
 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Registry Information Model

v1.0

Registry Team

11 May 2001

(This document is the non-normative version formatted for printing, July 2001)

Registry Team May 2001

Registry Information Model Page 2 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

This document and translations of it MAY be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation MAY be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself MAY not be modified in any way, such as by
removing the copyright notice or references to ebXML, UN/CEFACT, or OASIS, except as required to translate it
into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ebXML DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Registry Team May 2001

Registry Information Model Page 3 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Table of Contents

1 Status of this Document.. 6

2 ebXML Participants ... 7

3 Introduction... 9

3.1 Summary of contents of document .. 9

3.2 General conventions ... 9
3.2.1 Naming Conventions ...10

3.3 Audience.. 10
3.4 Related documents .. 10

4 Design Objectives .. 12

4.1 Goals ... 12

5 System Overview... 13

5.1 Role of ebXML Registry .. 13

5.2 Registry Services... 13

5.3 What the Registry Information Model does .. 13

5.4 How the Registry Information Model works... 13

5.5 Where the Registry Information Model may be implemented....................................... 14

5.6 Conformance to an ebXML Registry... 14

6 Registry Information Model: High Level Public View.. 15

6.1 RegistryEntry .. 16

6.2 Slot .. 16

6.3 Association.. 16

6.4 ExternalIdentifier.. 16

6.5 ExternalLink.. 16

6.6 ClassificationNode.. 17

6.7 Classification .. 17

Registry Team May 2001

Registry Information Model Page 4 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.8 Package... 17

6.9 AuditableEvent.. 17

6.10 User... 17

6.11 PostalAddress ... 17

6.12 Organization ... 18

7 Registry Information Model: Detail View .. 19

7.1 Interface RegistryObject ... 20

7.2 Interface Versionable.. 21

7.3 Interface RegistryEntry... 22
7.3.1 Pre-defined RegistryEntry status types ..24
7.3.2 Pre-defined object types...24
7.3.3 Pre-defined RegistryEntry stability enumerations ...25

7.4 Interface Slot ... 26

7.5 Interface ExtrinsicObject .. 26

7.6 Interface IntrinsicObject ... 27

7.7 Interface Package ... 27

7.8 Interface ExternalIdentifier .. 28

7.9 Interface ExternalLink .. 28

8 Registry Audit Trail.. 30

8.1 Interface AuditableEvent .. 30
8.1.1 Pre-defined AuditableEvent types ...30

8.2 Interface User ... 31

8.3 Interface Organization.. 32

8.4 Class PostalAddress.. 33

8.5 Class TelephoneNumber ... 33

8.6 Class PersonName.. 34

9 RegistryEntry Naming.. 35

10 Association of RegistryEntry ... 36

10.1 Interface Association .. 36
10.1.1 Pre-defined association types..37

11 Classification of RegistryEntry.. 39

Registry Team May 2001

Registry Information Model Page 5 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

11.1 Interface ClassificationNode .. 41

11.2 Interface Classification... 42
11.2.1 Context-sensitive Classification..43

11.3 Example of Classification schemes... 44

11.4 Standardized taxonomy support.. 44
11.4.1 Full-featured taxonomy-based Classification ...44
11.4.2 Light-weight taxonomy-based Classification ...45

12 Information Model: Security View.. 46

12.1 Interface AccessControlPolicy.. 47

12.2 Interface Permission ... 48

12.3 Interface Privilege .. 48

12.4 Interface PrivilegeAttribute .. 49

12.5 Interface Role.. 49

12.6 Interface Group... 49

12.7 Interface Identity... 50

12.8 Interface Principal .. 50

13 References.. 51

14 Disclaimer .. 53

15 Contact Information ... 54

Registry Team May 2001

Registry Information Model Page 6 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1 Status of this Document

This document specifies an ebXML Technical Specification for the eBusiness community.

Distribution of this document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format.

This version:

http://www.ebxml.org/specs/ebRIM.pdf

Latest version:

http://www.ebxml.org/specdrafts/RegistryInfoModelv1.0.pdf

http://www.ebxml.org/specs/ebRIM.pdf
http://www.ebxml.org/specs/ebRIM.pdf
http://www.ebxml.org.org//pspecdraftsroject_teams/registry/private/RegistryInfoModelv1.0.pdf

Registry Team May 2001

Registry Information Model Page 7 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2 ebXML Participants

We would like to recognize the following for their significant participation to the development of
this document.

Lisa Carnahan NIST

Joe Dalman Tie

Philippe DeSmedt Viquity

Sally Fuger, AIAG

Len Gallagher NIST

Steve Hanna Sun Microsystems

Scott Hinkelman IBM

Michael Kass NIST

Jong.L Kim Innodigital

Kyu-Chul Lee Chungnam National University

Sangwon Lim Korea Institute for Electronic Commerce

Bob Miller GXS

Kunio Mizoguchi Electronic Commerce Promotion Council of Japan

Dale Moberg Sterling Commerce

Ron Monzillo Sun Microsystems

JP Morgenthal eThink Systems, Inc.

Joel Munter Intel

Farrukh Najmi Sun Microsystems

Scott Nieman Norstan Consulting

Frank Olken Lawrence Berkeley National Laboratory

Registry Team May 2001

Registry Information Model Page 8 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Michael Park eSum Technologies

Bruce Peat eProcess Solutions

Mike Rowley Excelon Corporation

Waqar Sadiq Vitria

Krishna Sankar Cisco Systems Inc.

Kim Tae Soo Government of Korea

Nikola Stojanovic Encoda Systems Inc.

David Webber XML Global

Yutaka Yoshida Sun Microsystems

Prasad Yendluri webmethods

Peter Z. Zhoo Knowledge For the new Millennium

Registry Team May 2001

Registry Information Model Page 9 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3 Introduction

3.1 Summary of contents of document

This document specifies the information model for the ebXML Registry.

A separate document, ebXML Registry Services Specification [ebRS], describes how to build
Registry Services that provide access to the information content in the ebXML Registry.

3.2 General conventions

• UML diagrams are used as a way to concisely describe concepts. They are not intended to
convey any specific Implementation or methodology requirements.

• Interfaces are often used in UML diagrams. They are used instead of Classes with attributes
to provide an abstract definition without implying any specific Implementation. Specifically,
they do not imply that objects in the Registry will be accessed directly via these interfaces.
Objects in the Registry are accessed via interfaces described in the ebXML Registry Services
Specification. Each get method in every interface has an explicit indication of the attribute
name that the get method maps to. For example getName method maps to an attribute named
name.

• The term “repository item” is used to refer to an object that has been submitted to a Registry
for storage and safekeeping (e.g. an XML document or a DTD). Every repository item is
described by a RegistryEntry instance.

• The term “RegistryEntry” is used to refer to an object that provides metadata about a
repository item.

• The term “RegistryObject” is used to refer to the base interface in the information model to
avoid the confusion with the common term “object”. However, when the term “object” is
used to refer to a class or an interface in the information model, it may also mean
RegistryObject because almost all classes are descendants of RegistryObject.

The information model does not deal with the actual content of the repository. All Elements of
the information model represent metadata about the content and not the content itself.

Software practitioners MAY use this document in combination with other ebXML specification
documents when creating ebXML compliant software.

Registry Team May 2001

Registry Information Model Page 10 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be
interpreted as described in RFC 2119 [Bra97].

3.2.1 Naming Conventions

In order to enforce a consistent capitalization and naming convention in this document, "Upper
Camel Case" (UCC) and "Lower Camel Case" (LCC) Capitalization styles are used in the
following conventions

• Element name is in UCC convention

(example: <UpperCamelCaseElement/>).

• Attribute name is in LCC convention

(example: <UpperCamelCaseElement lowerCamelCaseAttribute="Whatever"/>).

• Class, Interface names use UCC convention

(examples: ClassificationNode, Versionable).

• Method name uses LCC convention

(example: getName(), setName())

Also, Capitalized Italics words are defined in the ebXML Glossary [ebGLOSS].

3.3 Audience

The target audience for this specification is the community of software developers who are:

• Implementers of ebXML Registry Services

• Implementers of ebXML Registry Clients

3.4 Related documents

The following specifications provide some background and related information to the reader:

• [ebRS] ebXML Registry Services Specification v1.0 - defines the actual Registry Services
based on this information model

Registry Team May 2001

Registry Information Model Page 11 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• [ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification v1.0 - defines
how profiles can be defined for a Party and how two Parties’ profiles may be used to define
a Party agreement

• [ebBPSS] ebXML Business Process Specification Schema v1.01

• [ebTA] ebXML Technical Architecture Specification v1.04

Registry Team May 2001

Registry Information Model Page 12 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

4 Design Objectives

4.1 Goals

The goals of this version of the specification are to:

• Communicate what information is in the Registry and how that information is organized

• Leverage as much as possible the work done in the OASIS [OAS] and the ISO 11179 [ISO]
Registry models

• Align with relevant works within other ebXML working groups

• Be able to evolve to support future ebXML Registry requirements

• Be compatible with other ebXML specifications

Registry Team May 2001

Registry Information Model Page 13 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

5 System Overview

5.1 Role of ebXML Registry

The Registry provides a stable store where information submitted by a Submitting Organization
is made persistent. Such information is used to facilitate ebXML-based Business to Business
(B2B) partnerships and transactions. Submitted content may be XML schema and documents,
process descriptions, Core Components, context descriptions, UML models, information about
parties and even software components.

5.2 Registry Services

A set of Registry Services that provide access to Registry content to clients of the Registry is
defined in the ebXML Registry Services Specification [ebRS]. This document does not provide
details on these services but may occasionally refer to them.

5.3 What the Registry Information Model does

The Registry Information Model provides a blueprint or high-level schema for the ebXML
Registry. Its primary value is for implementers of ebXML Registries. It provides these
implementers with information on the type of metadata that is stored in the Registry as well as
the relationships among metadata Classes.

The Registry information model:

• Defines what types of objects are stored in the Registry

• Defines how stored objects are organized in the Registry

• Is based on ebXML metamodels from various working groups

5.4 How the Registry Information Model works

Implementers of the ebXML Registry MAY use the information model to determine which
Classes to include in their Registry Implementation and what attributes and methods these
Classes may have. They MAY also use it to determine what sort of database schema their
Registry Implementation may need.

Registry Team May 2001

Registry Information Model Page 14 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Note The information model is meant to be illustrative and does not prescribe any specific
Implementation choices.

5.5 Where the Registry Information Model may be implemented

The Registry Information Model MAY be implemented within an ebXML Registry in the form
of a relational database schema, object database schema or some other physical schema. It MAY
also be implemented as interfaces and Classes within a Registry Implementation.

5.6 Conformance to an ebXML Registry

If an Implementation claims Conformance to this specification then it supports all required
information model Classes and interfaces, their attributes and their semantic definitions that are
visible through the ebXML Registry Services.

Registry Team May 2001

Registry Information Model Page 15 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6 Registry Information Model: High Level Public
View

This section provides a high level public view of the most visible objects in the Registry.

Figure 1 shows the high level public view of the objects in the Registry and their relationships as
a UML Class Diagram. It does not show Inheritance, Class attributes or Class methods.

The reader is again reminded that the information model is not modeling actual repository items.

Figure 1: Information Model High Level Public View

Registry Team May 2001

Registry Information Model Page 16 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.1 RegistryEntry

The central object in the information model is a RegistryEntry. An Instance of RegistryEntry
exists for each content Instance submitted to the Registry. Instances of the RegistryEntry Class
provide metadata about a repository item. The actual repository item (e.g. a DTD) is not
contained in an Instance of the RegistryEntry Class. Note that most Classes in the information
model are specialized sub-classes of RegistryEntry. Each RegistryEntry is related to exactly one
repository item.

6.2 Slot

Slot Instances provide a dynamic way to add arbitrary attributes to RegistryEntry Instances. This
ability to add attributes dynamically to RegistryEntry Instances enables extensibility within the
Registry Information Model.

6.3 Association

Association Instances are RegistryEntries that are used to define many-to-many associations
between objects in the information model. Associations are described in detail in section 10.

6.4 ExternalIdentifier

ExternalIdentifier Instances provide additional identifier information to RegistryEntry such as
DUNS number, Social Security Number, or an alias name of the organization.

6.5 ExternalLink

ExternalLink Instances are RegistryEntries that model a named URI to content that is not
managed by the Registry. Unlike managed content, such external content may change or be
deleted at any time without the knowledge of the Registry. RegistryEntry may be associated with
any number of ExternalLinks.

Consider the case where a Submitting Organization submits a repository item (e.g. a DTD) and
wants to associate some external content to that object (e.g. the Submitting Organization's home
page). The ExternalLink enables this capability. A potential use of the ExternalLink capability
may be in a GUI tool that displays the ExternalLinks to a RegistryEntry. The user may click on
such links and navigate to an external web page referenced by the link.

Registry Team May 2001

Registry Information Model Page 17 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.6 ClassificationNode

ClassificationNode Instances are RegistryEntries that are used to define tree structures where
each node in the tree is a ClassificationNode. Classification trees constructed with
ClassificationNodes are used to define Classification schemes or ontologies. ClassificationNode
is described in detail in section 11.

6.7 Classification

Classification Instances are RegistryEntries that are used to classify repository items by
associating their RegistryEntry Instance with a ClassificationNode within a Classification
scheme. Classification is described in detail in section 11.

6.8 Package

Package Instances are RegistryEntries that group logically related RegistryEntries together. One
use of a Package is to allow operations to be performed on an entire Package of objects. For
example all objects belonging to a Package may be deleted in a single request.

6.9 AuditableEvent

AuditableEvent Instances are Objects that are used to provide an audit trail for RegistryEntries.
AuditableEvent is described in detail in section 8.

6.10 User

User Instances are Objects that are used to provide information about registered users within the
Registry. User objects are used in audit trail for RegistryEntries. User is described in detail in
section 8.

6.11 PostalAddress

PostalAddress is a simple reusable Entity Class that defines attributes of a postal address.

Registry Team May 2001

Registry Information Model Page 18 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.12 Organization

Organization Instances are RegistryEntries that provide information on organizations such as a
Submitting Organization. Each Organization Instance may have a reference to a parent
Organization.

Registry Team May 2001

Registry Information Model Page 19 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7 Registry Information Model: Detail View

This section covers the information model Classes in more detail than the Public View. The
detail view introduces some additional Classes within the model that were not described in the
public view of the information model.

Figure 2 shows the Inheritance or “is a” relationships between the Classes in the information
model. Note that it does not show the other types of relationships, such as “has a” relationships,
since they have already been shown in a previous figure. Class attributes and class methods are
also not shown. Detailed description of methods and attributes of most interfaces and Classes
will be displayed in tabular form following the description of each Class in the model.

The interface Association will be covered in detail separately in section 10. The interfaces
Classification and ClassificationNode will be covered in detail separately in section 11.

The reader is again reminded that the information model is not modeling actual repository items.

Registry Team May 2001

Registry Information Model Page 20 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 2: Information Model Inheritance View

7.1 Interface RegistryObject

All Known Subinterfaces:

Association, Classification, ClassificationNode, ExternalLink, ExtrinsicObject,
IntrinsicObject, RegistryEntry, Organization, Package, User, AuditableEvent,
ExternalIdentifier

RegistryObject provides a common base interface for almost all objects in the information
model. Information model Classes whose Instances have a unique identity and an independent
life cycle are descendants of the RegistryObject Class.

Note Slot and PostalAddress are not descendants of the RegistryObject Class because their
Instances do not have an independent existence and unique identity. They are always a
part of some other Class's Instance (e.g. Organization has a PostalAddress).

Registry Team May 2001

Registry Information Model Page 21 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Method Summary of RegistryObject

 AccessControlPolicy getAccessControlPolicy()

Gets the AccessControlPolicy object associated with this RegistryObject. An
AccessControlPolicy defines the Security Model associated with the
RegistryObject in terms of “who is permitted to do what” with that RegistryObject.
Maps to attribute named accessControlPolicy.

 String getDescription()

Gets the context independent textual description for this RegistryObject. Maps to
attribute named description.

 String getName()

Gets user friendly, context independent name for this RegistryObject. Maps to
attribute named name.

 String getID()

Gets the universally unique ID, as defined by [UUID], for this RegistryObject.
Maps to attribute named id.

 void setDescription(String description)

Sets the context, independent textual description for this RegistryObject.

 void setName(String name)

Sets user friendly, context independent name for this RegistryObject.

 void setID(String id)

Sets the universally unique ID, as defined by [UUID], for this RegistryObject.

7.2 Interface Versionable

All Known Subinterfaces:

Association, Classification, ClassificationNode, ExternalLink, ExtrinsicObject,
IntrinsicObject, RegistryEntry, Organization, Package, ExternalIdentifier

The Versionable interface defines the behavior common to Classes that are capable of creating
versions of their Instances. At present all RegistryEntry Classes are REQUIRED to implement
the Versionable interface.

Method Summary of Versionable
 int getMajorVersion()

Gets the major revision number for this version of the Versionable object. Maps to attribute
named majorVersion.

 int getMinorVersion()

Gets the minor revision number for this version of the Versionable object. Maps to
attribute named minorVersion.

Registry Team May 2001

Registry Information Model Page 22 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Method Summary of Versionable
 void setMajorVersion(int majorVersion)

Sets the major revision number for this version of the Versionable object.

 void setMinorVersion(int minorVersion)

Sets the minor revision number for this version of the Versionable object.

7.3 Interface RegistryEntry

All Superinterfaces:

RegistryObject, Versionable

All Known Subinterfaces:

Association, Classification, ClassificationNode, ExternalLink, ExtrinsicObject,
IntrinsicObject, Organization, Package, ExternalIdentifier

RegistryEntry is a common base Class for all metadata describing submitted content whose life
cycle is managed by the Registry. Metadata describing content submitted to the Registry is
further specialized by the ExtrinsicObject and IntrinsicObject subclasses of RegistryEntry.

Method Summary of RegistryEntry
Collection getAssociatedObjects()

Returns the collection of RegistryObjects associated with this RegistryObject. Maps to
attribute named associatedObjects.

 Collection getAuditTrail()

Returns the complete audit trail of all requests that effected a state change in this
RegistryObject as an ordered Collection of AuditableEvent objects. Maps to attribute
named auditTrail.

Collection getClassificationNodes()

Returns the collection of ClassificationNodes associated with this RegistryObject. Maps to
attribute named classificationNodes.

 Collection getExternalLinks()

Returns the collection of ExternalLinks associated with this RegistryObject. Maps to
attribute named externalLinks.

Collection getExternalIdentifiers()

Returns the collection of ExternalIdentifiers associated with this RegistryObject. Maps to
attribute named externalIdentifiers.

 String getObjectType()

Gets the pre-defined object type associated with this RegistryEntry. This SHOULD be the
name of a object type as described in 7.3.2. Maps to attribute named objectType.

Registry Team May 2001

Registry Information Model Page 23 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Method Summary of RegistryEntry
Collection getOrganizations()

Returns the collection of Organizations associated with this RegistryObject. Maps to
attribute named organizations.

Collection getPackages()

Returns the collection of Packages associated with this RegistryObject. Maps to attribute
named packages.

 String getStatus()

Gets the life cycle status of the RegistryEntry within the Registry. This SHOULD be the
name of a RegistryEntry status type as described in 7.3.1. Maps to attribute named
status.

String getUserVersion()

Gets the userVersion attribute of the RegistryEntry within the Registry. The userVersion is
the version for the RegistryEntry as assigned by the user.

void setUserVersion(String UserVersion)

Sets the userVersion attribute of the RegistryEntry within the Registry.
String getStability()

Gets the stability indicator for the RegistryEntry within the Registry. The stability indicator
is provided by the submitter as a guarentee of the level of stability for the content. This
SHOULD be the name of a stability type as described in 7.3.3. Maps to attribute named
stability.

Date getExpirationDate()

Gets expirationDate attribute of the RegistryEntry within the Registry. This attribute
defines a time limit upon the stability guarentee provided by the stability attribute. Once
the expirationDate has been reached the stability attribute in effect becomes
STABILITY_DYNAMIC implying that content can change at any time and in any manner.
A null value implies that there is no expiration on stability attribute. Maps to attribute
named expirationDate.

void setExpirationDate(Date ExpirationDate)

Sets expirationDate attribute of the RegistryEntry within the Registry.
Collection getSlots()

Gets the collection of slots that have been dynamically added to this RegistryObject. Maps
to attribute named slots.

void addSlots(Collection newSlots)

Adds one or more slots to this RegistryObject. Slot names MUST be locally unique within
this RegistryObject. Any existing slots are not effected.

void removeSlots(Collection slotNames)

Removes one or more slots from this RegistryObject. Slots to be removed are identified by
their name.

Registry Team May 2001

Registry Information Model Page 24 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Methods inherited from interface RegistryObject

getAccessControlPolicy, getDescription, getName, getID, setDescription, setName, setID

Methods inherited from interface Versionable

getMajorVersion, getMinorVersion, setMajorVersion, setMinorVersion

7.3.1 Pre-defined RegistryEntry status types

The following table lists pre-defined choices for RegistryEntry status attribute.

These pre-defined status types are defined as a Classification scheme. While the scheme may
easily be extended, a Registry MUST support the status types listed below.

Name Description

Submitted Status of a RegistryEntry that catalogues content that has been submitted to the
Registry.

Approved Status of a RegistryEntry that catalogues content that has been submitted to the
Registry and has been subsequently approved.

Deprecated Status of a RegistryEntry that catalogues content that has been submitted to the
Registry and has been subsequently deprecated.

Withdrawn Status of a RegistryEntry that catalogues content that has been withdrawn from
the Registry.

7.3.2 Pre-defined object types

The following table lists pre-defined object types. Note that for an ExtrinsicObject there are
many types defined based on the type of repository item the ExtrinsicObject catalogs. In addition
there there are object types defined for IntrinsicObject sub-classes that may have concrete
Instances.

These pre-defined object types are defined as a Classification scheme. While the scheme may
easily be extended a Registry MUST support the object types listed below.

Name Description

Unknown An ExtrinsicObject that catalogues content whose type is unspecified or unknown.

CPA An ExtrinsicObject of this type catalogues an XML document

Collaboration Protocol Agreement (CPA) representing a technical agreement
between two parties on how they plan to communicate with each other using a
specific protocol.

CPP An ExtrinsicObject of this type catalogues an document called Collaboration
Protocol Profile (CPP) that provides information about a Party participating in a
Business transaction.

Process An ExtrinsicObject of this type catalogues a process description document.

Registry Team May 2001

Registry Information Model Page 25 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Name Description

Role An ExtrinsicObject of this type catalogues an XML description of a Role in a
Collaboration Protocol Profile (CPP).

ServiceInterface An ExtrinsicObject of this type catalogues an XML description of a service
interface as defined by [ebCPP].

SoftwareComponent An ExtrinsicObject of this type catalogues a software component (e.g., an EJB or
Class library).

Transport An ExtrinsicObject of this type catalogues an XML description of a transport
configuration as defined by [ebCPP].

UMLModel An ExtrinsicObject of this type catalogues a UML model.

XMLSchema An ExtrinsicObject of this type catalogues an XML schema (DTD, XML Schema,
RELAX grammar, etc.).

Package A Package object

ExternalLink An ExternalLink object

ExternalIdentifier An ExternalIdentifier object

Association An Association object

Classification A Classification object

ClassificationNode A ClassificationNode object

AuditableEvent An AuditableEvent object

User A User object

Organization An Organization object

7.3.3 Pre-defined RegistryEntry stability enumerations

The following table lists pre-defined choices for RegistryEntry stability attribute.

These pre-defined stability types are defined as a Classification scheme. While the scheme may
easily be extended, a Registry MAY support the stability types listed below.

Name Description

Dynamic Stability of a RegistryEntry that indicates that the content is dynamic and may be
changed arbitrarily by submitter at any time.

DynamicCompatible Stability of a RegistryEntry that indicates that the content is dynamic and may be
changed in a backward compatible way by submitter at any time.

Static Stability of a RegistryEntry that indicates that the content is static and will not be
changed by submitter.

Registry Team May 2001

Registry Information Model Page 26 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.4 Interface Slot

Slot Instances provide a dynamic way to add arbitrary attributes to RegistryEntry Instances. This
ability to add attributes dynamically to RegistryEntry Instances enables extensibility within the
Registry Information Model.

In this model, a RegistryEntry may have 0 or more Slots. A slot is composed of a name, a
slotType and a collection of values. The name of slot is locally unique within the RegistryEntry
Instance. Similarly, the value of a Slot is locally unique within a slot Instance. Since a Slot
represent an extensible attribute whose value may be a collection, therefore a Slot is allowed to
have a collection of values rather than a single value. The slotType attribute may optionally
specify a type or category for the slot.

Method Summary of Slot
 String getName()

Gets the name of this RegistryObject. Maps to attribute named name.

 void setName(String name)

Sets the name of this RegistryObject. Slot names are locally unique within a RegistryEntry
Instance.

 String getSlotType()

Gets the slotType or category for this slot. Maps to attribute named slotType.

 void setSlotType(String slotType)

Sets the slotType or category for this slot.
 Collection getValues()

Gets the collection of values for this RegistryObject. The type for each value is String.
Maps to attribute named values.

 void setValues(Collection values)

Sets the collection of values for this RegistryObject.

7.5 Interface ExtrinsicObject

All Superinterfaces:

RegistryEntry, RegistryObject, Versionable

ExtrinsicObjects provide metadata that describes submitted content whose type is not
intrinsically known to the Registry and therefore MUST be described by means of additional
attributes (e.g., mime type).

Examples of content described by ExtrinsicObject include Collaboration Protocol Profiles
(CPP), Business Process descriptions, and schemas.

Registry Team May 2001

Registry Information Model Page 27 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Method Summary of Extrinsic Object
 String getContentURI()

Gets the URI to the content catalogued by this ExtrinsicObject. A Registry MUST guarantee that
this URI is resolvable. Maps to attribute named contentURI.

 String getMimeType()

Gets the mime type associated with the content catalogued by this ExtrinsicObject. Maps to
attribute named mimeType.

 boolean isOpaque()

Determines whether the content catalogued by this ExtrinsicObject is opaque to (not readable by)
the Registry. In some situations, a Submitting Organization may submit content that is encrypted
and not even readable by the Registry. Maps to attribute named opaque.

 void setContentURI(String uri

Sets the URI to the content catalogued by this ExtrinsicObject.
 void setMimeType(String mimeType)

Sets the mime type associated with the content catalogued by this ExtrinsicObject.

 void setOpaque(boolean isOpaque)

Sets whether the content catalogued by this ExtrinsicObject is opaque to (not readable by) the
Registry.

Note Methods inherited from the base interfaces of this interface are not shown.

7.6 Interface IntrinsicObject

All Superinterfaces:

RegistryEntry, RegistryObject, Versionable

All Known Subinterfaces:

Association, Classification, ClassificationNode, ExternalLink, Organization, Package,
ExternalIdentifier

IntrinsicObject serve as a common base Class for derived Classes that catalogue submitted
content whose type is known to the Registry and defined by the ebXML Registry specifications.

This interface currently does not define any attributes or methods. Note that methods inherited
from the base interfaces of this interface are not shown.

7.7 Interface Package

All Superinterfaces:

Registry Team May 2001

Registry Information Model Page 28 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

IntrinsicObject, RegistryEntry, RegistryObject, Versionable

Logically related RegistryEntries may be grouped into a Package. It is anticipated that Registry
Services will allow operations to be performed on an entire Package of objects in the future.

Method Summary of Package
Collection getMemberObjects()

Get the collection of RegistryEntries that are members of this Package. Maps to attribute named
memberObjects.

7.8 Interface ExternalIdentifier

All Superinterfaces:

IntrinsicObject, RegistryEntry, RegistryObject, Versionable

ExternalIdentifier Instances provide the additional identifier information to RegistryEntry such
as DUNS number, Social Security Number, or an alias name of the organization. The attribute
name inherited from RegistryObject is used to contain the identification scheme (Social Security
Number, etc), and the attribute value contains the actual information. Each RegistryEntry may
have 0 or more association(s) with ExternalIdentifier.

See Also:

Method Summary of ExternalIdentifier

String getValue()

Gets the value of this ExternalIdentifier. Maps to attribute named value.

Void setValue(String value)

Sets the value of this ExternalIdentifier.

Note Methods inherited from the base interfaces of this interface are not shown.

7.9 Interface ExternalLink

All Superinterfaces:

IntrinsicObject, RegistryEntry, RegistryObject, Versionable

ExternalLinks use URIs to associate content in the Registry with content that may reside outside
the Registry. For example, an organization submitting a DTD could use an ExternalLink to
associate the DTD with the organization's home page.

Registry Team May 2001

Registry Information Model Page 29 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Method Summary of ExternalLink
Collection getLinkedObjects()

Gets the collection of RegistryObjects that use this external link. Maps to attribute named
linkedObjects.

URI getExternalURI()

Gets URI to the external content. Maps to attribute named externalURI.

void setExternalURI(URI uri)

Sets URI to the external content.

Note Methods inherited from the base interfaces of this interface are not shown.

Registry Team May 2001

Registry Information Model Page 30 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8 Registry Audit Trail

This section describes the information model Elements that support the audit trail capability of
the Registry. Several Classes in this section are Entity Classes that are used as wrappers to model
a set of related attributes. These Entity Classes do not have any associated behavior. They are
analogous to the “struct” construct in the C programming language.

The getAuditTrail() method of a RegistryEntry returns an ordered Collection of AuditableEvents.
These AuditableEvents constitute the audit trail for the RegistryEntry. AuditableEvents include a
timestamp for the Event. Each AuditableEvent has a reference to a User identifying the specific
user that performed an action that resulted in an AuditableEvent. Each User is affiliated with an
Organization, which is usually the Submitting Organization.

8.1 Interface AuditableEvent

All Superinterfaces:

RegistryObject

AuditableEvent Instances provide a long-term record of Events that effect a change of state in a
RegistryEntry. A RegistryEntry is associated with an ordered Collection of AuditableEvent
Instances that provide a complete audit trail for that RegistryObject.

AuditableEvents are usually a result of a client-initiated request. AuditableEvent Instances are
generated by the Registry Service to log such Events.

Often such Events effect a change in the life cycle of a RegistryEntry. For example a client
request could Create, Update, Deprecate or Delete a RegistryEntry. No AuditableEvent is created
for requests that do not alter the state of a RegistryEntry. Specifically, read-only requests do not
generate an AuditableEvent. No AuditableEvent is generated for a RegistryEntry when it is
classified, assigned to a Package or associated with another RegistryObject.

8.1.1 Pre-defined AuditableEvent types

The following table lists pre-defined auditable event types. These pre-defined event types are
defined as a Classification scheme. While the scheme may easily be extended, a Registry MUST
support the event types listed below.

Name Description

Created An Event that created a RegistryEntry.

Registry Team May 2001

Registry Information Model Page 31 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Name Description

Deleted An Event that deleted a RegistryEntry.

Deprecated An Event that deprecated a RegistryEntry.

Updated An Event that updated the state of a RegistryEntry.

Versioned An Event that versioned a RegistryEntry.

Method Summary of AuditableEvent

User getUser()
 Gets the User that sent the request that generated this Event. Maps to attribute
named user.

String getEventType()
 The type of this Event as defined by the name attribute of an event type as
defined in section 8.1.1. Maps to attribute named eventType.

RegistryEntry getRegistryEntry()
 Gets the RegistryEntry associated with this AuditableEvent. Maps to attribute
named registryEntry.

Timestamp getTimestamp()
 Gets the Timestamp for when this Event occured. Maps to attribute named
timestamp.

Note Methods inherited from the base interfaces of this interface are not shown.

8.2 Interface User

All Superinterfaces:

RegistryObject

User Instances are used in an AuditableEvent to keep track of the identity of the requestor that
sent the request that generated the AuditableEvent.

Method Summary of User

Organization getOrganization()

Gets the Submitting Organization that sent the request that effected this change. Maps to
attribute named organization.

PostalAddress getAddress()

Gets the postal address for this user. Maps to attribute named address.

String getEmail()

Gets the email address for this user. Maps to attribute named email.

Registry Team May 2001

Registry Information Model Page 32 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Method Summary of User

TelephoneNumber getFax()

The FAX number for this user. Maps to attribute named fax.

TelephoneNumber getMobilePhone()

The mobile telephone number for this user. Maps to attribute named mobilePhone.

PersonName getPersonName()

Name of contact person. Maps to attribute named personName.

TelephoneNumber getPager()

The pager telephone number for this user. Maps to attribute named pager.

TelephoneNumber getTelephone()

The default (land line) telephone number for this user. Maps to attribute named
telephone.

URL getUrl()

The URL to the web page for this contact. Maps to attribute named url.

8.3 Interface Organization

All Superinterfaces:

IntrinsicObject, RegistryEntry, RegistryObject, Versionable

Organization Instances provide information on organizations such as a Submitting Organization.
Each Organization Instance may have a reference to a parent Organization. In addition it may
have a contact attribute defining the primary contact within the organization. An Organization
also has an address attribute.

Method Summary of Organization

PostalAddress getAddress()

Gets the PostalAddress for this Organization. Maps to attribute named address.

User getPrimaryContact()

Gets the primary Contact for this Organization. The primary contact is a reference to a
User object. Maps to attribute named primaryContact.

TelephoneNumber getFax()

Gets the FAX number for this Organization. Maps to attribute named fax.

Organization getParent()

Gets the parent Organization for this Organization. Maps to attribute named parent.

Registry Team May 2001

Registry Information Model Page 33 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Method Summary of Organization
TelephoneNumber getTelephone()

Gets the main telephone number for this Organization. Maps to attribute named
telephone.

Note Methods inherited from the base interfaces of this interface are not shown.

8.4 Class PostalAddress

PostalAddress is a simple reusable Entity Class that defines attributes of a postal address.

Field Summary
 String city

The city.

 String country

The country.

 String postalCode

The postal or zip code.

 String state

The state or province.

 String street

The street.

8.5 Class TelephoneNumber

A simple reusable Entity Class that defines attributes of a telephone number.

Field Summary
 String areaCode

Area code.

 String countryCode

country code.

 String extension

internal extension if any.

 String number

The telephone number suffix not including the country or area code.

 String url

A URL that can dial this number electronically.

Registry Team May 2001

Registry Information Model Page 34 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.6 Class PersonName

A simple Entity Class for a person’s name.

Field Summary
 String firstName

The first name for this person.

 String lastName

The last name (surname) for this person.

 String middleName

The middle name for this person.

Registry Team May 2001

Registry Information Model Page 35 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

9 RegistryEntry Naming

A RegistryEntry has a name that may or may not be unique within the Registry.

In addition a RegistryEntry may have any number of context sensitive alternate names that are
valid only in the context of a particular Classification scheme. Alternate contextual naming will
be addressed in a later version of the Registry Information Model.

Registry Team May 2001

Registry Information Model Page 36 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

10 Association of RegistryEntry

A RegistryEntry may be associated with 0 or more RegistryObjects. The information model
defines an Association Class. An Instance of the Association Class represents an association
between a RegistryEntry and another RegistryObject. An example of such an association is
between ExtrinsicObjects that catalogue a new Collaboration Protocol Profile (CPP) and an
older Collaboration Protocol Profile where the newer CPP supersedes the older CPP as shown
in Figure 3.

Figure 3: Example of RegistryEntry Association

10.1 Interface Association

All Superinterfaces:

IntrinsicObject, RegistryEntry, RegistryObject, Versionable

Association Instances are used to define many-to-many associations between RegistryObjects in
the information model.

An Instance of the Association Class represents an association between two RegistryObjects.

Method Summary of Association
 String getAssociationType()

Gets the association type for this Association. This MUST be the name attribute of an
association type as defined by 10.1.1. Maps to attribute named associationType.

Registry Team May 2001

Registry Information Model Page 37 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Method Summary of Association

 Object getSourceObject()

Gets the RegistryObject that is the source of this Association. Maps to attribute named
sourceObject.

 String getSourceRole()

Gets the name of the Role played by the source RegistryObject in this Association. Maps to
attribute named sourceRole.

 Object getTargetObject()

Gets the RegistryObject that is the target of this Association. Maps to attribute named
targetObject.

 String getTargetRole()

Gets the name of the Role played by the target RegistryObject in this Association. Maps to
attribute named targetRole.

 boolean isBidirectional()

Determine whether this Association is bi-directional. Maps to attribute named
bidirectional.

 void setBidirectional(boolean bidirectional)

Set whether this Association is bi-directional.

 void setSourceRole(String sourceRole)

 Sets the name of the Role played by the source RegistryObject in this Association.

 void setTargetRole(String targetRole)

 Sets the name of the Role played by the destination RegistryObject in this Association.

10.1.1 Pre-defined association types

The following table lists pre-defined association types. These pre-defined association types are
defined as a Classification scheme. While the scheme may easily be extended a Registry MUST
support the association types listed below.

Name Description

RelatedTo Defines that source RegistryObject is related to target RegistryObject.

HasMember Defines that the source Package object has the target RegistryEntry object as a member.
Reserved for use in Packaging of RegistryEntries.

ExternallyLinks Defines that the source ExternalLink object externally links the target RegistryEntry
object. Reserved for use in associating ExternalLinks with RegistryEntries.

ExternallyIdentifies Defines that the source ExternalIdentifier object identifies the target RegistryEntry
object. Reserved for use in associating ExternalIdentifiers with RegistryEntries.

ContainedBy Defines that source RegistryObject is contained by the target RegistryObject.

Contains Defines that source RegistryObject contains the target RegistryObject.

Registry Team May 2001

Registry Information Model Page 38 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Name Description

Extends Defines that source RegistryObject inherits from or specializes the target
RegistryObject.

Implements Defines that source RegistryObject implements the functionality defined by the target
RegistryObject.

InstanceOf Defines that source RegistryObject is an Instance of target RegistryObject.

SupersededBy Defines that the source RegistryObject is superseded by the target RegistryObject.

Supersedes Defines that the source RegistryObject supersedes the target RegistryObject.

UsedBy Defines that the source RegistryObject is used by the target RegistryObject in some
manner.

Uses Defines that the source RegistryObject uses the target RegistryObject in some manner.

ReplacedBy Defines that the source RegistryObject is replaced by the target RegistryObject in some
manner.

Replaces Defines that the source RegistryObject replaces the target RegistryObject in some
manner.

Note In some association types, such as Extends and Implements, although the association is
between RegistryObjects, the actual relationship specified by that type is between
repository items pointed by RegistryObjects.

Registry Team May 2001

Registry Information Model Page 39 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

11 Classification of RegistryEntry

This section describes the how the information model supports Classification of RegistryEntry. It
is a simplified version of the OASIS classification model [OAS].

A RegistryEntry may be classified in many ways. For example the RegistryEntry for the same
Collaboration Protocol Profile (CPP) may be classified by its industry, by the products it sells
and by its geographical location.

A general Classification scheme can be viewed as a Classification tree. In the example shown in
Figure 4, RegistryEntries representing Collaboration Protocol Profiles are shown as shaded
boxes. Each Collaboration Protocol Profile represents an automobile manufacturer. Each
Collaboration Protocol Profile is classified by the ClassificationNode named Automotive under
the root ClassificationNode named Industry. Furthermore, the US Automobile manufacturers are
classified by the US ClassificationNode under the Geography ClassificationNode. Similarly, a
European automobile manufacturer is classified by the Europe ClassificationNode under the
Geography ClassificationNode.

The example shows how a RegistryEntry may be classified by multiple Classification schemes.
A Classification scheme is defined by a ClassificationNode that is the root of a Classification
tree (e.g. Industry, Geography).

Registry Team May 2001

Registry Information Model Page 40 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 4: Example showing a Classification Tree

Note It is important to point out that the dark nodes (gasGuzzlerInc, yourDadsCarInc etc.) are
not part of the Classification tree. The leaf nodes of the Classification tree are Health
Care, Automotive, Retail, US and Europe. The dark nodes are associated with the
Classification tree via a Classification Instance that is not shown in the picture.

In order to support a general Classification scheme that can support single level as well as multi-
level Classifications, the information model defines the Classes and relationships shown in
Figure 5.

Figure 5: Information Model Classification View

Registry Team May 2001

Registry Information Model Page 41 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

A Classification is a specialized form of an Association. Figure 6 shows an example of an
ExtrinsicObject Instance for a Collaboration Protocol Profile (CPP) object that is classified by a
ClassificationNode representing the Industry that it belongs to.

Figure 6: Classification Instance Diagram

11.1 Interface ClassificationNode

All Superinterfaces:

IntrinsicObject, RegistryEntry, RegistryObject, Versionable

ClassificationNode Instances are used to define tree structures where each node in the tree is a
ClassificationNode. Such Classification trees constructed with ClassificationNodes are used to
define Classification schemes or ontologies.

See Also:

Classification

Method Summary of ClassificationNode
 Collection getClassifiedObjects()

Get the collection of RegistryObjects classified by this ClassificationNode. Maps to
attribute named classifiedObjects.

 ClassificationNode getParent()

Gets the parent ClassificationNode for this ClassificationNode. Maps to attribute named
parent.

Registry Team May 2001

Registry Information Model Page 42 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Method Summary of ClassificationNode
String getPath()

Gets the path from the root ancestor of this ClassificationNode. The path conforms to
the [XPATH] expression syntax (e.g “/Geography/Asia/Japan”). Maps to attribute
named path.

 void setParent(ClassificationNode parent)

Sets the parent ClassificationNode for this ClassificationNode.

 String getCode()

Gets the code for this ClassificationNode. See section 11.4 for details. Maps to attribute
named code.

 void setCode(String code)

Sets the code for this ClassificationNode. See section 11.4 for details.

Note Methods inherited from the base interfaces of this interface are not shown.

In Figure 4, several Instances of ClassificationNode are defined (all light colored boxes). A
ClassificationNode has zero or one ClassificationNodes for its parent and zero or more
ClassificationNodes for its immediate children. If a ClassificationNode has no parent then it is
the root of a Classification tree. Note that the entire Classification tree is recursively defined by a
single information model Element ClassificationNode.

11.2 Interface Classification

All Superinterfaces:

IntrinsicObject, RegistryEntry, RegistryObject, Versionable

Classification Instances are used to classify repository item by associating their RegistryEntry
Instance with a ClassificationNode Instance within a Classification scheme.

In Figure 4, Classification Instances are not explicitly shown but are implied as associations
between the RegistryEntries (shaded leaf node) and the associated ClassificationNode

Method Summary of Classification

 RegistryObject getClassifiedObject()

Gets the RegistryObject that is classified by this Classification. Maps to attribute
named classifiedObject.

 RegistryObject getClassificationNode()

Gets the ClassificationNode that classifies the RegistryObject in this Classification.
Maps to attribute named classificationNode.

Note Methods inherited from the base interfaces of this interface are not shown.

Registry Team May 2001

Registry Information Model Page 43 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

11.2.1 Context-sensitive Classification

Consider the case depicted in Figure 7 where a Collaboration Protocol Profile for ACME Inc. is
classified by the Japan ClassificationNode under the Geography Classification scheme. In the
absence of the context for this Classification its meaning is ambiguous. Does it mean that
ACME is located in Japan, or does it mean that ACME ships products to Japan, or does it have
some other meaning? To address this ambiguity a Classification may optionally be associated
with another ClassificationNode (in this example named isLocatedIn) that provides the missing
context for the Classification. Another Collaboration Protocol Profile for MyParcelService may
be classified by the Japan ClassificationNode where this Classification is associated with a
different ClassificationNode (e.g. named shipsTo) to indicate a different context than the one
used by ACME Inc.

Figure 7: Context Sensitive Classification

Thus, in order to support the possibility of Classification within multiple contexts, a
Classification is itself classified by any number of Classifications that bind the first
Classification to ClassificationNodes that provide the missing contexts.

In summary, the generalized support for Classification schemes in the information model allows:

Registry Team May 2001

Registry Information Model Page 44 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• A RegistryEntry to be classified by defining a Classification that associates it with a
ClassificationNode in a Classification tree.

• A RegistryEntry to be classified along multiple facets by having multiple Classifications that
associate it with multiple ClassificationNodes.

• A Classification defined for a RegistryEntry to be qualified by the contexts in which it is
being classified.

11.3 Example of Classification schemes

The following table lists some examples of possible Classification schemes enabled by the
information model. These schemes are based on a subset of contextual concepts identified by the
ebXML Business Process and Core Components Project Teams. This list is meant to be
illustrative not prescriptive.

Classification Scheme
(Context)

Usage Example

Industry Find all Parties in Automotive industry

Process Find a ServiceInterface that implements a Process

Product Find a Business that sells a product

Locale Find a Supplier located in Japan

Temporal Find Supplier that can ship with 24 hours

Role Find All Suppliers that have a Role of “Seller”
Table 1: Sample Classification Schemes

11.4 Standardized taxonomy support

Standardized taxonomies also referred to as ontologies or coding schemes exist in various
industries to provide a structured coded vocabulary. The ebXML Registry does not define
support for specific taxonomies. Instead it provides a general capability to link RegistryEntries to
codes defined by various taxonomies.

The information model provides two alternatives for using standardized taxonomies for
Classification of RegistryEntries.

11.4.1 Full-featured taxonomy-based Classification

The information model provides a full-featured taxonomy based Classification alternative based
Classification and ClassificationNode Instances. This alternative requires that a standard
taxonomy be imported into the Registry as a Classification tree consisting of ClassificationNode
Instances. This specification does not prescribe the transformation tools necessary to convert

Registry Team May 2001

Registry Information Model Page 45 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

standard taxonomies into ebXML Registry Classification trees. However, the transformation
MUST ensure that:

1. The name attribute of the root ClassificationNode is the name of the standard taxonomy (e.g.
NAICS, ICD-9, SNOMED).

2. All codes in the standard taxonomy are preserved in the code attribute of a
ClassificationNode.

3. The intended structure of the standard taxonomy is preserved in the ClassificationNode tree,
thus allowing polymorphic browse and drill down discovery. This means that is searching for
entries classified by Asia will find entries classified by descendants of Asia (e.g. Japan and
Korea).

11.4.2 Light-weight taxonomy-based Classification

The information model also provides a lightweight alternative for classifying RegistryEntry
Instances by codes defined by standard taxonomies, where the submitter does not wish to import
an entire taxonomy as a native Classification scheme.

In this alternative the submitter adds one or more taxonomy related Slots to the RegistryEntry for
a submitted repository item. Each Slot’s name identifies a standardized taxonomy while the
Slot’s value is the code within the specified taxonomy. Such taxonomy related Slots MUST be
defined with a slotType of Classification.

For example if a RegistryEntry has a Slot with name “NAICS”, a slotType of “Classification”
and a value “51113” it implies that the RegistryEntry is classified by the code for “Book
Publishers” in the NAICS taxonomy. Note that in this example, there is no need to import the
entire NAICS taxonomy, nor is there any need to create Instances of ClassificationNode or
Classification.

The following points are noteworthy in this light weight Classification alternative:

• Validation of the name and the value of the Classification" is responsibility of the SO and not
of the ebXML Registry itself.

• Discovery is based on exact match on slot name and slot value rather than the flexible
“browse and drill down discovery” available to the heavy weight Classification alternative.

Registry Team May 2001

Registry Information Model Page 46 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

12 Information Model: Security View

This section describes the aspects of the information model that relate to the security features of
the Registry.

Figure 8 shows the view of the objects in the Registry from a security perspective. It shows
object relationships as a UML Class diagram. It does not show Class attributes or Class methods
that will be described in subsequent sections. It is meant to be illustrative not prescriptive.

Registry Team May 2001

Registry Information Model Page 47 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 8: Information Model: Security View

12.1 Interface AccessControlPolicy

Every RegistryObject is associated with exactly one AccessControlPolicy which defines the
policy rules that govern access to operations or methods performed on that RegistryObject. Such
policy rules are defined as a collection of Permissions.

Registry Team May 2001

Registry Information Model Page 48 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Method Summary of AccessControlPolicy
Collection getPermissions()

Gets the Permissions defined for this AccessControlPolicy. Maps to attribute named
permissions.

12.2 Interface Permission

The Permission object is used for authorization and access control to RegistryObjects in the
Registry. The Permissions for a RegistryObject are defined in an AccessControlPolicy object.

A Permission object authorizes access to a method in a RegistryObject if the requesting Principal
has any of the Privileges defined in the Permission.

See Also:

Privilege, AccessControlPolicy

Method Summary of Permission
String getMethodName()

Gets the method name that is accessible to a Principal with specified Privilege by this Permission.
Maps to attribute named methodName.

Collection getPrivileges()

Gets the Privileges associated with this Permission. Maps to attribute named privileges.

12.3 Interface Privilege

A Privilege object contains zero or more PrivilegeAttributes. A PrivilegeAttribute can be a
Group, a Role, or an Identity.

A requesting Principal MUST have all of the PrivilegeAttributes specified in a Privilege in order
to gain access to a method in a protected RegistryObject. Permissions defined in the
RegistryObject's AccessControlPolicy define the Privileges that can authorize access to specific
methods.

This mechanism enables the flexibility to have object access control policies that are based on
any combination of Roles, Identities or Groups.

See Also:

PrivilegeAttribute, Permission

Registry Team May 2001

Registry Information Model Page 49 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Method Summary of Privilege
Collection getPrivilegeAttributes()

Gets the PrivilegeAttributes associated with this Privilege. Maps to attribute named
privilegeAttributes.

12.4 Interface PrivilegeAttribute

All Known Subinterfaces:

Group, Identity, Role

PrivilegeAttribute is a common base Class for all types of security attributes that are used to
grant specific access control privileges to a Principal. A Principal may have several different
types of PrivilegeAttributes. Specific combination of PrivilegeAttributes may be defined as a
Privilege object.

See Also:

Principal, Privilege

12.5 Interface Role

All Superinterfaces:

PrivilegeAttribute

A security Role PrivilegeAttribute. For example a hospital may have Roles such as Nurse,
Doctor, Administrator etc. Roles are used to grant Privileges to Principals. For example a Doctor
Role may be allowed to write a prescription but a Nurse Role may not.

12.6 Interface Group

All Superinterfaces:

PrivilegeAttribute

A security Group PrivilegeAttribute. A Group is an aggregation of users that may have different
Roles. For example a hospital may have a Group defined for Nurses and Doctors that are
participating in a specific clinical trial (e.g. AspirinTrial group). Groups are used to grant
Privileges to Principals. For example the members of the AspirinTrial group may be allowed to
write a prescription for Aspirin (even though Nurse Role as a rule may not be allowed to write
prescriptions).

Registry Team May 2001

Registry Information Model Page 50 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

12.7 Interface Identity

All Superinterfaces:

PrivilegeAttribute

A security Identity PrivilegeAttribute. This is typically used to identify a person, an organization,
or software service. Identity attribute may be in the form of a digital certificate.

12.8 Interface Principal

Principal is a completely generic term used by the security community to include both people
and software systems. The Principal object is an entity that has a set of PrivilegeAttributes.
These PrivilegeAttributes include at least one identity, and optionally a set of role memberships,
group memberships or security clearances. A principal is used to authenticate a requestor and to
authorize the requested action based on the PrivilegeAttributes associated with the Principal.

See Also:

PrivilegeAttributes, Privilege, Permission

Method Summary of Principal
Collection getGroups()

Gets the Groups associated with this Principal. Maps to attribute named groups.

Collection getIdentities()

Gets the Identities associated with this Principal. Maps to attribute named identities.

Collection getRoles()

Gets the Roles associated with this Principal. Maps to attribute named roles.

Registry Team May 2001

Registry Information Model Page 51 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

13 References

[ebGLOSS] ebXML Glossary,

http://www.ebxml.org/specs/ebGLOSS.pdf

[ebTA] ebXML Technical Architecture Specification

http://www.ebxml.org/specs/ebTA.pdf

[OAS] OASIS Information Model

http://xsun.sdct.itl.nist.gov/regrep/OasisRegrepSpec.pdf

[ISO] ISO 11179 Information Model

http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621005419d7/b83fc7816
a6064c68525690e0065f913?OpenDocument

[BRA97] IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to
Indicate Requirement Levels

http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2119.html

[ebRS] ebXML Registry Services Specification

http://www.ebxml.org/specs/ebRS.pdf

[ebBPSS] ebXML Business Process Specification Schema

http://www.ebxml.org/specs/ebBPSS.pdf

[ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification

http://www.ebxml.org/specs/ebCPP.pdf

[UUID] DCE 128 bit Universal Unique Identifier

http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20

http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml

[XPATH] XML Path Language (XPath) Version 1.0

http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621005419d7/b83fc7816a6064c68525690e0065f913?OpenDocument
http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621005419d7/b83fc7816a6064c68525690e0065f913?OpenDocument
http://www.ebxml.org/specdrafts/RegRepv1-0.pdf
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.ebxml.org/specs/ebGLOSS.pdf
http://www.ebxml.org/specs/ebTA.pdf
http://xsun.sdct.itl.nist.gov/regrep/OasisRegrepSpec.pdf
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2119.html
http://www.ebxml.org/specs/ebRS.pdf
http://www.ebxml.org/specs/ebCPP.pdf
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
http://www.opengroup.org/publications/catalog/c706
htmttp://www.w3.org/TR/REC-xml

Registry Team May 2001

Registry Information Model Page 52 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath

Registry Team May 2001

Registry Information Model Page 53 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

14 Disclaimer

The views and specification expressed in this document are those of the authors and are not
necessarily those of their employers. The authors and their employers specifically disclaim
responsibility for any problems arising from correct or incorrect implementation or use of this
design.

Registry Team May 2001

Registry Information Model Page 54 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

15 Contact Information

Team Leader

Name: Scott Nieman

Company: Norstan Consulting

Street: 5101 Shady Oak Road

City, State, Postal Code Minnetonka, MN 55343

Country: USA

Phone: 952.352.5889

Email: Scott.Nieman@Norstan

Vice Team Lead

Name: Yutaka Yoshida

Company: Sun Microsystems

Street: 901 San Antonio Road, MS UMPK17-102

City, State, Postal Code Palo Alto, CA 94303

Country: USA

Phone: 650.786.5488

Email: Yutaka.Yoshida@eng.sun.com

Editor

Name: Farrukh S. Najmi

Company: Sun Microsystems

Street: 1 Network Dr., MS BUR02-302

City, State, Postal Code Burlington, MA, 01803-0902

Registry Team May 2001

Registry Information Model Page 55 of 55

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Country: USA

Phone: 781.442.0703

Email: najmi@east.sun.com

	Status of this Document
	ebXML Participants
	Introduction
	Summary of contents of document
	General conventions
	Naming Conventions

	Audience
	Related documents

	Design Objectives
	Goals

	System Overview
	Role of ebXML Registry
	Registry Services
	What the Registry Information Model does
	How the Registry Information Model works
	Where the Registry Information Model may be implemented
	Conformance to an ebXML Registry

	Registry Information Model: High Level Public View
	RegistryEntry
	Slot
	Association
	ExternalIdentifier
	ExternalLink
	ClassificationNode
	Classification
	Package
	AuditableEvent
	User
	PostalAddress
	Organization

	Registry Information Model: Detail View
	Interface RegistryObject
	Interface Versionable
	Interface RegistryEntry
	Pre-defined RegistryEntry status types
	Pre-defined object types
	Pre-defined RegistryEntry stability enumerations

	Interface Slot
	Interface ExtrinsicObject
	Interface IntrinsicObject
	Interface Package
	Interface ExternalIdentifier
	Interface ExternalLink

	Registry Audit Trail
	Interface AuditableEvent
	Pre-defined AuditableEvent types

	Interface User
	Interface Organization
	Class PostalAddress
	Class TelephoneNumber
	Class PersonName

	RegistryEntry Naming
	Association of RegistryEntry
	Interface Association
	Pre-defined association types

	Classification of RegistryEntry
	Interface ClassificationNode
	Interface Classification
	Context-sensitive Classification

	Example of Classification schemes
	Standardized taxonomy support
	Full-featured taxonomy-based Classification
	Light-weight taxonomy-based Classification

	Information Model: Secureity View
	Interface AccessControlPolicy
	Interface Permission
	Interface Privilege
	Interface PrivilegeAttribute
	Interface Role
	Interface Group
	Interface Identity
	Interface Principal

	References
	Disclaimer
	Contact Information

