSchema].   2344 

In addition, it was necessary to craft a schema for the [XLINK] attribute vocabulary and for the XML 2345 
xml:lang attribute.   2346 

Finally, because certain authoring tools do not correctly resolve local entities when importing schema, a 2347 
version of the W3C XML Signature Core schema has also been provided and referenced by the ebXML 2348 
SOAP extension elements schema defined in this Appendix. 2349 

These alternative schema SHALL be available from the following URL’s: 2350 

XML Signature Core – http://ebxml.org/project_teams/transport/xmldsig-core-schema.xsd 2351 

Xlink - http://ebxml.org/project_teams/transport/xlink.xsd 2352 

xml:lang - http://ebxml.org/project_teams/transport/xml_lang.xsd 2353 

SOAP1.1 - http://ebxml.org/project_teams/transport/envelope.xsd 2354 

Note: if inconsistencies exist between the specification and this schema, the specification supersedes this example schema. 2355 
 2356 
<?xml version="1.0" encoding="UTF-8"?> 2357 
<schema targetNamespace="http://www.ebxml.org/namespaces/messageHeader" 2358 
xmlns:xml="http://www.w3.org/XML/1998/namespace" 2359 
xmlns:tns="http://www.ebxml.org/namespaces/messageHeader" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 2360 
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 2361 
xmlns="http://www.w3.org/2000/10/XMLSchema" version="1.0"> 2362 
 <import namespace="http://www.w3.org/2000/09/xmldsig#" 2363 
schemaLocation="http://www.ebxml.org/project_teams/transport/xmldsig-core-schema.xsd"/> 2364 
 <import namespace="http://www.w3.org/1999/xlink" 2365 
schemaLocation="http://www.ebxml.org/project_teams/transport/xlink.xsd"/> 2366 
 <import namespace="http://schemas.xmlsoap.org/soap/envelope/" 2367 
schemaLocation="http://www.ebxml.org/project_teams/transport/envelope.xsd"/> 2368 
 <import namespace="http://www.w3.org/XML/1998/namespace" 2369 
schemaLocation="http://www.ebxml.org/project_teams/transport/xml_lang.xsd"/> 2370 
 <!-- MANIFEST --> 2371 
 <element name="Manifest"> 2372 
  <complexType> 2373 
   <sequence> 2374 
    <element ref="tns:Reference" maxOccurs="unbounded"/> 2375 
    <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> 2376 
   </sequence> 2377 
   <attribute ref="tns:id"/> 2378 
   <attribute ref="tns:version"/> 2379 
   <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"    2380 
     processContents="lax"/> 2381 
  </complexType> 2382 
 </element> 2383 
 <element name="Reference"> 2384 
  <complexType> 2385 
   <sequence> 2386 
    <element ref="tns:Schema" minOccurs="0" maxOccurs="unbounded"/> 2387 
    <element ref="tns:Description" minOccurs="0" maxOccurs="unbounded"/> 2388 
    <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> 2389 
   </sequence> 2390 
   <attribute ref="tns:id"/> 2391 
   <attribute ref="xlink:type" use="fixed" value="simple"/> 2392 
   <attribute ref="xlink:href" use="required"/> 2393 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 63 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

   <attribute ref="xlink:role"/> 2394 
  </complexType> 2395 
 </element> 2396 
 <element name="Schema"> 2397 
  <complexType> 2398 
   <attribute name="location" type="uriReference" use="required"/> 2399 
   <attribute name="version" type="tns:non-empty-string"/> 2400 
  </complexType> 2401 
 </element> 2402 
 <!-- MESSAGEHEADER --> 2403 
 <element name="MessageHeader"> 2404 
  <complexType> 2405 
   <sequence> 2406 
    <element ref="tns:From"/> 2407 
    <element ref="tns:To"/> 2408 
    <element ref="tns:CPAId"/> 2409 
    <element ref="tns:ConversationId"/> 2410 
    <element ref="tns:Service"/> 2411 
    <element ref="tns:Action"/> 2412 
    <element ref="tns:MessageData"/> 2413 
    <element ref="tns:QualityOfServiceInfo" minOccurs="0"/> 2414 
    <element ref="tns:Description" minOccurs="0" maxOccurs="unbounded"/> 2415 
    <element ref="tns:SequenceNumber" minOccurs="0"/> 2416 
   </sequence> 2417 
   <attribute ref="tns:id"/> 2418 
   <attribute ref="tns:version"/> 2419 
   <attribute ref="soap:mustUnderstand"/> 2420 
   <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"    2421 
    processContents="lax"/> 2422 
  </complexType> 2423 
 </element> 2424 
 <element name="CPAId" type="tns:non-empty-string"/> 2425 
 <element name="ConversationId" type="tns:non-empty-string"/> 2426 
 <element name="Service"> 2427 
  <complexType> 2428 
   <simpleContent> 2429 
    <extension base="tns:non-empty-string"> 2430 
     <attribute name="type" type="tns:non-empty-string"/> 2431 
    </extension> 2432 
   </simpleContent> 2433 
  </complexType> 2434 
 </element> 2435 
 <element name="Action" type="tns:non-empty-string"/> 2436 
 <element name="MessageData"> 2437 
  <complexType> 2438 
   <sequence> 2439 
    <element ref="tns:MessageId"/> 2440 
    <element ref="tns:Timestamp"/> 2441 
    <element ref="tns:RefToMessageId" minOccurs="0"/> 2442 
    <element ref="tns:TimeToLive" minOccurs="0"/> 2443 
   </sequence> 2444 
  </complexType> 2445 
 </element> 2446 
 <element name="MessageId" type="tns:non-empty-string"/> 2447 
 <element name="TimeToLive" type="timeInstant"/> 2448 
 <element name="QualityOfServiceInfo"> 2449 
  <complexType> 2450 
   <attribute name="deliverySemantics" type="tns:deliverySemantics.type" use="default"   2451 
    value="BestEffort"/> 2452 
   <attribute name="messageOrderSemantics" type="tns:messageOrderSemantics.type"   2453 
    use="default" value="NotGuaranteed"/> 2454 
   <attribute name="deliveryReceiptRequested" type="tns:signedUnsigned.type"    2455 
    use="default" value="None"/> 2456 
  </complexType> 2457 
 </element> 2458 
 <!-- TRACE HEADER LIST --> 2459 
 <element name="TraceHeaderList"> 2460 
  <complexType> 2461 
   <sequence> 2462 
    <element ref="tns:TraceHeader" maxOccurs="unbounded"/> 2463 
   </sequence> 2464 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 64 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

   <attribute ref="tns:id"/> 2465 
   <attribute ref="tns:version"/> 2466 
   <attribute ref="soap:mustUnderstand" use="required"/> 2467 
   <attribute ref="soap:actor" use="required"/> 2468 
   <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"    2469 
    processContents="lax"/> 2470 
  </complexType> 2471 
 </element> 2472 
 <element name="TraceHeader"> 2473 
  <complexType> 2474 
   <sequence> 2475 
    <element ref="tns:Sender"/> 2476 
    <element ref="tns:Receiver"/> 2477 
    <element ref="tns:Timestamp"/> 2478 
    <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> 2479 
   </sequence> 2480 
   <attribute ref="tns:id"/> 2481 
  </complexType> 2482 
 </element> 2483 
 <element name="Sender" type="tns:senderReceiver.type"/> 2484 
 <element name="Receiver" type="tns:senderReceiver.type"/> 2485 
 <element name="SequenceNumber" type="positiveInteger"/> 2486 
 <!-- DELIVERY RECEIPT --> 2487 
 <element name="DeliveryReceipt"> 2488 
  <complexType> 2489 
   <sequence> 2490 
    <element ref="tns:Timestamp"/> 2491 
    <element ref="ds:Reference" minOccurs="0" maxOccurs="unbounded"/> 2492 
   </sequence> 2493 
   <attribute ref="tns:id"/> 2494 
   <attribute ref="tns:version"/> 2495 
   <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"    2496 
     processContents="lax"/> 2497 
   <!-- <attribute name="signed" type="boolean"/> --> 2498 
  </complexType> 2499 
 </element> 2500 
 <!-- ACKNOWLEDGEMENT --> 2501 
 <element name="Acknowledgment"> 2502 
  <complexType> 2503 
   <sequence> 2504 
    <element ref="tns:Timestamp"/> 2505 
    <element ref="tns:From" minOccurs="0"/> 2506 
    <element ref="ds:Reference" minOccurs="0" maxOccurs="unbounded"/> 2507 
   </sequence> 2508 
   <attribute ref="tns:id"/> 2509 
   <attribute ref="tns:version"/> 2510 
   <attribute ref="soap:mustUnderstand" use="required"/> 2511 
   <attribute ref="soap:actor" use="required"/> 2512 
   <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"    2513 
    processContents="lax"/> 2514 
  </complexType> 2515 
 </element> 2516 
 <!-- ERROR LIST --> 2517 
 <element name="ErrorList"> 2518 
  <complexType> 2519 
   <sequence> 2520 
    <element ref="tns:Error" maxOccurs="unbounded"/> 2521 
   </sequence> 2522 
   <attribute ref="tns:id"/> 2523 
   <attribute ref="tns:version"/> 2524 
   <attribute ref="soap:mustUnderstand" use="required"/> 2525 
   <attribute name="highestSeverity" type="tns:severity.type"      2526 
    use="default" value="Warning"/> 2527 
   <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"   2528 
     processContents="lax"/> 2529 
  </complexType> 2530 
 </element> 2531 
 <element name="Error"> 2532 
  <complexType> 2533 
   <attribute ref="tns:id"/> 2534 
   <attribute name="codeContext" type="uriReference" use="required"/> 2535 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 65 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

   <attribute name="errorCode" type="tns:non-empty-string" use="required"/> 2536 
   <attribute name="severity" type="tns:severity.type" use="default" value="Warning"/> 2537 
   <attribute name="location" type="tns:non-empty-string"/> 2538 
   <attribute ref="xml:lang"/> 2539 
  </complexType> 2540 
 </element> 2541 
 <!-- STATUS RESPONSE --> 2542 
 <element name="StatusResponse"> 2543 
  <complexType> 2544 
   <sequence> 2545 
    <element ref="tns:RefToMessageId"/> 2546 
    <element ref="tns:Timestamp" minOccurs="0"/> 2547 
   </sequence> 2548 
   <attribute ref="tns:id"/> 2549 
   <attribute ref="tns:version"/> 2550 
   <attribute name="messageStatus" type="tns:messageStatus.type"/> 2551 
   <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"    2552 
    processContents="lax"/> 2553 
  </complexType> 2554 
 </element> 2555 
 <!-- STATUS REQUEST --> 2556 
 <element name="StatusRequest"> 2557 
  <complexType> 2558 
   <sequence> 2559 
    <element ref="tns:RefToMessageId"/> 2560 
   </sequence> 2561 
   <attribute ref="tns:id"/> 2562 
   <attribute ref="tns:version"/> 2563 
   <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"    2564 
    processContents="lax"/> 2565 
  </complexType> 2566 
 </element> 2567 
 <!-- VIA  --> 2568 
 <element name="Via"> 2569 
  <complexType> 2570 
   <sequence> 2571 
    <element ref="tns:CPAId" minOccurs="0"/> 2572 
    <element ref="tns:Service" minOccurs="0"/> 2573 
    <element ref="tns:Action" minOccurs="0"/> 2574 
   </sequence> 2575 
   <attribute ref="tns:id"/> 2576 
   <attribute ref="tns:version"/> 2577 
   <attribute ref="soap:mustUnderstand" use="required"/> 2578 
   <attribute ref="soap:actor" use="required"/> 2579 
   <attribute name="syncReply" type="boolean"/> 2580 
   <attribute name="deliveryReceiptRequested" type="tns:signedUnsigned.type"    2581 
    use="default" value="None"/> 2582 
   <attribute name="reliableMessagingMethod" type="tns:rmm.type"/> 2583 
   <attribute name="ackRequested" type="boolean"/> 2584 
   <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"    2585 
    processContents="lax"/> 2586 
  </complexType> 2587 
 </element> 2588 
 <!-- COMMON TYPES --> 2589 
 <complexType name="senderReceiver.type"> 2590 
  <sequence> 2591 
   <element ref="tns:PartyId" maxOccurs="unbounded"/> 2592 
   <element name="Location" type="uriReference"/> 2593 
  </sequence> 2594 
 </complexType> 2595 
 <simpleType name="messageStatus.type"> 2596 
  <restriction base="NMTOKEN"> 2597 
   <enumeration value="UnAuthorized"/> 2598 
   <enumeration value="NotRecognized"/> 2599 
   <enumeration value="Received"/> 2600 
   <enumeration value="Processed"/> 2601 
   <enumeration value="Forwarded"/> 2602 
  </restriction> 2603 
 </simpleType> 2604 
 <simpleType name="type.type"> 2605 
  <restriction base="NMTOKEN"> 2606 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 66 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

   <enumeration value="DeliveryReceipt"/> 2607 
   <enumeration value="IntermediateAck"/> 2608 
  </restriction> 2609 
 </simpleType> 2610 
 <simpleType name="messageOrderSemantics.type"> 2611 
  <restriction base="NMTOKEN"> 2612 
   <enumeration value="Guaranteed"/> 2613 
   <enumeration value="NotGuaranteed"/> 2614 
  </restriction> 2615 
 </simpleType> 2616 
 <simpleType name="deliverySemantics.type"> 2617 
  <restriction base="NMTOKEN"> 2618 
   <enumeration value="OnceAndOnlyOnce"/> 2619 
   <enumeration value="BestEffort"/> 2620 
  </restriction> 2621 
 </simpleType> 2622 
 <simpleType name="non-empty-string"> 2623 
  <restriction base="string"> 2624 
   <minLength value="1"/> 2625 
  </restriction> 2626 
 </simpleType> 2627 
 <simpleType name="rmm.type"> 2628 
  <restriction base="NMTOKEN"> 2629 
   <enumeration value="ebXML"/> 2630 
   <enumeration value="Transport"/> 2631 
  </restriction> 2632 
 </simpleType> 2633 
 <simpleType name="signedUnsigned.type"> 2634 
  <restriction base="NMTOKEN"> 2635 
   <enumeration value="Signed"/> 2636 
   <enumeration value="Unsigned"/> 2637 
   <enumeration value="None"/> 2638 
  </restriction> 2639 
 </simpleType> 2640 
 <simpleType name="severity.type"> 2641 
  <restriction base="NMTOKEN"> 2642 
   <enumeration value="Warning"/> 2643 
   <enumeration value="Error"/> 2644 
  </restriction> 2645 
 </simpleType> 2646 
 <!-- COMMON ATTRIBUTES and ELEMENTS --> 2647 
 <attribute name="id" type="ID" form="unqualified"/> 2648 
 <attribute name="version" type="tns:non-empty-string" use="fixed" value="1.0"/> 2649 
 <element name="PartyId"> 2650 
  <complexType> 2651 
   <simpleContent> 2652 
    <extension base="tns:non-empty-string"> 2653 
     <attribute name="type" type="tns:non-empty-string"/> 2654 
    </extension> 2655 
   </simpleContent> 2656 
  </complexType> 2657 
 </element> 2658 
 <element name="To"> 2659 
  <complexType> 2660 
   <sequence> 2661 
    <element ref="tns:PartyId" maxOccurs="unbounded"/> 2662 
   </sequence> 2663 
  </complexType> 2664 
 </element> 2665 
 <element name="From"> 2666 
  <complexType> 2667 
   <sequence> 2668 
    <element ref="tns:PartyId" maxOccurs="unbounded"/> 2669 
   </sequence> 2670 
  </complexType> 2671 
 </element> 2672 
 <element name="Description"> 2673 
  <complexType> 2674 
   <simpleContent> 2675 
    <extension base="tns:non-empty-string"> 2676 
     <attribute ref="xml:lang"/> 2677 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 67 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

    </extension> 2678 
   </simpleContent> 2679 
  </complexType> 2680 
 </element> 2681 
 <element name="RefToMessageId" type="tns:non-empty-string"/> 2682 
 <element name="Timestamp" type="timeInstant"/> 2683 
</schema> 2684 
 2685 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 68 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

Appendix B   Communication Protocol Bindings 2686 

B.1 Introduction 2687 

One of the goals of ebXML's Transport, Routing and Packaging team is to design a message handling 2688 
service usable over a variety of network and application level communication protocols.  These protocols 2689 
serve as the "carrier" of ebXML Messages and provide the underlying services necessary to carry out a 2690 
complete ebXML Message exchange between two parties.  HTTP, FTP, Java Message Service (JMS) 2691 
and SMTP are examples of application level communication protocols.  TCP and SNA/LU6.2 are 2692 
examples of network transport protocols.  Communication protocols vary in their support for data content, 2693 
processing behavior and error handling and reporting.  For example, it is customary to send binary data in 2694 
raw form over HTTP.  However, in the case of SMTP it is customary to "encode" binary data into a 7-bit 2695 
representation.  HTTP is equally capable of carrying out synchronous or asynchronous  message 2696 
exchanges whereas it is likely that message exchanges occurring over SMTP will be asynchronous . This 2697 
section describes the technical details needed to implement this abstract ebXML Message Handling 2698 
Service over particular communication protocols. 2699 

This section specifies communication protocol bindings and technical details for carrying ebXML Message 2700 
Service messages for the following communication protocols: 2701 

• Hypertext Transfer Protocol [HTTP], in both asynchronous  and synchronous  forms of transfer. 2702 
• Simple Mail Transfer Protocol [SMTP], in asynchronous form of transfer only. 2703 

B.2 HTTP 2704 

B.2.1 Minimum level of HTTP protocol 2705 

Hypertext Transfer Protocol Version 1.1 [HTTP] (http://www.ietf.org/rfc2616.txt) is the minimum level of 2706 
protocol that MUST be used. 2707 

B.2.2 Sending ebXML Service messages over HTTP 2708 

Even though several HTTP request methods are available, this specification only defines the use of HTTP 2709 
POST requests for sending ebXML Message Service messages over HTTP. The identity of the ebXML 2710 
MSH (e.g. ebxmlhandler) may be part of the HTTP POST request: 2711 
 2712 
          POST /ebxmlhandler HTTP/1.1  2713 

Prior to sending over HTTP, an ebXML Message MUST be formatted according to ebXML Message 2714 
Service Specification sections 7 and 8. Additionally, the messages MUST conform to the HTTP specific 2715 
MIME canonical form constraints specified in section 19.4 of RFC 2616 [HTTP] specification (see: 2716 
http://www.ietf.org/rfc2616.txt). 2717 

HTTP protocol natively supports 8-bit and Binary data. Hence, transfer encoding is OPTIONAL for such 2718 
parts in an ebXML Service Message prior to sending over HTTP.  However, content -transfer-encoding of 2719 
such parts (e.g. using base64 encoding scheme) is not precluded by this specification. 2720 

The rules for forming an HTTP message containing an ebXML Service Message are as follows: 2721 
• The Content-Type: Multipart/Related MIME header with the associated parameters, from the 2722 

ebXML Service Message Envelope MUST appear as an HTTP header.  2723 
• All other MIME headers that constitute the ebXML Message Envelope MUST also become part of the 2724 

HTTP header. 2725 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 69 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

• The mandatory SOAPAction HTTP header field must also be included in the HTTP header and MAY 2726 
have a value of “ebXML” 2727 

SOAPAction: ”ebXML” 2728 

• Other headers with semantics defined by MIME specifications, such as Content-Transfer-Encoding, 2729 
SHALL NOT  appear as HTTP headers. Specifically, the "MIME-Version: 1.0" header MUST NOT 2730 
appear as an HTTP header. However, HTTP-specific  MIME-like headers defined by HTTP 1.1 MAY 2731 
be used with the semantic defined in the HTTP specification. 2732 

• All ebXML Service Message parts that follow the ebXML Message Envelope, including the MIME 2733 
boundary string, constitute the HTTP entity body. This encompasses the SOAP Envelope and the 2734 
constituent ebXML parts and attachments including the trailing MIME boundary strings. 2735 

The example below shows an example instance of an HTTP POST’ed ebXML Service Message: 2736 
 2737 

POST /servlet/ebXMLhandler HTTP/1.1 2738 
Host: www.example2.com 2739 
SOAPAction: "ebXML" 2740 
Content-type: multipart/related; boundary="BoundarY"; type="text/xml"; 2741 
        start=" <ebxhmheader111@example.com>" 2742 
 2743 
--BoundarY 2744 
Content-ID: <ebxhmheader111@example.com> 2745 
Content-Type: text/xml 2746 
 2747 
<?xml version="1.0" encoding="UTF-8"?> 2748 
<SOAP-ENV:Envelope  xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/' 2749 
 xmlns:eb='http://www.ebxml.org/namespaces/messageHeader'> 2750 
<SOAP-ENV:Header> 2751 
 <eb:MessageHeader SOAP-ENV:mustUnderstand="1" eb:version="1.0"> 2752 
  <eb:From> 2753 
   <eb:PartyId>urn:duns:123456789</eb:PartyId> 2754 
  </eb:From> 2755 
  <eb:To> 2756 
   <eb:PartyId>urn:duns:912345678</eb:PartyId> 2757 
  </eb:To> 2758 
  <eb:CPAId>20001209-133003-28572</eb:CPAId> 2759 
  <eb:ConversationId>20001209-133003-28572</eb:ConversationId> 2760 
  <eb:Service>urn:services:SupplierOrderProcessing</eb:Service> 2761 
  <eb:Action>NewOrder</eb:Action> 2762 
  <eb:MessageData> 2763 
   <eb:MessageId>20001209-133003-28572@example.com</eb:MessageId> 2764 
   <eb:Timestamp>2001-02-15T11:12:12Z</Timestamp> 2765 
  </eb:MessageData> 2766 
  <eb:QualityOfServiceInfo eb:deliverySemantics="BestEffort"/> 2767 
 </eb:MessageHeader> 2768 
</SOAP-ENV:Header> 2769 
<SOAP-ENV:Body> 2770 
 <eb:Manifest SOAP-ENV:mustUnderstand="1" eb:version="1.0"> 2771 
  <eb:Reference xlink:href="cid:ebxmlpayload111@example.com" 2772 
      xlink:role="XLinkRole" 2773 
       xlink:type="simple"> 2774 
      <eb:Description xml:lang="en-us">Purchase Order 1</eb:Description> 2775 
  </eb:Reference> 2776 
 </eb:Manifest> 2777 
</SOAP-ENV:Body> 2778 
</SOAP-ENV:Envelope> 2779 
 2780 
--BoundarY 2781 
Content-ID: <ebxmlpayload111@example.com> 2782 
Content-Type: text/xml 2783 
 2784 
<?xml version="1.0" encoding="UTF-8"?> 2785 
<purchase_order> 2786 
 <po_number>1</po_number> 2787 
 <part_number>123</part_number> 2788 
 <price currency="USD">500.00</price> 2789 
</purchase_order> 2790 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 70 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

 2791 
--BoundarY-- 2792 

B.2.3 HTTP Response Codes 2793 

In general, semantics of communicating over HTTP as specified in the [RFC2616] MUST be followed, for 2794 
returning the HTTP level response codes.  A 2xx code MUST be returned when the HTTP Posted 2795 
message is successfully received by the receiving HTTP entity.  However, see exception for SOAP error 2796 
conditions below.  Similarly, other HTTP codes in the 3xx, 4xx, 5xx range MAY be returned for conditions 2797 
corresponding to them.  However, error conditions encountered while processing an ebXML Service 2798 
Message MUST be reported using the error mechanism defined by the ebXML Message Service 2799 
Specification (see section 11). 2800 

B.2.4 SOAP Error conditions and Synchronous Exchanges 2801 

The SOAP 1.1 specification states: 2802 

“In case of a SOAP error while processing the request, the SOAP HTTP server MUST issue an HTTP 500 2803 
"Internal Server Error" response and include a SOAP message in the response containing a SOAP Fault 2804 
element indicating the SOAP processing error.  “ 2805 

However, the scope of the SOAP 1.1 specification is limited to synchronous mode of message exchange 2806 
over HTTP, whereas the ebXML Message Service Specification specifies both synchronous and 2807 
asynchronous modes of message exchange over HTTP.  Hence, the SOAP 1.1 specification MUST be 2808 
followed for synchronous  mode of message exchange, where the SOAP Message containing a SOAP 2809 
Fault element indicating the SOAP processing error MUST be returned in the HTTP response with a 2810 
response code of “HTTP 500 Internal Server Error”.  When asynchronous  mode of message exchange is 2811 
being used, a HTTP response code in the range 2xx MUST be returned when the message is received 2812 
successfully and any error conditions (including SOAP errors) must be returned via a separate HTTP 2813 
Post. 2814 

B.2.5 Synchronous vs. Asynchronous 2815 

When the syncReply parameter in the Via element is set to “true”, the response message(s) MUST be 2816 
returned on the same HTTP connection as the inbound request, with an appropriate HTTP response 2817 
code, as described above.  When the syncReply parameter is set to “false”, the response messages are 2818 
not returned on the same HTTP connection as the inbound request, but using an independent HTTP Post 2819 
request.  An HTTP response with a response code as defined in section B.2.3 above and with an empty 2820 
HTTP body MUST be returned in response to the HTTP Post. 2821 

B.2.6 Access Control 2822 

Implementers MAY protect their ebXML Message Service Handlers from unauthorized access through the 2823 
use of an access control mechanism. The HTTP access authentication process described in "HTTP 2824 
Authentication: Basic and Digest Access Authentication" [RFC2617] defines the access control 2825 
mechanisms allowed to protect an ebXM L Message Service Handler from unauthorized access. 2826 

Implementers MAY support all of the access control schemes defined in [RFC2617] however they MUST 2827 
support the Basic Authentication mechanism, as described in section 2, when Access Control is used. 2828 

Implementers that use basic authentication for access control SHOULD also use communication protocol 2829 
level security, as specified in the section titled "Confidentiality and Communication Protocol Level 2830 
Security" in this document. 2831 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 71 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

B.2.7 Confidentiality and Communication Protocol Level Security 2832 

An ebXML Message Service Handler MAY use transport layer encryption to protect the confidentiality of 2833 
ebXML Messages and HTTP transport headers.  The IETF Transport Layer Security specification 2834 
[RFC2246] provides the specific technical details and list of allowable options, which may be used by 2835 
ebXML Message Service Handlers. ebXML Message Service Handlers MUST be capable of operating in 2836 
backwards compatibility mode with SSL [SSL3], as defined in Appendix E of [RFC2246]. 2837 

ebXML Message Service Handlers MAY use any of the allowable encryption algorithms and key sizes 2838 
specified within [RFC2246]. At a minimum ebXML Message Service Handlers MUST support the key 2839 
sizes and algorithms necessary for backward compatibility with [SSL3]. 2840 

The use of 40-bit encryption keys/algorithms is permitted, however it is RECOMMENDED that stronger 2841 
encryption keys/algorithms SHOULD be used. 2842 

Both [RFC2246] and [SSL3] require the use of server side digital certificates. In addition client side 2843 
certificate based authentication is also permitted.  ebXML Message Service handlers MUST support 2844 
hierarchical and peer-to-peer trust models. 2845 

B.3 SMTP 2846 

The Simple Mail Transfer Protocol [SMTP] and its companion documents [RFC822] and [ESMTP] 2847 
makeup the suite of specifications commonly referred to as Internet Electronic Mail. These specifications 2848 
have been augmented over the years by other specifications, which define additional functionality 2849 
"layered on top" of these baseline specifications. These include: 2850 

• Multipurpose Internet Mail Extensions (MIME) [RFC2045], [RFC2046], [RFC2387] 2851 

• SMTP Service Extension for Authentication [RFC2554] 2852 

• SMTP Service Extension for Secure SMTP over TLS [RFC2487] 2853 

Typically, Internet Electronic Mail Implementations consist of two "agent" types: 2854 

• Message Transfer Agent (MTA): Programs that send and receive mail messages with other 2855 
MTA's on behalf of MUA's. Microsoft Exchange Server is an example of a MTA 2856 

• Mail User Agent (MUA): Electronic Mail programs are used to construct electronic mail messages 2857 
and communicate with an MTA to send/retrieve mail messages. Microsoft Outlook is an example 2858 
of a MUA. 2859 

MTA's often serve as "mail hubs" and can typically service hundreds or more MUA's. 2860 

MUA's are responsible for constructing electronic mail messages in accordance with the Internet 2861 
Electronic Mail Specifications identified above. This section describes the "binding" of an ebXML 2862 
compliant message for transport via eMail from the perspective of a MUA. No attempt is made to define 2863 
the binding of an ebXML Message exchange over SMTP from the standpoint of a MTA. 2864 

B.3.1 Minimum level of supported protocols 2865 

• Simple Mail Transfer Protocol [RFC821] and [RFC822] 2866 

• MIME [RFC2045] and [RFC2046] 2867 

• Multipart/Related MIME [RFC2387] 2868 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 72 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

B.3.2  Sending ebXML Messages over SMTP 2869 

Prior to sending messages over SMTP an ebXML Message MUST be formatted according to ebXML 2870 
Message Service Specification sections 7 and 8. Additionally the messages must also conform to the 2871 
syntax, format and encoding rules specified by MIME [RFC2045], [RFC2046] and [RFC2387]. 2872 

Many types of data that a party might desire to transport via email are represented as 8bit characters or 2873 
binary data.  Such data cannot be transmitted over SMTP[SMTP], which restricts mail messages to 7bit 2874 
US-ASCII data with lines no longer than 1000 characters including any trailing CRLF line separator. If a 2875 
sending Message Service Handler knows that a receiving MTA, or ANY intermediary MTA's, are 2876 
restricted to handling 7-bit data then any document part that uses 8 bit (or binary) representation must be 2877 
"transformed" according to the encoding rules specified in section 6 of [RFC2045]. In cases where a 2878 
Message Service Handler knows that a receiving MTA and ALL intermediary MTA's are capable of 2879 
handling 8-bit data then no transformation is needed on any part of the ebXML Message. 2880 

The rules for forming an ebXML Message for transport via SMTP are as follows: 2881 
• If using [RFC821] restricted transport paths, apply transfer encoding to all 8-bit data that will be 2882 

transported in an ebXML message, according to the encoding rules defined in section 6 of 2883 
[RFC2045]. The Content-Transfer-Encoding MIME header MUST be included in the MIME envelope 2884 
portion of any body part that has been transformed (encoded). 2885 

• The Content-Type: Multipart/Related MIME header with the associated parameters, from the 2886 
ebXML Message Envelope MUST appear as an eMail MIME header.  2887 

• All other MIME headers that constitute the ebXML Message Envelope MUST also become part of the 2888 
eMail MIME header. 2889 

• The SOAPAction MIME header field must also be included in the eMail MIME header and MAY have 2890 
the value of ebXML: 2891 

SOAPAction: ”ebXML” 2892 

Where Service and Action are values of the corresponding elements from the ebXML 2893 
MessageHeader. 2894 

• The "MIME-Version: 1.0" header must appear as an eMail MIME header. 2895 
• The eMail header "To:" MUST contain the [RFC822] compliant eMail address of the ebXML Message 2896 

Service Handler. 2897 
• The eMail header "From:" MUST contain the [RFC822] compliant eMail address of the senders 2898 

ebXML Message Service Handler. 2899 
• Construct a "Date:" eMail header in accordance with [RFC822] 2900 
• Other headers MAY occur within the eMail message header in accordance with [RFC822] and 2901 

[RFC2045], however ebXML Message Service Handlers MAY choose to ignore them. 2902 

The example below shows a minimal example of an eMail message containing an ebXML Message: 2903 
 2904 

From: ebXMLhandler@example.com 2905 
To: ebXMLhandler@example2.com 2906 
Date: Thu, 08 Feb 2001 19:32:11 CST 2907 
MIME-Version: 1.0 2908 
SOAPAction: "ebXML" 2909 
Content-type: multipart/related; boundary="BoundarY"; type="text/xml"; 2910 
        start="<ebxhmheader111@example.com>" 2911 
 2912 
--BoundarY 2913 
Content-ID: <ebxhmheader111@example.com> 2914 
Content-Type: text/xml 2915 
 2916 
<?xml version="1.0" encoding="UTF-8"?> 2917 
<SOAP-ENV:Envelope  xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/' 2918 
 xmlns:eb='http://www.ebxml.org/namespaces/messageHeader'> 2919 
<SOAP-ENV:Header> 2920 
 <eb:MessageHeader SOAP-ENV:mustUnderstand="1" eb:version="1.0"> 2921 
  <eb:From> 2922 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 73 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

   <eb:PartyId>urn:duns:123456789</eb:PartyId> 2923 
  </eb:From> 2924 
  <eb:To> 2925 
   <eb:PartyId>urn:duns:912345678</eb:PartyId> 2926 
  </eb:To> 2927 
  <eb:CPAId>20001209-133003-28572</eb:CPAId> 2928 
  <eb:ConversationId>20001209-133003-28572</eb:ConversationId> 2929 
  <eb:Service>urn:services:SupplierOrderProcessing</eb:Service> 2930 
  <eb:Action>NewOrder</eb:Action> 2931 
  <eb:MessageData> 2932 
   <eb:MessageId>20001209-133003-28572@example.com</eb:MessageId> 2933 
   <eb:Timestamp>2001-02-15T11:12:12Z</Timestamp> 2934 
  </eb:MessageData> 2935 
  <eb:QualityOfServiceInfo eb:deliverySemantics="BestEffort"/> 2936 
 </eb:MessageHeader> 2937 
</SOAP-ENV:Header> 2938 
<SOAP-ENV:Body> 2939 
 <eb:Manifest SOAP-ENV:mustUnderstand="1" eb:version="1.0"> 2940 
  <eb:Reference xlink:href="cid:ebxmlpayload111@example.com" 2941 
      xlink:role="XLinkRole" 2942 
       xlink:type="simple"> 2943 
      <eb:Description xml:lang="en-us">Purchase Order 1</eb:Description> 2944 
  </eb:Reference> 2945 
 </eb:Manifest> 2946 
</SOAP-ENV:Body> 2947 
</SOAP-ENV:Envelope> 2948 
 2949 
--BoundarY 2950 
Content-ID: <ebxhmheader111@example.com> 2951 
Content-Type: text/xml 2952 
 2953 
<?xml version="1.0" encoding="UTF-8"?> 2954 
<purchase_order> 2955 
 <po_number>1</po_number> 2956 
 <part_number>123</part_number> 2957 
 <price currency="USD">500.00</price> 2958 
</purchase_order> 2959 
 2960 
--BoundarY-- 2961 

B.3.3 Response Messages 2962 

All ebXML response messages, including errors and acknowledgements, are delivered asynchronously 2963 
between ebXML Message Service Handlers. Each response message MUST be constructed in 2964 
accordance with the rules specified in the section titled "Sending ebXML messages over SMTP" 2965 
elsewhere in this document. 2966 

ebXML Message Service Handlers MUST be capable of receiving a delivery failure notification message 2967 
sent by an MTA.  A MSH that receives a delivery failure notification message SHOULD examine the 2968 
message to determine which ebXML message, sent by the MSH, resulted in a message delivery failure. 2969 
The MSH SHOULD attempt to identify the application responsible for sending the offending message 2970 
causing the failure.  The MSH SHOULD attempt to notify the application that a message delivery failure 2971 
has occurred. If the MSH is unable to determine the source of the offending message the MSH 2972 
administrator should be notified. 2973 

MSH's which cannot identify a received message as a valid ebXML message or a message delivery 2974 
failure SHOULD retain the unidentified message in a "dead letter" folder. 2975 

A MSH SHOULD place an entry in an audit log indicating the disposition of each received message. 2976 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 74 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

B.3.4 Access Control 2977 

Implementers MAY protect their ebXML Message Service Handlers from unauthorized access through the 2978 
use of an access control mechanism. The SMTP access authentication process described in "SMTP 2979 
Service Extension for Authentication" [RFC2554] defines the ebXML recommended access control 2980 
mechanism to protect a SMTP based ebXML Message Service Handler from unauthorized access. 2981 

B.3.5 Confidentiality and Communication Protocol Level Security 2982 

An ebXML Message Service Handler MAY use transport layer encryption to protect the confidentiality of 2983 
ebXML messages.  The IETF "SMTP Service Extension for Secure SMTP over TLS" specification 2984 
[RFC2487] provides the specific technical details and list of allowable options, which may be used.  2985 

B.3.6 SMTP Model 2986 

All ebXML Message Service messages carried as mail in a [SMTP] Mail Transaction as shown in the 2987 
figure below. 2988 

Receiver

MSH

SMTP Handler

Sender

MSH

SMTP Handler

ebXML Message

Mail Transaction

Sender
Party

Payload Data

Receiver
Party

Payload Data

Payload Data Payload Data

ebXML Message

Mail Transaction

 2989 

 2990 

B.4 Communication Errors during Reliable Messaging 2991 

When the Sender or the Receiver detects a transport protocol level error (such as an HTTP, SMTP or 2992 
FTP error) and Reliable Messaging is being used then the appropriate transport recovery handler will 2993 
execute a recovery sequence.  Only if the error is unrecoverable, does Reliable Messaging recovery take 2994 
place (see section 10). 2995 



ebXML Transport, Routing and Packaging   May 2001 

Message Service Specification 1.0  Page 75 of 75 
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 

Disclaimer 2996 

The views and specification expressed in this document are those of the authors and are not necessarily 2997 
those of their employers.  The authors and their employers specifically disclaim responsibility for any 2998 
problems arising from correct or incorrect implementation or use of this design. 2999 

 3000 

 3001 

 3002 

 3003 

 3004 

Copyright Statement 3005 

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved 3006 

This document and translations of it MAY be copied and furnished to others, and derivative works that 3007 
comment on or otherwise explain it or assist in its implementation MAY be prepared, copied, published 3008 
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice 3009 
and this paragraph are included on all such copies and derivative works.  However, this document itself 3010 
MAY not be modified in any way, such as by removing the copyright notice or references to the ebXML, 3011 
UN/CEFACT, or OASIS, except as required to translate it into languages other than English. 3012 

The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors 3013 
or assigns. 3014 

This document and the information contained herein is provided on an  "AS IS" basis and ebXML 3015 
disclaims all warranties, express or implied, including but not limited to any warranty that the use of the 3016 
information herein will not infringe any rights or any implied warranties of merchantability or fitness for a 3017 
particular purpose. 3018 


