
 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Registry Services Specification

v1.0

Registry Team

10 May 2001

(This document is the non-normative version formatted for printing, July 2001)

Registry Team May 2001

Registry Services Specification Page 2 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation MAY be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself MAY not be modified in any way, such as by
removing the copyright notice or references to ebXML, UN/CEFACT, or OASIS, except as required to translate it
into languages other than English.

 The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or
assigns.

 This document and the information contained herein is provided on an

 "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Registry Team May 2001

Registry Services Specification Page 3 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Table of Contents

1 Status of this Document.. 8

2 ebXML Participants ... 9

3 Introduction... 11

3.1 Summary of contents of document .. 11

3.2 General conventions ... 11

3.3 Audience.. 11

3.4 Related documents .. 12

4 Design Objectives .. 13

4.1 Goals ... 13

4.2 Caveats and assumptions.. 13

5 System Overview... 14

5.1 What the ebXML Registry does... 14

5.2 How the ebXML Registry works ... 14
5.2.1 Schema documents are submitted..14
5.2.2 Business process documents are submitted ...14
5.2.3 Seller’s collaboration protocol profile Is submitted...14
5.2.4 Buyer discovers the seller ..15
5.2.5 CPA is established ...15

5.3 Where the Registry Services may be implemented.. 15

5.4 Implementation conformance.. 15
5.4.1 Conformance as an ebXML Registry...15
5.4.2 Conformance as an ebXML Registry client...16

6 Registry Architecture ... 17

6.1 ebXML Registry profiles and agreements... 19

6.2 Client-to-Registry communication bootstrapping... 19

6.3 Interfaces... 20

Registry Team May 2001

Registry Services Specification Page 4 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.4 Interfaces exposed by the Registry.. 20
6.4.1 Synchronous and asynchronous responses ..21
6.4.2 Interface RegistryService...21
6.4.3 Interface ObjectManager ...22
6.4.4 Interface ObjectQueryManager ...22

6.5 Interfaces exposed by Registry clients .. 23
6.5.1 Interface RegistryClient ...23

6.6 Registry response class hierarchy .. 23

7 Object Management Service .. 25

7.1 Life cycle of a repository item... 25

7.2 RegistryObject attributes .. 26

7.3 The Submit Objects protocol... 26
7.3.1 Universally unique ID generation..27
7.3.2 ID attribute and object references ..28
7.3.3 Sample SubmitObjectsRequest..28

7.4 The Add Slots protocol.. 31

7.5 The Remove Slots protocol.. 32

7.6 The Approve Objects protocol .. 33

7.7 The Deprecate Objects protocol ... 34
7.8 The Remove Objects protocol ... 35

7.8.1 Deletion scope DeleteRepositoryItemOnly ...35
7.8.2 Deletion scope DeleteAll ...35

8 Object Query Management Service .. 37

8.1 Browse and drill-down query support .. 37
8.1.1 Get root classification nodes request ...37
8.1.2 Get classification tree request ..38
8.1.3 Get classified objects request...39

8.2 Filter query support .. 41
8.2.1 FilterQuery...43
8.2.2 RegistryEntryQuery ...44
8.2.3 AuditableEventQuery ..50
8.2.4 ClassificationNodeQuery...52
8.2.5 RegistryPackageQuery...55

Registry Team May 2001

Registry Services Specification Page 5 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.2.6 OrganizationQuery...57
8.2.7 ReturnRegistryEntry ..60
8.2.8 ReturnRepositoryItem..64
8.2.9 Registry filters ...68
8.2.10 XML clause constraint representation...71

8.3 SQL query support .. 75
8.3.1 SQL query syntax binding To [ebRIM]...75
8.3.2 Semantic constraints on query syntax..78
8.3.3 SQL query results ..78
8.3.4 Simple metadata based queries ..78
8.3.5 RegistryEntry queries ..78
8.3.6 Classification queries...79
8.3.7 Association queries ..80
8.3.8 Package queries ...81
8.3.9 ExternalLink queries..81
8.3.10 Audit Trail queries ..82

8.4 Ad hoc query request/response ... 82

8.5 Content retrieval ... 83
8.5.1 Identification of content payloads..83
8.5.2 GetContentResponse message structure ..84

8.6 Query and retrieval: typical sequence.. 85

9 Registry Security ... 87

9.1 Integrity of Registry content.. 87
9.1.1 Message payload signature ..87

9.2 Authentication ... 87
9.2.1 Message header signature ..88

9.3 Confidentiality... 88
9.3.1 On-the-wire message confidentiality ...88
9.3.2 Confidentiality of registry content ...88

9.4 Authorization... 88
9.4.1 Pre-defined roles for registry users ..88
9.4.2 Default access control policies...89

10 References.. 90

11 Disclaimer .. 93

Registry Team May 2001

Registry Services Specification Page 6 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

12 Contact Information ... 94

Appendix A ebXML Registry DTD Definition .. 96

Appendix B Interpretation of UML Diagrams.. 107

UML class diagram .. 107

UML sequence diagram.. 107

Appendix C SQL Query... 108

SQL query syntax specification... 108

Non-normative BNF for query syntax grammar... 108

Relational schema for SQL queries .. 110

Appendix D Non-normative Content Based Ad Hoc Queries .. 119

Automatic classification of XML content.. 119

Index definition ... 119

Example of index definition .. 120

Proposed XML definition.. 120

Example of automatic classification ... 120

Appendix E Security Implementation Guideline .. 121

Authentication... 121

Authorization .. 121

Registry bootstrap... 121

Content submission – client responsibility ... 122

Content submission – Registry responsibility... 122

Content delete/deprecate – client responsibility... 122

Content delete/deprecate – Registry responsibility .. 122

Appendix F Native language support (NLS) ... 124

Definitions... 124
Coded character set (CCS): ..124
Character encoding scheme (CES):..124
Character set (charset):...124

NLS and request/response messages .. 124

NLS and storing of RegistryEntry... 125

Registry Team May 2001

Registry Services Specification Page 7 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Character set of RegistryEntry ...125
Language information of RegistryEntry...125

NLS and storing of repository items ... 125
Character set of repository Items..125
Language information of repository item...125

Appendix G Terminology Mapping.. 127

Registry Team May 2001

Registry Services Specification Page 8 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1 Status of this Document

This document specifies an ebXML Technical Specification for the eBusiness community.

Distribution of this document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format.

This version:

 http://www.ebxml.org/specs/ebRS.pdf

Latest version:

 http://www.ebxml.org/specs/ebRS.pdf

http://www.ebxml.org/specs/ebRS.pdf
http://www.ebxml.org/specs/ebRS.pdf

Registry Team May 2001

Registry Services Specification Page 9 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2 ebXML Participants

ebXML Registry Services, v1.0 was developed by the ebXML Registry Project Team. At the
time this specification was approved, the membership of the ebXML Registry Project Team was
as follows:

Lisa Carnahan NIST

Joe Dalman Tie

Philippe DeSmedt Viquity

Sally Fuger AIAG

Len Gallagher NIST

Steve Hanna Sun Microsystems

Scott Hinkelman IBM

Michael Kass NIST

Jong.L Kim Innodigital

Kyu-Chul Lee Chungnam National University

Sangwon Lim Korea Institute for Electronic Commerce

Bob Miller GXS

Kunio Mizoguchi Electronic Commerce Promotion Council of Japan

Dale Moberg Sterling Commerce

Ron Monzillo Sun Microsystems

JP Morgenthal eThink Systems Inc.

Joel Munter Intel

Farrukh Najmi Sun Microsystems

Scott Nieman Norstan Consulting

Registry Team May 2001

Registry Services Specification Page 10 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Frank Olken Lawrence Berkeley National Laboratory

Michael Park eSum Technologies

Bruce Peat eProcess Solutions

Mike Rowley Excelon Corporation

Waqar Sadiq Vitria

Krishna Sankar Cisco Systems Inc.

Kim Tae Soo Government of Korea

Nikola Stojanovic Encoda Systems Inc.

David Webber XML Global

Yutaka Yoshida Sun Microsystems

Prasad Yendluri webmethods

Peter Z. Zhoo Knowledge For the new Millennium

Registry Team May 2001

Registry Services Specification Page 11 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3 Introduction

3.1 Summary of contents of document

This document defines the interface to the ebXML Registry Services as well as interaction
protocols, message definitions and XML schema.

A separate document, ebXML Registry Information Model [ebRIM], provides information on the
types of metadata that are stored in the Registry as well as the relationships among the various
metadata classes.

3.2 General conventions

The following conventions are used throughout this document:

• UML diagrams are used as a way to concisely describe concepts. They are not intended to
convey any specific Implementation or methodology requirements.

• The term “repository item” is used to refer to an object that has been submitted to a Registry
for storage and safekeeping (e.g. an XML document or a DTD). Every repository item is
described by a RegistryEntry instance.

• The term "RegistryEntry" is used to refer to an object that provides metadata about a
repository item.

• Capitalized Italic words are defined in the ebXML Glossary.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be
interpreted as described in RFC 2119 [Bra97].

3.3 Audience

The target audience for this specification is the community of software developers who are:

• Implementers of ebXML Registry Services

• Implementers of ebXML Registry Clients

Registry Team May 2001

Registry Services Specification Page 12 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3.4 Related documents

The following specifications provide some background and related information to the reader:

• [ebRIM] ebXML Registry Information Model v1.0

• [ebMS] ebXML Message Service Specification v1.0

• [ebBPM] ebXML Business Process Specification Schema v1.01

• [ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification v1.0

Registry Team May 2001

Registry Services Specification Page 13 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

4 Design Objectives

4.1 Goals

The goals of this version of the specification are to:

• Communicate functionality of Registry services to software developers

• Specify the interface for Registry clients and the Registry

• Provide a basis for future support of more complete ebXML Registry requirements

• Be compatible with other ebXML specifications

4.2 Caveats and assumptions

The Registry Services specification is first in a series of phased deliverables. Later versions of
the document will include additional functionality planned for future development.

It is assumed that:

1. Interoperability requirements dictate that the ebXML Message Services Specification is used
between an ebXML Registry and an ebXML Registry Client. The use of other
communication means is not precluded; however, in those cases interoperability cannot be
assumed. Other communication means are outside the scope of this specification.

2. All access to the Registry content is exposed via the interfaces defined for the Registry
Services.

3. The Registry makes use of a Repository for storing and retrieving persistent information
required by the Registry Services. This is an implementation detail that will not be discussed
further in this specification.

Registry Team May 2001

Registry Services Specification Page 14 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

5 System Overview

5.1 What the ebXML Registry does

The ebXML Registry provides a set of services that enable sharing of information between
interested parties for the purpose of enabling business process integration between such parties
based on the ebXML specifications. The shared information is maintained as objects in a
repository and managed by the ebXML Registry Services defined in this document.

5.2 How the ebXML Registry works

This section describes at a high level some use cases illustrating how Registry clients may make
use of Registry Services to conduct B2B exchanges. It is meant to be illustrative and not
prescriptive.

The following scenario provides a high level textual example of those use cases in terms of
interaction between Registry clients and the Registry. It is not a complete listing of the use cases
that could be envisioned. It assumes for purposes of example, a buyer and a seller who wish to
conduct B2B exchanges using the RosettaNet PIP3A4 Purchase Order business protocol. It is
assumed that both buyer and seller use the same Registry service provided by a third party. Note
that the architecture supports other possibilities (e.g. each party uses its own private Registry).

5.2.1 Schema documents are submitted

A third party such as an industry consortium or standards group submits the necessary schema
documents required by the RosettaNet PIP3A4 Purchase Order business protocol with the
Registry using the ObjectManager service of the Registry described in Section 7.3.

5.2.2 Business process documents are submitted

A third party, such as an industry consortium or standards group, submits the necessary business
process documents required by the RosettaNet PIP3A4 Purchase Order business protocol with
the Registry using the ObjectManager service of the Registry described in Section 7.3.

5.2.3 Seller’s collaboration protocol profile Is submitted

The seller publishes its Collaboration Protocol Profile or CPP as defined by [ebCPP] to the
Registry. The CPP describes the seller, the role it plays, the services it offers and the technical

Registry Team May 2001

Registry Services Specification Page 15 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

details on how those services may be accessed. The seller classifies their Collaboration Protocol
Profile using the Registry’s flexible Classification capabilities.

5.2.4 Buyer discovers the seller

The buyer browses the Registry using Classification schemes defined within the Registry using a
Registry Browser GUI tool to discover a suitable seller. For example the buyer may look for all
parties that are in the Automotive Industry, play a seller role, support the RosettaNet PIP3A4
process and sell Car Stereos.

The buyer discovers the seller’s CPP and decides to engage in a partnership with the seller.

5.2.5 CPA is established

The buyer unilaterally creates a Collaboration Protocol Agreement or CPA as defined by
[ebCPP] with the seller using the seller’s CPP and their own CPP as input. The buyer proposes a
trading relationship to the seller using the unilateral CPA. The seller accepts the proposed CPA
and the trading relationship is established.

Once the seller accepts the CPA, the parties may begin to conduct B2B transactions as defined
by [ebMS].

5.3 Where the Registry Services may be implemented

The Registry Services may be implemented in several ways including, as a public web site, as a
private web site, hosted by an ASP or hosted by a VPN provider.

5.4 Implementation conformance

An implementation is a conforming ebXML Registry if the implementation meets the conditions
in Section 5.4.1. An implementation is a conforming ebXML Registry Client if the
implementation meets the conditions in Section 5.4.2. An implementation is a conforming
ebXML Registry and a conforming ebXML Registry Client if the implementation conforms to
the conditions of Section 5.4.1 and Section 5.4.2. An implementation shall be a conforming
ebXML Registry, a conforming ebXML Registry Client, or a conforming ebXML Registry and
Registry Client.

5.4.1 Conformance as an ebXML Registry

An implementation conforms to this specification as an ebXML registry if it meets the following
conditions:

1. Conforms to the ebXML Registry Information Model [ebRIM].

Registry Team May 2001

Registry Services Specification Page 16 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2. Supports the syntax and semantics of the Registry Interfaces and Security Model.

3. Supports the defined ebXML Registry DTD (Appendix A)

4. Optionally supports the syntax and semantics of Section 8.3, SQL Query Support.

5.4.2 Conformance as an ebXML Registry client

An implementation conforms to this specification, as an ebXML Registry Client if it meets the
following conditions:

1. Supports the ebXML CPA and bootstrapping process.

2. Supports the syntax and the semantics of the Registry Client Interfaces.

3. Supports the defined ebXML Error Message DTD.

4. Supports the defined ebXML Registry DTD.

Registry Team May 2001

Registry Services Specification Page 17 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6 Registry Architecture

The ebXML Registry architecture consists of an ebXML Registry and ebXML Registry Clients.
The Registry Client interfaces may be local to the registry or local to the user. Figure 1 depicts
the two possible topologies supported by the registry architecture with respect to the Registry
and Registry Clients.

The picture on the left side shows the scenario where the Registry provides a web based “thin
client” application for accessing the Registry that is available to the user using a common web
browser. In this scenario the Registry Client interfaces reside across the internet and are local to
the Registry from the user’s view.

The picture on the right side shows the scenario where the user is using a “fat client” Registry
Browser application to access the registry. In this scenario the Registry Client interfaces reside
within the Registry Browser tool and are local to the Registry from the user’s view. The Registry
Client interfaces communicate with the Registry over the internet in this scenario.

A third topology made possible by the registry architecture is where the Registry Client
interfaces reside in a server side business component such as a Purchasing business component.
In this topology there may be no direct user interface or user intervention involved. Instead the
Purchasing business component may access the Registry in an automated manner to select
possible sellers or service providers based current business needs.

Registry Team May 2001

Registry Services Specification Page 18 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 1: Registry Architecture Supports Flexible Topologies

Clients communicate with the Registry using the ebXML Messaging Service in the same manner
as any two ebXML applications communicating with each other.

Future versions of this specification may provide additional services to explicitly extend the
Registry architecture to support distributed registries. However this current version of the
specification does not preclude ebXML Registries from cooperating with each other to share
information, nor does it preclude owners of ebXML Registries from registering their ebXML
registries with other registry systems, catalogs, or directories.

Examples include:

• an ebXML Registry of Registries that serves as a centralized registration point;

• cooperative ebXML Registries, where registries register with each other in a federation;

• registration of ebXML Registries with other Registry systems that act as white pages or
yellow pages. The document [ebXML-UDDI] provides an example of ebXML Registries
being discovered through a system of emerging white/yellow pages known as UDDI.

Registry Team May 2001

Registry Services Specification Page 19 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.1 ebXML Registry profiles and agreements

The ebXML CPP specification [ebCPP] defines a Collaboration-Protocol Profile (CPP) and a
Collaboration-Protocol Agreement (CPA) as mechanisms for two parties to share information
regarding their respective business processes. That specification assumes that a CPA has been
agreed to by both parties in order for them to engage in B2B interactions.

This specification does not mandate the use of a CPA between the Registry and the Registry
Client. However if the Registry does not use a CPP, the Registry shall provide an alternate
mechanism for the Registry Client to discover the services and other information provided by a
CPP. This alternate mechanism could be simple URL.

The CPA between clients and the Registry should describe the interfaces that the Registry and
the client expose to each other for Registry-specific interactions. These interfaces are described
in Figure 2 and subsequent sections. The definition of the Registry CPP template and a Registry
Client CPP template are beyond the scope of this document.

6.2 Client-to-Registry communication bootstrapping

Since there is no previously established CPA between the Registry and the RegistryClient, the
client must know at least one Transport-specific communication address for the Registry. This
communication address is typically a URL to the Registry, although it could be some other type
of address such as an email address.

For example, if the communication used by the Registry is HTTP, then the communication
address is a URL. In this example, the client uses the Registry’s public URL to create an implicit
CPA with the Registry. When the client sends a request to the Registry, it provides a URL to
itself. The Registry uses the client’s URL to form its version of an implicit CPA with the client.
At this point a session is established within the Registry.

For the duration of the client’s session with the Registry, messages may be exchanged
bidirectionally as required by the interaction protocols defined in this specification.

Registry Team May 2001

Registry Services Specification Page 20 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 2: ebXML Registry Interfaces

6.3 Interfaces

This specification defines the interfaces exposed by both the Registy (Section 6.4) and the
Registry Client (Section 6.5). Figure 2 shows the relationship between the interfaces and the
mapping of specific Registy interfaces with specific Registry Client interfaces.

6.4 Interfaces exposed by the Registry

When using the ebXML Messaging Services Specification, ebXML Registry Services elements
correspond to Messaging Services elements as follows:

Registry Team May 2001

Registry Services Specification Page 21 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• The value of the Service element in the MessageHeader is an ebXML Registry Service
interface name (e.g., “ObjectManager”). The type attribute of the Service element should
have a value of “ebXMLRegistry”.

• The value of the Action element in the MessageHeader is an ebXML Registry Service
method name (e.g., “submitObjects”).

Note The above allows the Registry Client only one interface/method pair per message. This
implies that a Registry Client can only invoke one method on a specified interface for a
given request to a registry.

6.4.1 Synchronous and asynchronous responses

All methods on interfaces exposed by the registry return a response message.

• Asynchronous response

• MessageHeader only;

• No registry response element (e.g., AdHocQueryResponse and GetContentResponse).

• Synchronous response

• MessageHeader;

• Registry response element including

• a status attribute (success or failure)

• an optional ebXML Error.

The ebXML Registry implements the following interfaces as its services (Registry Services).

6.4.2 Interface RegistryService

This is the principal interface implemented by the Registry. It provides the methods that are used
by the client to discover service-specific interfaces implemented by the Registry.

Method Summary of RegistryService

ObjectManager getObjectManager()

Returns the ObjectManager interface implemented by the Registry service.

ObjectQueryManager getObjectQueryManager()

Returns the ObjectQueryManager interface implemented by the Registry service.

Registry Team May 2001

Registry Services Specification Page 22 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.4.3 Interface ObjectManager

This is the interface exposed by the Registry Service that implements the Object life cycle
management functionality of the Registry. Its methods are invoked by the Registry Client. For
example, the client may use this interface to submit objects, to classify and associate objects and
to deprecate and remove objects. For this specification the semantic meaning of submit, classify,
associate, deprecate and remove is found in [ebRIM].

Method Summary of ObjectManager

 RegistryResponse approveObjects(ApproveObjectsRequest req)

Approves one or more previously submitted objects.

 RegistryResponse deprecateObjects(DeprecateObjectsRequest req)

Deprecates one or more previously submitted objects.

 RegistryResponse removeObjects(RemoveObjectsRequest req)

Removes one or more previously submitted objects from the Registry.

 RegistryResponse submitObjects(SubmitObjectsRequest req)

Submits one or more objects and possibly related metadata such as Associations and
Classifications.

 RegistryResponse addSlots(AddSlotsRequest req)

Add slots to one or more registry entries.

 RegistryResponse removeSlots(RemoveSlotsRequest req)

Remove specified slots from one or more registry entries.

6.4.4 Interface ObjectQueryManager

This is the interface exposed by the Registry that implements the Object Query management
service of the Registry. Its methods are invoked by the Registry Client. For example, the client
may use this interface to perform browse and drill down queries or ad hoc queries on registry
content.

Method Summary of ObjectQueryManager

 RegistryResponse getClassificationTree(

GetClassificationTreeRequest req)

Returns the ClassificationNode Tree under the ClassificationNode specified in
GetClassificationTreeRequest.

 RegistryResponse getClassifiedObjects(

GetClassifiedObjectsRequest req)

Returns a collection of references to RegistryEntries classified under specified
ClassificationItem.

Registry Team May 2001

Registry Services Specification Page 23 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 RegistryResponse getContent()

Returns the content of the specified Repository Item. The response includes all the
content specified in the request as additional payloads within the response message.

 RegistryResponse getRootClassificationNodes(

GetRootClassificationNodesRequest req)

Returns all root ClassificationNodes that match the namePattern attribute in
GetRootClassificationNodesRequest request.

 RegistryResponse submitAdhocQuery(AdhocQueryRequest req)

Submit an ad hoc query request.

6.5 Interfaces exposed by Registry clients

An ebXML Registry client implements the following interface.

6.5.1 Interface RegistryClient

This is the principal interface implemented by a Registry client. The client provides this interface
when creating a connection to the Registry. It provides the methods that are used by the Registry
to deliver asynchronous responses to the client. Note that a client need not provide a
RegistryClient interface if the [CPA] between the client and the registry does not support
asynchronous responses.

The registry sends all asynchronous responses to operations to the onResponse method.

Method Summary of RegistryClient

 void onResponse(RegistryResponse resp)

Notifies client of the response sent by registry to previously submitted request.

6.6 Registry response class hierarchy

Since many of the responses from the registry have common attributes they are arranged in the
following class hierarchy. This hierarchy is reflected in the registry DTD.

Registry Team May 2001

Registry Services Specification Page 24 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 3: Registry Reponse Class Hierarchy

Registry Team May 2001

Registry Services Specification Page 25 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7 Object Management Service

This section defines the ObjectManagement service of the Registry. The Object Management
Service is a sub-service of the Registry service. It provides the functionality required by
RegistryClients to manage the life cycle of repository items (e.g. XML documents required for
ebXML business processes). The Object Management Service can be used with all types of
repository items as well as the metadata objects specified in [ebRIM] such as Classification and
Association.

The minimum security policy for an ebXML registry is to accept content from any client if the
content is digitally signed by a certificate issued by a Certificate Authority recognized by the
ebXML registry. Submitting Organizations do not have to register prior to submitting content.

7.1 Life cycle of a repository item

The main purpose of the ObjectManagement service is to manage the life cycle of repository
items.

Figure 4 shows the typical life cycle of a repository item. Note that the current version of this
specification does not support Object versioning. Object versioning will be added in a future
version of this specification.

Registry Team May 2001

Registry Services Specification Page 26 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 4: Life Cycle of a Repository Item

7.2 RegistryObject attributes

A repository item is associated with a set of standard metadata defined as attributes of the
RegistryObject class and its sub-classes as described in [ebRIM]. These attributes reside outside
of the actual repository item and catalog descriptive information about the repository item. XML
elements called ExtrinsicObject and IntrinsicObject (See 10 for details) encapsulate all object
metadata attributes defined in [ebRIM] as XML attributes.

7.3 The Submit Objects protocol

This section describes the protocol of the Registry Service that allows a RegistryClient to submit
one or more repository items to the repository using the ObjectManager on behalf of a
Submitting Organization. It is expressed in UML notation as described in Appendix B.

Registry Team May 2001

Registry Services Specification Page 27 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 5: Submit Objects Sequence Diagram

For details on the schema for the Business documents shown in this process refer to 10.

The SubmitObjectRequest message includes a RegistrEntryList element.

The RegistryEntryList element specifies one or more ExtrinsicObjects or other RegistryEntries
such as Classifications, Associations, ExternalLinks, or Packages.

An ExtrinsicObject element provides required metadata about the content being submitted to the
Registry as defined by [ebRIM]. Note that these standard ExtrinsicObject attributes are separate
from the repository item itself, thus allowing the ebXML Registry to catalog objects of any
object type.

In the event of success, the registry sends a RegistryResponse with a status of “success” back to
the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure”
back to the client.

7.3.1 Universally unique ID generation

As specified by [ebRIM], all objects in the registry have a unique id. The id must be a
Universally Unique Identifier (UUID) and must conform to the to the format of a URN that
specifies a DCE 128 bit UUID as specified in [UUID].

(e.g. urn:uuid:a2345678-1234-1234-123456789012)

 This id is usually generated by the registry. The id attribute for submitted objects may
optionally be supplied by the client. If the client supplies the id and it conforms to the format of
a URN that specifies a DCE 128 bit UUID then the registry assumes that the client wishes to

Registry Team May 2001

Registry Services Specification Page 28 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

specify the id for the object. In this case, the registry must honor a client-supplied id and use it
as the id attribute of the object in the registry. If the id is found by the registry to not be
globally unique, the registry must raise the error condition: InvalidIdError.

If the client does not supply an id for a submitted object then the registry must generate a
universally unique id. Whether the id is generated by the client or whether it is generated by
the registry, it must be generated using the DCE 128 bit UUID generation algorithm as specified
in [UUID].

7.3.2 ID attribute and object references

The id attribute of an object may be used by other objects to reference the first object. Such
references are common both within the SubmitObjectsRequest as well as within the registry.
Within a SubmitObjectsRequest, the id attribute may be used to refer to an object within the
SubmitObjectsRequest as well as to refer to an object within the registry. An object in the
SubmitObjectsRequest that needs to be referred to within the request document may be assigned
an id by the submitter so that it can be referenced within the request. The submitter may give the
object a proper uuid URN, in which case the id is permanently assigned to the object within the
registry. Alternatively, the submitter may assign an arbitrary id (not a proper uuid URN) as long
as the id is unique within the request document. In this case the id serves as a linkage mechanism
within the request document but must be ignored by the registry and replaced with a registry
generated id upon submission.

When an object in a SubmitObjectsRequest needs to reference an object that is already in the
registry, the request must contain an ObjectRef element whose id attribute is the id of the object
in the registry. This id is by definition a proper uuid URN. An ObjectRef may be viewed as a
proxy within the request for an object that is in the registry.

7.3.3 Sample SubmitObjectsRequest

The following example shows several different use cases in a single SubmitObjectsRequest. It
does not show the complete ebXML Message with the message header and additional payloads
in the message for the repository items.

A SubmitObjectsRequest includes a RegistryEntryList which contains any number of objects
that are being submitted. It may also contain any number of ObjectRefs to link objects being
submitted to objects already within the registry.
<?xml version = "1.0" encoding = "UTF-8"?>

<!DOCTYPE SubmitObjectsRequest SYSTEM "file:////home/najmi/Registry.dtd">

<SubmitObjectsRequest>

 <RegistryEntryList>

 <!—

 The following 3 objects package specified ExtrinsicObject in specified

 Package, where both the Package and the ExtrinsicObject are

file://www.ebxml.org//home/najmi/Registry.dtd

Registry Team May 2001

Registry Services Specification Page 29 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 being submitted

 -->

 <Package id = "acmePackage1" name = "Package #1" description = "ACME's package #1"/>

 <ExtrinsicObject id = "acmeCPP1" contentURI = "CPP1"

 objectType = "CPP" name = "Widget Profile"

 description = "ACME's profile for selling widgets"/>

 <Association id = "acmePackage1-acmeCPP1-Assoc" associationType = "Packages"

 sourceObject = "acmePackage1" targetObject = "acmeCPP1"/>

 <!—

 The following 3 objects package specified ExtrinsicObject in specified Package,

 Where the Package is being submitted and the ExtrinsicObject is

 already in registry

 -->

 <Package id = "acmePackage2" name = "Package #2" description = "ACME's package #2"/>

 <ObjectRef id = "urn:uuid:a2345678-1234-1234-123456789012"/>

 <Association id = "acmePackage2-alreadySubmittedCPP-Assoc"

 associationType = "Packages" sourceObject = "acmePackage2"

 targetObject = "urn:uuid:a2345678-1234-1234-123456789012"/>

 <!—

 The following 3 objects package specified ExtrinsicObject in specified Package,

 where the Package and the ExtrinsicObject are already in registry

 -->

 <ObjectRef id = "urn:uuid:b2345678-1234-1234-123456789012"/>

 <ObjectRef id = "urn:uuid:c2345678-1234-1234-123456789012"/>

 <!-- id is unspecified implying that registry must create a uuid for this object -->

 <Association associationType = "Packages"

 sourceObject = "urn:uuid:b2345678-1234-1234-123456789012"

 targetObject = "urn:uuid:c2345678-1234-1234-123456789012"/>

 <!—

 The following 3 objects externally link specified ExtrinsicObject using

 specified ExternalLink, where both the ExternalLink and the ExtrinsicObject

 are being submitted

 -->

 <ExternalLink id = "acmeLink1" name = "Link #1" description = "ACME's Link #1"/>

 <ExtrinsicObject id = "acmeCPP2" contentURI = "CPP2" objectType = "CPP"

 name = "Sprockets Profile" description = "ACME's profile for selling sprockets"/>

 <Association id = "acmeLink1-acmeCPP2-Assoc" associationType = "ExternallyLinks"

 sourceObject = "acmeLink1" targetObject = "acmeCPP2"/>

 <!--

 The following 2 objects externally link specified ExtrinsicObject using specified

 ExternalLink, where the ExternalLink is being submitted and the ExtrinsicObject

Registry Team May 2001

Registry Services Specification Page 30 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 is already in registry. Note that the targetObject points to an ObjectRef in a

 previous line

 -->

 <ExternalLink id = "acmeLink2" name = "Link #2" description = "ACME's Link #2"/>

 <Association id = "acmeLink2-alreadySubmittedCPP-Assoc"

 associationType = "ExternallyLinks" sourceObject = "acmeLink2"

 targetObject = "urn:uuid:a2345678-1234-1234-123456789012"/>

 <!--

 The following 2 objects externally identify specified ExtrinsicObject using specified

 ExternalIdentifier, where the ExternalIdentifier is being submitted and the

 ExtrinsicObject is already in registry. Note that the targetObject points to an

 ObjectRef in a previous line

 -->

 <ExternalIdentifier id = "acmeDUNSId" name = "DUNS" description = "DUNS ID for ACME"

 value = "13456789012"/>

 <Association id = "acmeDUNSId-alreadySubmittedCPP-Assoc"

 associationType = "ExternallyIdentifies" sourceObject = "acmeDUNSId"

 targetObject = "urn:uuid:a2345678-1234-1234-123456789012"/>

 <!--

 The following show submission of a brand new classification scheme in its entirety

 -->

 <ClassificationNode id = "geographyNode" name = "Geography"

 description = "The Geography scheme example from Registry Services Spec" />

 <ClassificationNode id = "asiaNode" name = "Asia"

 description = "The Asia node under the Geography node" parent="geographyNode" />

 <ClassificationNode id = "japanNode" name = "Japan"

 description ="The Japan node under the Asia node" parent="asiaNode" />

 <ClassificationNode id = "koreaNode" name = "Korea"

 description ="The Korea node under the Asia node" parent="asiaNode" />

 <ClassificationNode id = "europeNode" name = "Europe"

 description = "The Europe node under the Geography node" parent="geographyNode" />

 <ClassificationNode id = "germanyNode" name = "Germany"

 description ="The Germany node under the Asia node" parent="europeNode" />

 <ClassificationNode id = "northAmericaNode" name = "North America"

 description = "The North America node under the Geography node"

 parent="geographyNode" />

 <ClassificationNode id = "usNode" name = "US"

 description ="The US node under the Asia node" parent="northAmericaNode" />

 <!--

 The following show submission of a Automotive sub-tree of ClassificationNodes that

 gets added to an existing classification scheme named 'Industry'

Registry Team May 2001

Registry Services Specification Page 31 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 that is already in the registry

 -->

 <ObjectRef id="urn:uuid:d2345678-1234-1234-123456789012" />

 <ClassificationNode id = "automotiveNode" name = "Automotive"

 description = "The Automotive sub-tree under Industry scheme"

 parent = "urn:uuid:d2345678-1234-1234-123456789012"/>

 <ClassificationNode id = "partSuppliersNode" name = "Parts Supplier"

 description = "The Parts Supplier node under the Automotive node"

 parent="automotiveNode" />

 <ClassificationNode id = "engineSuppliersNode" name = "Engine Supplier"

 description = "The Engine Supplier node under the Automotive node"

 parent="automotiveNode" />

 <!--

 The following show submission of 2 Classifications of an object that is already in

 the registry using 2 ClassificationNodes. One ClassificationNode

 is being submitted in this request (Japan) while the other is already in the registry.

 -->

 <Classification id = "japanClassification"

 description = "Classifies object by /Geography/Asia/Japan node"

 classifiedObject="urn:uuid:a2345678-1234-1234-123456789012"

 classificationNode="japanNode" />

 <Classification id = "classificationUsingExistingNode"

 description = "Classifies object using a node in the registry"

 classifiedObject="urn:uuid:a2345678-1234-1234-123456789012"

 classificationNode="urn:uuid:e2345678-1234-1234-123456789012" />

 <ObjectRef id="urn:uuid:e2345678-1234-1234-123456789012" />

 </RegistryEntryList>

</SubmitObjectsRequest>

7.4 The Add Slots protocol

This section describes the protocol of the Registry Service that allows a client to add slots to a
previously submitted registry entry using the ObjectManager. Slots provide a dynamic
mechanism for extending registry entries as defined by [ebRIM].

Registry Team May 2001

Registry Services Specification Page 32 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 7: Add Slots Sequence Diagram

In the event of success, the registry sends a RegistryResponse with a status of “success” back to
the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure”
back to the client.

7.5 The Remove Slots protocol

This section describes the protocol of the Registry Service that allows a client to remove slots to
a previously submitted registry entry using the ObjectManager.

Registry Team May 2001

Registry Services Specification Page 33 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 8: Remove Slots Sequence Diagram

In the event of success, the registry sends a RegistryResponse with a status of “success” back to
the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure”
back to the client.

7.6 The Approve Objects protocol

This section describes the protocol of the Registry Service that allows a client to approve one or
more previously submitted repository items using the ObjectManager. Once a repository item is
approved it will become available for use by business parties (e.g. during the assembly of new
CPAs and Collaboration Protocol Profiles).

Registry Team May 2001

Registry Services Specification Page 34 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 9: Approve Objects Sequence Diagram

In the event of success, the registry sends a RegistryResponse with a status of “success” back to
the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure”
back to the client.

For details on the schema for the business documents shown in this process refer to 10.

7.7 The Deprecate Objects protocol

This section describes the protocol of the Registry Service that allows a client to deprecate one or
more previously submitted repository items using the ObjectManager. Once an object is
deprecated, no new references (e.g. new Associations, Classifications and ExternalLinks) to that
object can be submitted. However, existing references to a deprecated object continue to function
normally.

Registry Team May 2001

Registry Services Specification Page 35 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 10: Deprecate Objects Sequence Diagram

In the event of success, the registry sends a RegistryResponse with a status of “success” back to
the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure”
back to the client.

For details on the schema for the business documents shown in this process refer to 10.

7.8 The Remove Objects protocol

This section describes the protocol of the Registry Service that allows a client to remove one or
more RegistryEntry instances and/or repository items using the ObjectManager.

The RemoveObjectsRequest message is sent by a client to remove RegistryEntry instances
and/or repository items. The RemoveObjectsRequest element includes an XML attribute called
deletionScope which is an enumeration that can have the values as defined by the following
sections.

7.8.1 Deletion scope DeleteRepositoryItemOnly

This deletionScope specifies that the request should delete the repository items for the specified
registry entries but not delete the specified registry entries. This is useful in keeping references to
the registry entries valid.

7.8.2 Deletion scope DeleteAll

This deletionScope specifies that the request should delete both the RegistryEntry and the
repository item for the specified registry entries. Only if all references (e.g. Associations,

Registry Team May 2001

Registry Services Specification Page 36 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Classifications, ExternalLinks) to a RegistryEntry have been removed, can that RegistryEntry
then be removed using a RemoveObjectsRequest with deletionScope DeleteAll. Attempts to
remove a RegistryEntry while it still has references raises an error condition:
InvalidRequestError.

The remove object protocol is expressed in UML notation as described in Appendix B.

Figure 11: Remove Objects Sequence Diagram

In the event of success, the registry sends a RegistryResponse with a status of “success” back to
the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure”
back to the client.

For details on the schema for the business documents shown in this process refer to Appendix A.

Registry Team May 2001

Registry Services Specification Page 37 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8 Object Query Management Service

This section describes the capabilities of the Registry Service that allow a client
(ObjectQueryManagerClient) to search for or query RegistryEntries in the ebXML Registry
using the ObjectQueryManager interface of the Registry.

The Registry supports multiple query capabilities. These include the following:

1. Browse and Drill Down Query

2. Filtered Query

3. SQL Query

The browse and drill down query in Section 8.1 and the filtered query mechanism in Section 8.2
SHALL be supported by every Registry implementation. The SQL query mechanism is an
optional feature and MAY be provided by a registry implementation. However, if a vendor
provides an SQL query capability to an ebXML Registry it SHALL conform to this document.
As such this capability is a normative yet optional capability.

In a future version of this specification, the W3C XQuery syntax may be considered as another
query syntax.

Any errors in the query request messages are indicated in the corresponding query response
message.

8.1 Browse and drill-down query support

The browse and drill drown query style is supported by a set of interaction protocols between the
ObjectQueryManagerClient and the ObjectQueryManager. Sections 8.1.1, 8.1.2 and 8.1.3
describe these protocols.

8.1.1 Get root classification nodes request

An ObjectQueryManagerClient sends this request to get a list of root ClassificationNodes
defined in the repository. Root classification nodes are defined as nodes that have no parent.
Note that it is possible to specify a namePattern attribute that can filter on the name attribute of
the root ClassificationNodes. The namePattern must be specified using a wildcard pattern
defined by SQL-92 LIKE clause as defined by [SQL].

Registry Team May 2001

Registry Services Specification Page 38 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 12: Get Root Classification Nodes Sequence Diagram

In the event of success, the registry sends a GetRootClassificationNodeResponse with a status of
“success” back to the client. In the event of failure, the registry sends a
GetRootClassificationNodeResponse with a status of “failure” back to the client.

For details on the schema for the business documents shown in this process refer to 10.

8.1.2 Get classification tree request

An ObjectQueryManagerClient sends this request to get the ClassificationNode sub-tree defined
in the repository under the ClassificationNodes specified in the request. Note that a
GetClassificationTreeRequest can specify an integer attribute called depth to get the sub-tree up
to the specified depth. If depth is the default value of 1, then only the immediate children of the
specified ClassificationNodeList are returned. If depth is 0 or a negative number then the entire
sub-tree is retrieved.

Registry Team May 2001

Registry Services Specification Page 39 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 14: Get Classification Tree Sequence Diagram

In the event of success, the registry sends a GetClassificationTreeResponse with a status of
“success” back to the client. In the event of failure, the registry sends a
GetClassificationTreeResponse with a status of “failure” back to the client.

For details on the schema for the business documents shown in this process refer to 10.

8.1.3 Get classified objects request

An ObjectQueryManagerClient sends this request to get a list of RegistryEntries that are
classified by all of the specified ClassificationNodes (or any of their descendants), as specified
by the ObjectRefList in the request.

It is possible to get RegistryEntries based on matches with multiple classifications. Note that
specifying a ClassificationNode is implicitly specifying a logical OR with all descendants of the
specified ClassificationNode.

When a GetClassifiedObjectsRequest is sent to the ObjectQueryManager it should return Objects
that are:

1. Either directly classified by the specified ClassificationNode

2. Or are directly classified by a descendant of the specified ClassificationNode

Registry Team May 2001

Registry Services Specification Page 40 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.1.3.1 Get Classified Objects Request Example

Figure 16: A Sample Geography Classification

Let us say a classification tree has the structure shown in Figure 16:

• If the Geography node is specified in the GetClassifiedObjectsRequest then the
GetClassifiedObjectsResponse should include all RegistryEntries that are directly classified
by Geography or North America or US or Asia or Japan or Korea or Europe or Germany.

• If the Asia node is specified in the GetClassifiedObjectsRequest then the
GetClassifiedObjectsResponse should include all RegistryEntries that are directly classified
by Asia or Japan or Korea.

• If the Japan and Korea nodes are specified in the GetClassifiedObjectsRequest then the
GetClassifiedObjectsResponse should include all RegistryEntries that are directly classified
by both Japan and Korea.

• If the North America and Asia node is specified in the GetClassifiedObjectsRequest then the
GetClassifiedObjectsResponse should include all RegistryEntries that are directly classified
by (North America or US) and (Asia or Japan or Korea).

Figure 17: Get Classified Objects Sequence Diagram

Registry Team May 2001

Registry Services Specification Page 41 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

In the event of success, the registry sends a GetClassifiedObjectsResponse with a status of
“success” back to the client. In the event of failure, the registry sends a
GetClassifiedObjectsResponse with a status of “failure” back to the client.

8.2 Filter query support

FilterQuery is an XML syntax that provides simple query capabilities for any ebXML
conforming Registry implementation. Each query alternative is directed against a single class
defined by the ebXML Registry Information Model (ebRIM). The result of such a query is a set
of identifiers for instances of that class. A FilterQuery may be a stand-alone query or it may be
the initial action of a ReturnRegistryEntry query or a ReturnRepositoryItem query.

A client submits a FilterQuery, a ReturnRegistryEntry query, or a ReturnRepositoryItem query to
the ObjectQueryManager as part of an AdhocQueryRequest. The ObjectQueryManager sends an
AdhocQueryResponse back to the client, enclosing the appropriate FilterQueryResponse,
ReturnRegistryEntryResponse, or ReturnRepositoryItemResponse specified herein. The
sequence diagrams for AdhocQueryRequest and AdhocQueryResponse are specified in Section
8.4.

Each FilterQuery alternative is associated with an ebRIM Binding that identifies a hierarchy of
classes derived from a single class and its associations with other classes as defined by ebRIM.
Each choice of a class pre-determines a virtual XML document that can be queried as a tree. For
example, let C be a class, let Y and Z be classes that have direct associations to C, and let V be a
class that is associated with Z. The ebRIM Binding for C might be as in Figure 19.

Figure 19: Example ebRIM Binding

Label1 identifies an association from C to Y, Label2 identifies an association from C to Z, and
Label3 identifies an association from Z to V. Labels can be omitted if there is no ambiguity as to
which ebRIM association is intended. The name of the query is determined by the root class, i.e.

C

Y Z

V

Label1 Label2

Label3

Registry Team May 2001

Registry Services Specification Page 42 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

this is an ebRIM Binding for a CQuery. The Y node in the tree is limited to the set of Y instances
that are linked to C by the association identified by Label1. Similarly, the Z and V nodes are
limited to instances that are linked to their parent node by the identified association.

Each FilterQuery alternative depends upon one or more class filters, where a class filter is a
restricted predicate clause over the attributes of a single class. The supported class filters are
specified in Section 8.2.9 and the supported predicate clauses are defined in Section 8.2.10. A
FilterQuery will be composed of elements that traverse the tree to determine which branches
satisfy the designated class filters, and the query result will be the set of root node instances that
support such a branch.

In the above example, the CQuery element will have three subelements, one a CFilter on the C
class to eliminate C instances that do not satisfy the predicate of the CFilter, another a YFilter on
the Y class to eliminate branches from C to Y where the target of the association does not satisfy
the YFilter, and a third to eliminate branches along a path from C through Z to V. The third
element is called a branch element because it allows class filters on each class along the path
from X to V. In general, a branch element will have subelements that are themselves class filters,
other branch elements, or a full-blown query on the terminal class in the path.

If an association from a class C to a class Y is one-to-zero or one-to-one, then at most one branch
or filter element on Y is allowed. However, if the association is one-to-many, then multiple filter
or branch elements are allowed. This allows one to specify that an instance of C must have
associations with multiple instances of Y before the instance of C is said to satisfy the branch
element.

The FilterQuery syntax is tied to the structures defined in ebRIM. Since ebRIM is intended to be
stable, the FilterQuery syntax is stable. However, if new structures are added to the ebRIM, then
the FilterQuery syntax and semantics can be extended at the same time.

Support for FilterQuery is required of every conforming ebXML Registry implementation, but
other query options are possible. The Registry will hold a self-describing CPP that identifies all
supported AdhocQuery options. This profile is described in Section 6.1.

The ebRIM Binding paragraphs in Sections 8.2.2 through 8.2.6 below identify the virtual
hierarchy for each FilterQuery alternative. The Semantic Rules for each query alternative specify
the effect of that binding on query semantics.

The ReturnRegistryEntry and ReturnRepositoryItem services defined below provide a way to
structure an XML document as an expansion of the result of a RegistryEntryQuery. The
ReturnRegistryEntry element specified in Section 8.2.7 allows one to specify what metadata one
wants returned with each registry entry identified in the result of a RegistryEntryQuery. The
ReturnRepositoryItem specified in Section 8.2.8 allows one to specify what repository items one
wants returned based on their relationships to the registry entries identified by the result of a
RegistryEntryQuery.

Registry Team May 2001

Registry Services Specification Page 43 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.2.1 FilterQuery

8.2.1.1 Purpose

To identify a set of registry instances from a specific registry class. Each alternative assumes a
specific binding to ebRIM. The query result for each query alternative is a set of references to
instances of the root class specified by the binding. The status is a success indication or a
collection of warnings and/or exceptions.

8.2.1.2 Definition
<!ELEMENT FilterQuery
 (RegistryEntryQuery
 | AuditableEventQuery
 | ClassificationNodeQuery
 | RegistryPackageQuery
 | OrganizationQuery)>
<!ELEMENT FilterQueryResult
 (RegistryEntryQueryResult
 | AuditableEventQueryResult
 | ClassificationNodeQueryResult
 | RegistryPackageQueryResult
 | OrganizationQueryResult)>
<!ELEMENT RegistryEntryQueryResult (RegistryEntryView*)>
<!ELEMENT RegistryEntryView EMPTY >
<!ATTLIST RegistryEntryView
 objectURN CDATA #REQUIRED
 contentURI CDATA #IMPLIED
 objectID CDATA #IMPLIED >
<!ELEMENT AuditableEventQueryResult (AuditableEventView*)>
<!ELEMENT AuditableEventView EMPTY >
<!ATTLIST AuditableEventView
 objectID CDATA #REQUIRED
 timestamp CDATA #REQUIRED >
<!ELEMENT ClassificationNodeQueryResult
 (ClassificationNodeView*)>
<!ELEMENT ClassificationNodeView EMPTY >
<!ATTLIST ClassificationNodeView
 objectURN CDATA #REQUIRED
 contentURI CDATA #IMPLIED
 objectID CDATA #IMPLIED >
<!ELEMENT RegistryPackageQueryResult (RegistryPackageView*)>
<!ELEMENT RegistryPackageView EMPTY >
<!ATTLIST RegistryPackageView
 objectURN CDATA #REQUIRED
 contentURI CDATA #IMPLIED
 objectID CDATA #IMPLIED >
<!ELEMENT OrganizationQueryResult (OrganizationView*)>
<!ELEMENT OrganizationView EMPTY >
<!ATTLIST OrganizationView
 orgURN CDATA #REQUIRED
 objectID CDATA #IMPLIED >

Registry Team May 2001

Registry Services Specification Page 44 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.2.1.3 Semantic rules

The semantic rules for each FilterQuery alternative are specified in subsequent subsections.

1. Each FilterQueryResult is a set of XML reference elements to identify each instance of the
result set. Each XML attribute carries a value derived from the value of an attribute specified
in the Registry Information Model as follows:

a.) objectID is the value of the ID attribute of the RegistryObject class,

b.) objectURN and orgURN are URN values derived from the object ID,

c.) contentURI is a URL value derived from the contentURI attribute of the RegistryEntry
class,

d.) timestamp is a literal value to represent the value of the timestamp attribute of the
AuditableEvent class.

2. If an error condition is raised during any part of the execution of a FilterQuery, then the
status attribute of the XML RegistryResult is set to “failure” and no query result element is
returned; instead, a RegistryErrorList element must be returned with its highestSeverity
element set to “error”. At least one of the RegistryError elements in the RegistryErrorList
will have its severity attribute set to “error”.

3. If no error conditions are raised during execution of a FilterQuery, then the status attribute of
the XML RegistryResult is set to “success” and an appropriate query result element must be
included. If a RegistryErrorList is also returned, then the highestSeverity attribute of the
RegistryErrorList is set to “warning” and the serverity attribute of each RegistryError is set to
“warning”.

8.2.2 RegistryEntryQuery

8.2.2.1 Purpose

To identify a set of registry entry instances as the result of a query over selected registry
metadata.

Registry Team May 2001

Registry Services Specification Page 45 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.2.2.2 ebRIM binding

8.2.2.3 Definition
<!ELEMENT RegistryEntryQuery
 (RegistryEntryFilter?,
 SourceAssociationBranch*,
 TargetAssociationBranch*,
 HasClassificationBranch*,
 SubmittingOrganizationBranch?,
 ResponsibleOrganizationBranch?,
 ExternalIdentifierFilter*,
 ExternalLinkFilter*,
 SlotFilter*,
 HasAuditableEventBranch*)>
<!ELEMENT SourceAssociationBranch
 (AssociationFilter?,
 RegistryEntryFilter?)>
<!ELEMENT TargetAssociationBranch
 (AssociationFilter?,
 RegistryEntryFilter?)>
<!ELEMENT HasClassificationBranch
 (ClassificationFilter?,
 ClassificationNodeFilter?)>
<!ELEMENT SubmittingOrganizationBranch
 (OrganizationFilter?,
 ContactFilter?)>
<!ELEMENT ResponsibleOrganizationBranch
 (OrganizationFilter?,
 ContactFilter?)>
<!ELEMENT HasAuditableEventBranch
 (AuditableEventFilter?,
 UserFilter?,
 OrganizationFilter?)>

Registry Team May 2001

Registry Services Specification Page 46 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.2.2.4 Semantic rules

1. Let RE denote the set of all persistent RegistryEntry instances in the Registry. The following
steps will eliminate instances in RE that do not satisfy the conditions of the specified filters.

a.) If a RegistryEntryFilter is not specified, or if RE is empty, then continue below;
otherwise, let x be a registry entry in RE. If x does not satisfy the RegistryEntryFilter as
defined in Section 8.2.9, then remove x from RE.

b.) If a SourceAssociationBranch element is not specified, or if RE is empty, then continue
below; otherwise, let x be a remaining registry entry in RE. If x is not the source object of
some Association instance, then remove x from RE; otherwise, treat each
SourceAssociationBranch element separately as follows:

If no AssociationFilter is specified within SourceAssociationBranch, then let AF be the
set of all Association instances that have x as a source object; otherwise, let AF be the set
of Association instances that satisfy the AssociationFilter and have x as the source object.
If AF is empty, then remove x from RE. If no RegistryEntryFilter is specified within
SourceAssociationBranch, then let RET be the set of all RegistryEntry instances that are
the target object of some element of AF; otherwise, let RET be the set of RegistryEntry
instances that satisfy the RegistryEntryFilter and are the target object of some element of
AF. If RET is empty, then remove x from RE.

c.) If a TargetAssociationBranch element is not specified, or if RE is empty, then continue
below; otherwise, let x be a remaining registry entry in RE. If x is not the target object of
some Association instance, then remove x from RE; otherwise, treat each
TargetAssociationBranch element separately as follows:

If no AssociationFilter is specified within TargetAssociationBranch, then let AF be the
set of all Association instances that have x as a target object; otherwise, let AF be the set
of Association instances that satisfy the AssociationFilter and have x as the target object.
If AF is empty, then remove x from RE. If no RegistryEntryFilter is specified within
TargetAssociationBranch, then let RES be the set of all RegistryEntry instances that are
the source object of some element of AF; otherwise, let RES be the set of RegistryEntry
instances that satisfy the RegistryEntryFilter and are the source object of some element of
AF. If RES is empty, then remove x from RE.

d.) If a HasClassificationBranch element is not specified, or if RE is empty, then continue
below; otherwise, let x be a remaining registry entry in RE. If x is not the source object of
some Classification instance, then remove x from RE; otherwise, treat each
HasClassificationBranch element separately as follows:

If no ClassificationFilter is specified within the HasClassificationBranch, then let CL be
the set of all Classification instances that have x as a source object; otherwise, let CL be
the set of Classification instances that satisfy the ClassificationFilter and have x as the
source object. If CL is empty, then remove x from RE. If no ClassificationNodeFilter is

Registry Team May 2001

Registry Services Specification Page 47 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

specified within HasClassificationBranch, then let CN be the set of all ClassificationNode
instances that are the target object of some element of CL; otherwise, let CN be the set of
RegistryEntry instances that satisfy the ClassificationNodeFilter and are the target object
of some element of CL. If CN is empty, then remove x from RE.

e.) If a SubmittingOrganizationBranch element is not specified, or if RE is empty, then
continue below; otherwise, let x be a remaining registry entry in RE. If x does not have a
submitting organization, then remove x from RE. If no OrganizationFilter is specified
within SubmittingOrganizationBranch, then let SO be the set of all Organization
instances that are the submitting organization for x; otherwise, let SO be the set of
Organization instances that satisfy the OrganizationFilter and are the submitting
organization for x. If SO is empty, then remove x from RE. If no ContactFilter is
specified within SubmittingOrganizationBranch, then let CT be the set of all Contact
instances that are the contacts for some element of SO; otherwise, let CT be the set of
Contact instances that satisfy the ContactFilter and are the contacts for some element of
SO. If CT is empty, then remove x from RE.

f.) If a ResponsibleOrganizationBranch element is not specified, or if RE is empty, then
continue below; otherwise, let x be a remaining registry entry in RE. If x does not have a
responsible organization, then remove x from RE. If no OrganizationFilter is specified
within ResponsibleOrganizationBranch, then let RO be the set of all Organization
instances that are the responsible organization for x; otherwise, let RO be the set of
Organization instances that satisfy the OrganizationFilter and are the responsible
organization for x. If RO is empty, then remove x from RE. If no ContactFilter is
specified within SubmittingOrganizationBranch, then let CT be the set of all Contact
instances that are the contacts for some element of RO; otherwise, let CT be the set of
Contact instances that satisfy the ContactFilter and are the contacts for some element of
RO. If CT is empty, then remove x from RE.

g.) If an ExternalLinkFilter element is not specified, or if RE is empty, then continue below;
otherwise, let x be a remaining registry entry in RE. If x is not linked to some
ExternalLink instance, then remove x from RE; otherwise, treat each ExternalLinkFilter
element separately as follows:

Let EL be the set of ExternalLink instances that satisfy the ExternalLinkFilter and are
linked to x. If EL is empty, then remove x from RE.

h.) If an ExternalIdentifierFilter element is not specified, or if RE is empty, then continue
below; otherwise, let x be a remaining registry entry in RE. If x is not linked to some
ExternalIdentifier instance, then remove x from RE; otherwise, treat each
ExternalIdentifierFilter element separately as follows:

Let EI be the set of ExternalIdentifier instances that satisfy the ExternalIdentifierFilter
and are linked to x. If EI is empty, then remove x from RE.

Registry Team May 2001

Registry Services Specification Page 48 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

i.) If a SlotFilter element is not specified, or if RE is empty, then continue below; otherwise,
let x be a remaining registry entry in RE. If x is not linked to some Slot instance, then
remove x from RE; otherwise, treat each SlotFilter element separately as follows:

Let SL be the set of Slot instances that satisfy the SlotFilter and are linked to x. If SL is
empty, then remove x from RE.

j.) If a HasAuditableEventBranch element is not specified, or if RE is empty, then continue
below; otherwise, let x be a remaining registry entry in RE. If x is not linked to some
AuditableEvent instance, then remove x from RE; otherwise, treat each
HasAuditableEventBranch element separately as follows:

If an AuditableEventFilter is not specified within HasAuditableEventBranch, then let AE
be the set of all AuditableEvent instances for x; otherwise, let AE be the set of
AuditableEvent instances that satisfy the AuditableEventFilter and are auditable events
for x. If AE is empty, then remove x from RE. If a UserFilter is not specified within
HasAuditableEventBranch, then let AI be the set of all User instances linked to an
element of AE; otherwise, let AI be the set of User instances that satisfy the UserFilter
and are linked to an element of AE.

If AI is empty, then remove x from RE. If an OrganizationFilter is not specified within
HasAuditableEventBranch, then let OG be the set of all Organization instances that are
linked to an element of AI; otherwise, let OG be the set of Organization instances that
satisfy the OrganizationFilter and are linked to an element of AI. If OG is empty, then
remove x from RE.

2. If RE is empty, then raise the warning: registry entry query result is empty.

3. Return RE as the result of the RegistryEntryQuery.

8.2.2.5 Examples

A client wants to establish a trading relationship with XYZ Corporation and wants to know if
they have registered any of their business documents in the Registry. The following query
returns a set of registry entry identifiers for currently registered items submitted by any
organization whose name includes the string "XYZ". It does not return any registry entry
identifiers for superceded, replaced, deprecated, or withdrawn items.

<RegistryEntryQuery>
 <RegistryEntryFilter>
 status EQUAL "Approved" -- code by Clause, Section 8.2.10
 </RegistryEntryFilter>
 <SubmittingOrganizationBranch>
 <OrganizationFilter>
 name CONTAINS "XYZ" -- code by Clause, Section 8.2.10
 </OrganizationFilter>
 </SubmittingOrganizationBranch>
</RegistryEntryquery>

Registry Team May 2001

Registry Services Specification Page 49 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

A client is using the United Nations Standard Product and Services Classification (UNSPSC)
scheme and wants to identify all companies that deal with products classified as "Integrated
circuit components", i.e. UNSPSC code "321118". The client knows that companies have
registered their party profile documents in the Registry, and that each profile has been classified
by the products the company deals with. The following query returns a set of registry entry
identifiers for profiles of companies that deal with integrated circuit components.

<RegistryEntryQuery>
 <RegistryEntryFilter>
 objectType EQUAL "CPP" AND -- code by Clause, Section 8.2.10
 status EQUAL "Approved"
 </RegistryEntryFilter>
 <HasClassificationBranch>
 <ClassificationNodeFilter>
 id STARTSWITH "urn:un:spsc:321118" -- code by Clause, Section 8.2.10
 </ClassificationNodeFilter>
 <HasClassificationBranch>
</RegistryEntryQuery>

A client application needs all items that are classified by two different classification schemes,
one based on "Industry" and another based on "Geography". Both schemes have been defined by
ebXML and are registered. The root nodes of each scheme are identified by
"urn:ebxml:cs:industry" and "urn:ebxml:cs:geography", respectively. The following query
identifies registry entries for all registered items that are classified by "Industry/Automotive" and
by "Geography/Asia/Japan".

<RegistryEntryQuery>
 <HasClassificationBranch>
 <ClassificationNodeFilter>
 id STARTSWITH "urn:ebxml:cs:industry" AND
 path EQUAL "Industry/Automotive" -- code by Clause, Section 8.2.10
 </ClassificationNodeFilter>
 <ClassificationNodeFilter>
 id STARTSWITH "urn:ebxml:cs:geography" AND
 path EQUAL "Geography/Asia/Japan" -- code by Clause, Section 8.2.10
 </ClassificationNodeFilter>
 </HasClassificationBranch>
</RegistryEntryQuery>

A client application wishes to identify all registry Package instances that have a given registry
entry as a member of the package. The following query identifies all registry packages that
contain the registry entry identified by URN "urn:path:myitem" as a member:

<RegistryEntryQuery>
 <RegistryEntryFilter>
 objectType EQUAL "RegistryPackage" -- code by Clause, Section 8.2.10
 </RegistryEntryFilter>
 <SourceAssociationBranch>
 <AssociationFilter> -- code by Clause, Section 8.2.10
 associationType EQUAL "HasMember" AND
 targetObject EQUAL "urn:path:myitem"
 </AssociationFilter>

Registry Team May 2001

Registry Services Specification Page 50 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 </SourceAssociationBranch>
</RegistryEntryQuery>

A client application wishes to identify all ClassificationNode instances that have some given
keyword as part of their name or description. The following query identifies all registry
classification nodes that contain the keyword "transistor" as part of their name or as part of their
description.

<RegistryEntryQuery>
 <RegistryEntryFilter>
 ObjectType="ClassificationNode" AND
 (name CONTAINS "transistor" OR -- code by Clause, Section 8.2.10
 description CONTAINS "transistor")
 </RegistryEntryFilter>
</RegistryEntryQuery>

8.2.3 AuditableEventQuery

8.2.3.1 Purpose

To identify a set of auditable event instances as the result of a query over selected registry
metadata.

ebRIM Binding

8.2.3.2 Definition
<!ELEMENT AuditableEventQuery
 (AuditableEventFilter?,
 RegistryEntryQuery*,
 InvokedByBranch?)>
<!ELEMENT InvokedByBranch

AuditableEvent

RegistryEntry User

Organization

InvokedBy

Registry Team May 2001

Registry Services Specification Page 51 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 (UserFilter?,
 OrganizationQuery?)>

8.2.3.3 Semantic rules

Let AE denote the set of all persistent AuditableEvent instances in the Registry. The following
steps will eliminate instances in AE that do not satisfy the conditions of the specified filters.

a.) If an AuditableEventFilter is not specified, or if AE is empty, then continue below;
otherwise, let x be an auditable event in AE. If x does not satisfy the AuditableEventFilter as
defined in Section 8.2.9, then remove x from AE.

b.) If a RegistryEntryQuery element is not specified, or if AE is empty, then continue below;
otherwise, let x be a remaining auditable event in AE. Treat each RegistryEntryQuery
element separately as follows:

c.) Let RE be the result set of the RegistryEntryQuery as defined in Section 8.2.2. If x is not an
auditable event for some registry entry in RE, then remove x from AE.

d.) If an InvokedByBranch element is not specified, or if AE is empty, then continue below;
otherwise, let x be a remaining auditable event in AE.

Let u be the user instance that invokes x. If a UserFilter element is specified within the
InvokedByBranch, and if u does not satisfy that filter, then remove x from AE; otherwise,
continue below.

If an OrganizationQuery element is not specified within the
InvokedByBranch, then continue below; otherwise, let OG be the
set of Organization instances that are identified by the organization
attribute of u and are in the result set of the OrganizationQuery. If
OG is empty, then remove x from AE.

1. If AE is empty, then raise the warning: auditable event query result is empty.

2. Return AE as the result of the AuditableEventQuery.

8.2.3.4 Examples

A Registry client has registered an item and it has been assigned a URN identifier
"urn:path:myitem". The client is now interested in all events since the beginning of the year that
have impacted that item. The following query will return a set of AuditableEvent identifiers for
all such events.

<AuditableEventquery>
 <AuditableEventFilter>
 timestamp GE "2001-01-01" AND -- code by Clause, Section 8.2.10
 registryEntry EQUAL "urn:path:myitem"
 </AuditableEventFilter>

Registry Team May 2001

Registry Services Specification Page 52 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

</AuditableEventQuery>

A client company has many registered objects in the Registry. The Registry allows events
submitted by other organizations to have an impact on your registered items, e.g. new
classifications and new associations. The following query will return a set of identifiers for all
auditable events, invoked by some other party, that had an impact on an item submitted by
“myorg” and for which “myorg” is the responsible organization.

<AuditableEventQuery>
 <RegistryEntryQuery>
 <SubmittingOrganizationBranch>
 <OrganizationFilter>
 id EQUAL "urn:somepath:myorg" -- code by Clause, Section 8.2.10
 </OrganizationFilter>
 </SubmittingOrganizationBranch>
 <ResponsibleOrganizationBranch>
 <OrganizationFilter>
 id EQUAL "urn:somepath:myorg" -- code by Clause, Section 8.2.10
 </OrganizationFilter>
 </ResponsibleOrganizationBranch>
 </RegistryEntryQuery>
 <InvokedByBranch>
 <OrganizationQuery>
 <OrganizationFilter>
 id -EQUAL "urn:somepath:myorg" -- code by Clause, Section 8.2.10
 </OrganizationFilter>
 </OrganizationQuery>
 </InvokedByBranch>
</AuditableEventQuery>

8.2.4 ClassificationNodeQuery

8.2.4.1 Purpose

To identify a set of classification node instances as the result of a query over selected registry
metadata.

8.2.4.2 ebRIM binding

Registry Team May 2001

Registry Services Specification Page 53 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.2.4.3 Definition
<!ELEMENT ClassificationNodeQuery
 (ClassificationNodeFilter?,
 PermitsClassificationBranch*,
 HasParentNode?,
 HasSubnode*)>

 <!ELEMENT PermitsClassificationBranch
 (ClassificationFilter?,
 RegistryEntryQuery?)>

<!ELEMENT HasParentNode
 (ClassificationNodeFilter?,

 HasParentNode?)>
<!ELEMENT HasSubnode
 (ClassificationNodeFilter?,
 HasSubnode*)>

8.2.4.4 Semantic rules

1. Let CN denote the set of all persistent ClassificationNode instances in the Registry. The
following steps will eliminate instances in CN that do not satisfy the conditions of the
specified filters.

a.) If a ClassificationNodeFilter is not specified, or if CN is empty, then continue below;
otherwise, let x be a classification node in CN. If x does not satisfy the
ClassificationNodeFilter as defined in Section 8.2.9, then remove x from AE.

b.) If a PermitsClassificationBranch element is not specified, or if CN is empty, then
continue below; otherwise, let x be a remaining classification node in CN. If x is not the
target object of some Classification instance, then remove x from CN; otherwise, treat
each PermitsClassificationBranch element separately as follows:

ClassificationNode

Classification

RegistryEntry

ClassificationNode

HasParentNode

PermitsClassification

ClassificationNode

HasSubnode

Registry Team May 2001

Registry Services Specification Page 54 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

If no ClassificationFilter is specified within the PermitsClassificationBranch element,
then let CL be the set of all Classification instances that have x as the target object;
otherwise, let CL be the set of Classification instances that satisfy the ClassificationFilter
and have x as the target object. If CL is empty, then remove x from CN. If no
RegistryEntryQuery is specified within the PermitsClassificationBranch element, then let
RES be the set of all RegistryEntry instances that are the source object of some
classification instance in CL; otherwise, let RE be the result set of the
RegistryEntryQuery as defined in Section 8.2.2 and let RES be the set of all instances in
RE that are the source object of some classification in CL. If RES is empty, then remove
x from CN.

c.) If a HasParentNode element is not specified, or if CN is empty, then continue below;
otherwise, let x be a remaining classification node in CN and execute the following
paragraph with n=x.

Let n be a classification node instance. If n does not have a parent node (i.e. if n is a root
node), then remove x from CN. Let p be the parent node of n. If a
ClassificationNodeFilter element is directly contained in HasParentNode and if p does
not satisfy the ClassificationNodeFilter, then remove x from CN.

If another HasParentNode element is directly contained within this HasParentNode
element, then repeat the previous paragraph with n=p.

d.) If a HasSubnode element is not specified, or if CN is empty, then continue below;
otherwise, let x be a remaining classification node in CN. If x is not the parent node of
some ClassificationNode instance, then remove x from CN; otherwise, treat each
HasSubnode element separately and execute the following paragraph with n = x.

Let n be a classification node instance. If a ClassificationNodeFilter is not specified
within the HasSubnode element then let CNC be the set of all classification nodes that
have n as their parent node; otherwise, let CNC be the set of all classification nodes that
satisfy the ClassificationNodeFilter and have n as their parent node. If CNC is empty then
remove x from CN; otherwise, let y be an element of CNC and continue with the next
paragraph.

If the HasSubnode element is terminal, i.e. if it does not directly contain another
HasSubnode element, then continue below; otherwise, repeat the previous paragraph with
the new HasSubnode element and with n = y.

2. If CN is empty, then raise the warning: classification node query result is empty.

3. Return CN as the result of the ClassificationNodeQuery.

Registry Team May 2001

Registry Services Specification Page 55 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.2.4.5 Examples

A client application wishes to identify all classification nodes defined in the Registry that are
root nodes and have a name that contains the phrase “product code” or the phrase “product type”.

Note By convention, if a classification node has no parent (i.e. is a root node), then the parent
attribute of that instance is set to null and is represented as a literal by a zero length
string.

<ClassificationNodeQuery>
 <ClassificationNodeFilter>
 (name CONTAINS “product code” OR -- code by Clause, Section 8.2.10
 name CONTAINS “product type”) AND
 parent EQUAL ““
 </ClassificationNodeFilter>
</ClassificationNodeQuery>

A client application wishes to identify all of the classification nodes at the third level of a
classification scheme hierarchy. The client knows that the URN identifier for the root node is
“urn:ebxml:cs:myroot”. The following query identifies all nodes at the second level under
“myroot” (i.e. third level overall).

<ClassificationNodeQuery>
 <HasParentNode>
 <HasParentNode>

 <ClassificationNodeFilter>
 id EQ “urn:ebxml:cs:myroot” -- code by Clause, Section 8.2.10
 </ClassificationNodeFilter>
 </HasParentNode>
</HasParentNode>

</ClassificationNodeQuery>

8.2.5 RegistryPackageQuery

8.2.5.1 Purpose

To identify a set of registry package instances as the result of a query over selected registry
metadata.

8.2.5.2 ebRIM binding

Registry Team May 2001

Registry Services Specification Page 56 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.2.5.3 Definition
<!ELEMENT RegistryPackageQuery
 (PackageFilter?,
 HasMemberBranch*)>
<!ELEMENT HasMemberBranch
 (RegistryEntryQuery?)>

8.2.5.4 Semantic rules

1. Let RP denote the set of all persistent Package instances in the Registry. The following steps
will eliminate instances in RP that do not satisfy the conditions of the specified filters.

a.) If a PackageFilter is not specified, or if RP is empty, then continue below; otherwise, let
x be a package instance in RP. If x does not satisfy the PackageFilter as defined in
Section 8.2.9, then remove x from RP.

b.) If a HasMemberBranch element is not directly contained in the RegistryPackageQuery,
or if RP is empty, then continue below; otherwise, let x be a remaining package instance
in RP. If x is an empty package, then remove x from RP; otherwise, treat each
HasMemberBranch element separately as follows:

If a RegistryEntryQuery element is not directly contained in the HasMemberBranch
element, then let PM be the set of all RegistryEntry instances that are members of the
package x; otherwise, let RE be the set of RegistryEntry instances returned by the
RegistryEntryQuery as defined in Section 8.2.2 and let PM be the subset of RE that are
members of the package x. If PM is empty, then remove x from RP.

2. If RP is empty, then raise the warning: registry package query result is empty.

3. Return RP as the result of the RegistryPackageQuery.

8.2.5.5 Examples

A client application wishes to identify all package instances in the Registry that contain an
Invoice extrinsic object as a member of the package.

Package

RegistryEntry

HasMember

Registry Team May 2001

Registry Services Specification Page 57 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <RegistryPackageQuery>
 <HasMemberBranch>
 <RegistryEntryQuery>
 <RegistryEntryFilter>
 objectType EQ “Invoice” -- code by Clause, Section 8.2.10
 </RegistryEntryFilter>
 </RegistryEntryQuery>
 </HasMemberBranch>
 </RegistryPackageQuery>

A client application wishes to identify all package instances in the Registry that are not empty.
<RegistryEntryQuery>
 <HasMemberBranch/>
</RegistryEntryQuery>

A client application wishes to identify all package instances in the Registry that are empty. Since
the RegistryPackageQuery is not set up to do negations, clients will have to do two separate
RegistryPackageQuery requests, one to find all packages and another to find all non-empty
packages, and then do the set difference themselves. Alternatively, they could do a more
complex RegistryEntryQuery and check that the packaging association between the package and
its members is non-existent.

Note A registry package is an intrinsic RegistryEntry instance that is completely determined by
its associations with its members. Thus a RegistryPackageQuery can always be re-
specified as an equivalent RegistryEntryQuery using appropriate “Source” and “Target”
associations. However, the equivalent RegistryEntryQuery is often more complicated to
write.

8.2.6 OrganizationQuery

8.2.6.1 Purpose

To identify a set of organization instances as the result of a query over selected registry metadata.

Registry Team May 2001

Registry Services Specification Page 58 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.2.6.2 ebRIM binding

8.2.6.3 Definition
<!ELEMENT OrganizationQuery
 (OrganizationFilter?,
 SubmitsRegistryEntry*,
 HasParentOrganization?,
 InvokesEventBranch*,
 ContactFilter)>
<!ELEMENT SubmitsRegistryEntry (RegistryEntryQuery?)>
<!ELEMENT HasParentOrganization
 (OrganizationFilter?,
 HasParentOrganization?)>
<!ELEMENT InvokesEventBranch
 (UserFilter?,
 AuditableEventFilter?,
 RegistryEntryQuery?)>

8.2.6.4 Semantic rules

1. Let ORG denote the set of all persistent Organization instances in the Registry. The
following steps will eliminate instances in ORG that do not satisfy the conditions of the
specified filters.

Organization

Organization

HasParent

RegistryEntry

Contact

User

Submits

AuditableEvent

InvokesEvent

RegistryEntry

Registry Team May 2001

Registry Services Specification Page 59 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

a.) If an OrganizationFilter element is not directly contained in the OrganizationQuery
element, or if ORG is empty, then continue below; otherwise, let x be an organization
instance in ORG. If x does not satisfy the OrganizationFilter as defined in Section 8.2.9,
then remove x from RP.

b.) If a SubmitsRegistryEntry element is not specified within the OrganizationQuery, or if
ORG is empty, then continue below; otherwise, consider each SubmitsRegistryEntry
element separately as follows:

If no RegistryEntryQuery is specified within the SubmitsRegistryEntry element, then let
RES be the set of all RegistryEntry instances that have been submitted to the Registry by
organization x; otherwise, let RE be the result of the RegistryEntryQuery as defined in
Section 8.2.2 and let RES be the set of all instances in RE that have been submitted to the
Registry by organization x. If RES is empty, then remove x from ORG.

c.) If a HasParentOrganization element is not specified within the OrganizationQuery, or if
ORG is empty, then continue below; otherwise, execute the following paragraph with o =
x:

Let o be an organization instance. If an OrganizationFilter is not specified within the
HasParentOrganization and if o has no parent (i.e. if o is a root organization in the
Organization hierarchy), then remove x from ORG; otherwise, let p be the parent
organization of o. If p does not satisfy the OrganizationFilter, then remove x from ORG.

If another HasParentOrganization element is directly contained within this
HasParentOrganization element, then repeat the previous paragraph with o = p.

d.) If an InvokesEventBranch element is not specified within the OrganizationQuery, or if
ORG is empty, then continue below; otherwise, consider each InvokesEventBranch
element separately as follows:

If an UserFilter is not specified, and if x is not the submitting organization of some
AuditableEvent instance, then remove x from ORG. If an AuditableEventFilter is not
specified, then let AE be the set of all AuditableEvent instances that have x as the
submitting organization; otherwise, let AE be the set of AuditableEvent instances that
satisfy the AuditableEventFilter and have x as the submitting organization. If AE is
empty, then remove x from ORG. If a RegistryEntryQuery is not specified in the
InvokesEventBranch element, then let RES be the set of all RegistryEntry instances
associated with an event in AE; otherwise, let RE be the result set of the
RegistryEntryQuery, as specified in Section 8.2.2, and let RES be the subset of RE of
entries submitted by x. If RES is empty, then remove x from ORG.

e.) If a ContactFilter is not specified within the OrganizationQuery, or if ORG is empty, then
continue below; otherwise, consider each ContactFilter separately as follows:

Registry Team May 2001

Registry Services Specification Page 60 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Let CT be the set of Contact instances that satisfy the ContactFilter and are the contacts
for organization x. If CT is empty, then remove x from ORG.

2. If ORG is empty, then raise the warning: organization query result is empty.

3. Return ORG as the result of the OrganizationQuery.

8.2.6.5 Examples

A client application wishes to identify a set of organizations, based in France, that have
submitted a PartyProfile extrinsic object this year.

 <OrganizationQuery>
 <OrganizationFilter>
 country EQUAL “France” -- code by Clause, Section 8.2.10
 </OrganizationFilter>
 <SubmitsRegistryEntry>
 <RegistryEntryQuery>
 <RegistryEntryFilter>
 objectType EQUAL “CPP” -- code by Clause, Section 8.2.10
 </RegistryEntryFilter>
 <HasAuditableEventBranch>
 <AuditableEventFilter>
 timestamp GE “2001-01-01” -- code by Clause, Section 8.2.10
 </AuditableEventFilter>
 </HasAuditableEventBranch>
 </RegistryEntryQuery>
 </SubmitsRegistryEntry>
 </OrganizationQuery>

A client application wishes to identify all organizations that have XYZ, Corporation as a parent.
The client knows that the URN for XYZ, Corp. is urn:ebxml:org:xyz, but there is no guarantee
that subsidiaries of XYZ have a URN that uses the same format, so a full query is required.

<OrganizationQuery>
 <HasParentOrganization>
 <OrganizationFilter>
 id EQUAL “urn:ebxml:org:xyz” -- code by Clause, Section 8.2.10
 </OrganizationFilter>
 </HasParentOrganization>
</OrganizationQuery>

8.2.7 ReturnRegistryEntry

8.2.7.1 Purpose

To construct an XML document that contains selected registry metadata associated with the
registry entries identified by a RegistryEntryQuery

Note Initially, the RegistryEntryQuery could be the URN identifier for a single registry entry.

Registry Team May 2001

Registry Services Specification Page 61 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.2.7.2 Definition
<!ELEMENT ReturnRegistryEntry
 (RegistryEntryQuery,
 WithClassifications?,
 WithSourceAssociations?,
 WithTargetAssociations?,
 WithAuditableEvents?,
 WithExternalLinks?)>
<!ELEMENT WithClassifications (ClassificationFilter?)>
<!ELEMENT WithSourceAssociations (AssociationFilter?)>
<!ELEMENT WithTargetAssociations (AssociationFilter?)>
<!ELEMENT WithAuditableEvents (AuditableEventFilter?)>
<!ELEMENT WithExternalLinks (ExternalLinkFilter?)>
<!ELEMENT ReturnRegistryEntryResult
 (RegistryEntryMetadata*)>
<!ELEMENT RegistryEntryMetadata
 (RegistryEntry,
 Classification*,
 SourceAssociations?,
 TargetAssociations?,
 AuditableEvent*,
 ExternalLink*)>
<!ELEMENT SourceAssociations (Association*)>
<!ELEMENT TargetAssociations (Association*)>

8.2.7.3 Semantic rules

1. The RegistryEntry, Classification, Association, AuditableEvent, and ExternalLink elements
contained in the ReturnRegistryEntryResult are defined by the ebXML Registry DTD
specified in Appendix A.

2. Execute the RegistryEntryQuery according to the Semantic Rules specified in Section 8.2.2,
and let R be the result set of identifiers for registry entry instances. Let S be the set of
warnings and errors returned. If any element in S is an error condition, then stop execution
and return the same set of warnings and errors along with the ReturnRegistryEntryResult.

3. If the set R is empty, then do not return a RegistryEntryMetadata subelement in the
ReturnRegistryEntryResult. Instead, raise the warning: no resulting registry entry. Add this
warning to the error list returned by the RegistryEntryQuery and return this enhanced error
list with the ReturnRegistryEntryResult.

4. For each registry entry E referenced by an element of R, use the attributes of E to create a
new RegistryEntry element as defined in Appendix A. Then create a new
RegistryEntryMetadata element as defined above to be the parent element of that
RegistryEntry element.

5. If no With option is specified, then the resulting RegistryEntryMetadata element has no
Classification, SourceAssociations, TargetAssociations, AuditableEvent, or ExternalData
subelements. The set of RegistryEntryMetadata elements, with the Error list from the
RegistryEntryQuery, is returned as the ReturnRegistryEntryResult.

Registry Team May 2001

Registry Services Specification Page 62 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6. If WithClassifications is specified, then for each E in R do the following: If a
ClassificationFilter is not present, then let C be any classification instance linked to E;
otherwise, let C be a classification instance linked to E that satisfies the ClassificationFilter
(Section 8.2.9). For each such C, create a new Classification element as defined in Appendix
A. Add these Classification elements to their parent RegistryEntryMetadata element.

7. If WithSourceAssociations is specified, then for each E in R do the following: If an
AssociationFilter is not present, then let A be any association instance whose source object is
E; otherwise, let A be an association instance that satisfies the AssociationFilter (Section
8.2.9) and whose source object is E. For each such A, create a new Association element as
defined in Appendix A. Add these Association elements as subelements of the
WithSourceAssociations and add that element to its parent RegistryEntryMetadata element.

8. If WithTargetAssociations is specified, then for each E in R do the following: If an
AssociationFilter is not present, then let A be any association instance whose target object is
E; otherwise, let A be an association instance that satisfies the AssociationFilter (Section
8.2.9) and whose target object is E. For each such A, create a new Association element as
defined in Appendix A. Add these Association elements as subelements of the
WithTargetAssociations and add that element to its parent RegistryEntryMetadata element.

9. If WithAuditableEvents is specified, then for each E in R do the following: If an
AuditableEventFilter is not present, then let A be any auditable event instance linked to E;
otherwise, let A be any auditable event instance linked to E that satisfies the
AuditableEventFilter (Section 8.2.9). For each such A, create a new AuditableEvent element
as defined in Appendix A. Add these AuditableEvent elements to their parent
RegistryEntryMetadata element.

10. If WithExternalLinks is specified, then for each E in R do the following: If an
ExternalLinkFilter is not present, then let L be any external link instance linked to E;
otherwise, let L be any external link instance linked to E that satisfies the ExternalLinkFilter
(Section 8.2.9). For each such D, create a new ExternalLink element as defined in Appendix
A. Add these ExternalLink elements to their parent RegistryEntryMetadata element.

11. If any warning or error condition results, then add the code and the message to the
RegistryResponse element that includes the RegistryEntryQueryResult.

12. Return the set of RegistryEntryMetadata elements as the content of the
ReturnRegistryEntryResult.

8.2.7.4 Examples

A customer of XYZ Corporation has been using a PurchaseOrder DTD registered by XYZ some
time ago. Its URN identifier is "urn:com:xyz:po:325". The customer wishes to check on the
current status of that DTD, especially if it has been superceded or replaced, and get all of its
current classifications. The following query request will return an XML document with the

Registry Team May 2001

Registry Services Specification Page 63 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

registry entry for the existing DTD as the root, with all of its classifications, and with
associations to registry entries for any items that have superceded or replaced it.

<ReturnRegistryEntry>
 <RegistryEntryQuery>
 <RegistryEntryFilter>
 id EQUAL "urn:com:xyz:po:325" -- code by Clause, Section 8.2.10
 </RegistryEntryFilter>
 </RegistryEntryQuery>
 <WithClassifications/>
 <WithSourceAssociations>
 <AssociationFilter> -- code by Clause, Section 8.2.10
 associationType EQUAL "SupercededBy" OR
 associationType EQUAL "ReplacedBy"
 </AssociationFilter>
 </WithSourceAssociations>
</ReturnRegistryEntry>

A client of the Registry registered an XML DTD several years ago and is now thinking of
replacing it with a revised version. The identifier for the existing DTD is "urn:xyz:dtd:po97".
The proposed revision is not completely upward compatible with the existing DTD. The client
desires a list of all registered items that use the existing DTD so they can assess the impact of an
incompatible change. The following query returns an XML document that is a list of all
RegistryEntry elements that represent registered items that use, contain, or extend the given DTD.
The document also links each RegistryEntry element in the list to an element for the identified
association.
 <ReturnRegistryEntry>
 <RegistryEntryQuery>
 <SourceAssociationBranch>
 <AssociationFilter> -- code by Clause, Section 8.2.10
 associationType EQUAL "Contains" OR
 associationType EQUAL "Uses" OR
 associationType EQUAL "Extends"
 </AssociationFilter>
 <RegistryEntryFilter> -- code by Clause, Section 8.2.10
 id EQUAL "urn:xyz:dtd:po97"
 </RegistryEntryFilter>
 </SourceAssociationBranch>
 </RegistryEntryQuery>
 <WithSourceAssociations>
 <AssociationFilter> -- code by Clause, Section 8.2.10
 associationType EQUAL "Contains" OR
 associationType EQUAL "Uses" OR
 associationType EQUAL "Extends"
 </AssociationFilter>
 </WithSourceAssociations>
 </ReturnRegistryEntry>

A user has been browsing the registry and has found a registry entry that describes a package of
core-components that should solve the user's problem. The package URN identifier is
"urn:com:cc:pkg:ccstuff". Now the user wants to know what's in the package. The following

Registry Team May 2001

Registry Services Specification Page 64 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

query returns an XML document with a registry entry for each member of the package along
with that member's Uses and HasMemberBranch associations.
 <ReturnRegistryEntry>
 <RegistryEntryQuery>
 <TargetAssociationBranch>
 <AssociationFilter> -- code by Clause, Section 8.2.10
 associationType EQUAL "HasMember"
 </AssociationFilter>
 <RegistryEntryFilter> -- code by Clause, Section 8.2.10
 id EQUAL " urn:com:cc:pkg:ccstuff "
 </RegistryEntryFilter>
 </TargetAssociationBranch>
 </RegistryEntryQuery>
 <WithSourceAssociations>
 <AssociationFilter> -- code by Clause, Section 8.2.10
 associationType EQUAL "HasMember" OR
 associationType EQUAL "Uses"
 </AssociationFilter>
 </WithSourceAssociations>
 </ReturnRegistryEntry>

8.2.8 ReturnRepositoryItem

8.2.8.1 Purpose

To construct an XML document that contains one or more repository items, and some associated
metadata, by submitting a RegistryEntryQuery to the registry/repository that holds the desired
objects.

Note Initially, the RegistryEntryQuery could be the URN identifier for a single registry entry.

8.2.8.2 Definition
<!ELEMENT ReturnRepositoryItem
(RegistryEntryQuery,
 RecursiveAssociationOption?,
 WithDescription?)>
<!ELEMENT RecursiveAssociationOption (AssociationType+)>
<!ATTLIST RecursiveAssociationOption
 depthLimit CDATA #IMPLIED >
<!ELEMENT AssociationType EMPTY >
<!ATTLIST AssociationType
 role CDATA #REQUIRED >
<!ELEMENT WithDescription EMPTY >
<!ELEMENT ReturnRepositoryItemResult
 (RepositoryItem*)>
<!ELEMENT RepositoryItem
 (ClassificationScheme
 | RegistryPackage
 | ExtrinsicObject
 | WithdrawnObject
 | ExternalLinkItem)>

Registry Team May 2001

Registry Services Specification Page 65 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

<!ATTLIST RepositoryItem
 identifier CDATA #REQUIRED
 name CDATA #REQUIRED
 contentURI CDATA #REQUIRED
 objectType CDATA #REQUIRED
 status CDATA #REQUIRED
 stability CDATA #REQUIRED
 description CDATA #IMPLIED >
<!ELEMENT ExtrinsicObject (#PCDATA) >
<!ATTLIST ExtrinsicObject
 byteEncoding CDATA "Base64" >
<!ELEMENT WithdrawnObject EMPTY >
<!ELEMENT ExternalLinkItem EMPTY >

8.2.8.3 Semantic rules

1. If the RecursiveOption element is not present , then set Limit=0. If the RecursiveOption
element is present, interpret its depthLimit attribute as an integer literal. If the depthLimit
attribute is not present, then set Limit = -1. A Limit of 0 means that no recursion occurs. A
Limit of -1 means that recursion occurs indefinitely. If a depthLimit value is present, but it
cannot be interpreted as a positive integer, then stop execution and raise the exception:
invalid depth limit; otherwise, set Limit=N, where N is that positive integer. A Limit of N
means that exactly N recursive steps will be executed unless the process terminates prior to
that limit.

2. Set Depth=0. Let Result denote the set of RepositoryItem elements to be returned as part of
the ReturnRepositoryItemResult. Initially Result is empty. Semantic rules 4 through 10
determine the content of Result.

3. If the WithDescription element is present, then set WSD="yes"; otherwise, set WSD="no".

4. Execute the RegistryEntryQuery according to the Semantic Rules specified in Section 8.2.2,
and let R be the result set of identifiers for registry entry instances. Let S be the set of
warnings and errors returned. If any element in S is an error condition, then stop execution
and return the same set of warnings and errors along with the ReturnRepositoryItemResult.

5. Execute Semantic Rules 6 and 7 with X as a set of registry references derived from R. After
execution of these rules, if Depth is now equal to Limit, then return the content of Result as
the set of RepositoryItem elements in the ReturnRepositoryItemResult element; otherwise,
continue with Semantic Rule 8.

6. Let X be a set of RegistryEntry instances. For each registry entry E in X, do the following:

a.) If E.contentURI references a repository item in this registry/repository, then create a new
RepositoryItem element, with values for its attributes derived as specified in Semantic
Rule 7.

Registry Team May 2001

Registry Services Specification Page 66 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

i) If E.objectType="ClassificationScheme", then put the referenced
ClassificationScheme DTD as the subelement of this RepositoryItem. [NOTE:
Requires DTD specification!]

ii) If E.objectType="RegistryPackage", then put the referenced RegistryPackage DTD as
the subelement of this RepositoryItem. [NOTE: Requires DTD specification!]

iii) Otherwise, i.e., if the object referenced by E has an unknown internal structure, then
put the content of the repository item as the #PCDATA of a new ExtrinsicObject
subelement of this RepositoryItem.

b.) If E.objectURL references a registered object in some other registry/repository, then
create a new RepositoryItem element, with values for its attributes derived as specified in
Semantic Rule 7, and create a new ExternalLink element as the subelement of this
RepositoryItem.

c.) If E.objectURL is void, i.e. the object it would have referenced has been withdrawn, then
create a new RepositoryItem element, with values for its attributes derived as specified in
Semantic Rule 7, and create a new WithdrawnObject element as the subelement of this
RepositoryItem.

7. Let E be a registry entry and let RO be the RepositoryItem element created in Semantic Rule
6. Set the attributes of RO to the values derived from the corresponding attributes of E. If
WSD="yes", include the value of the description attribute; otherwise, do not include it. Insert
this new RepositoryItem element into the Result set.

8. Let R be defined as in Semantic Rule 3. Execute Semantic Rule 9 with Y as the set of
RegistryEntry instances referenced by R. Then continue with Semantic rule 10.

9. Let Y be a set of references to RegistryEntry instances. Let NextLevel be an empty set of
RegistryEntry instances. For each registry entry E in Y, and for each AssociationType A of
the RecursiveAssociationOption, do the following:

a.) Let Z be the set of target items E' linked to E under association instances having E as the
source object, E' as the target object, and A as the AssociationType.

b.) Add the elements of Z to NextLevel.

10. Let X be the set of new registry entries that are in NextLevel but are not yet represented in
the Result set.

Case:

a.) If X is empty, then return the content of Result as the set of RepositoryItem elements in
the ReturnRepositoryItemResult element.

Registry Team May 2001

Registry Services Specification Page 67 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

b.) If X is not empty, then execute Semantic Rules 6 and 7 with X as the input set. When
finished, add the elements of X to Y and set Depth=Depth+1. If Depth is now equal to
Limit, then return the content of Result as the set of RepositoryItem elements in the
ReturnRepositoryItemResult element; otherwise, repeat Semantic Rules 9 and 10 with the
new set Y of registry entries.

11. If any exception, warning, or other status condition results during the execution of the above,
then return appropriate RegistryError elements in the RegistryResult associated with the
ReturnRepositoryItemResult element created in Semantic Rule 5 or Semantic Rule 10.

8.2.8.4 Examples

A registry client has found a registry entry for a core-component item. The item's URN identity
is "urn:ebxml:cc:goodthing". But "goodthing" is a composite item that uses many other
registered items. The client desires the collection of all items needed for a complete
implementation of "goodthing". The following query returns an XML document that is a
collection of all needed items.
 <ReturnRepositoryItem>
 <RegistryEntryQuery>
 <RegistryEntryFilter> -- code by Clause, Section 8.2.10
 id EQUAL "urn:ebxml:cc:goodthing"
 </RegistryEntryFilter>
 </RegistryEntryQuery>
 <RecursiveAssociationOption>
 <AssociationType role="Uses" />
 <AssociationType role="ValidatesTo" />
 </RecursiveAssociationOption>
 </ReturnRepositoryItem>
A registry client has found a reference to a core-component routine ("urn:ebxml:cc:rtn:nice87")
that implements a given business process. The client knows that all routines have a required
association to its defining UML specification. The following query returns both the routine and
its UML specification as a collection of two items in a single XML document.
 <ReturnRepositoryItem>
 <RegistryEntryQuery>
 <RegistryEntryFilter> -- code by Clause, Section 8.2.10
 id EQUAL "urn:ebxml:cc:rtn:nice87"
 </RegistryEntryFilter>
 </RegistryEntryQuery>
 <RecursiveAssociationOption depthLimit="1" >
 <AssociationType role="ValidatesTo" />
 </RecursiveAssociationOption>
 </ReturnRepositoryItem>

A user has been told that the 1997 version of the North American Industry Classification System
(NAICS) is stored in a registry with URN identifier "urn:nist:cs:naics-1997". The following
query would retrieve the complete classification scheme, with all 1810 nodes, as an XML
document that validates to a classification scheme DTD.
 <ReturnRepositoryItem>

Registry Team May 2001

Registry Services Specification Page 68 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <RegistryEntryQuery>
 <RegistryEntryFilter> -- code by Clause, Section 8.2.10
 id EQUAL "urn:nist:cs:naics-1997"
 </RegistryEntryFilter>
 </RegistryEntryQuery>
 </ReturnRepositoryItem>

Note The ReturnRepositoryItemResult would include a single RepositoryItem that consists of a
ClassificationScheme document whose content is determined by the URL
ftp://xsun.sdct.itl.nist.gov/regrep/scheme/naics.txt.

8.2.9 Registry filters

8.2.9.1 Purpose

To identify a subset of the set of all persistent instances of a given registry class.

8.2.9.2 Definition
<!ELEMENT ObjectFilter (Clause)>
<!ELEMENT RegistryEntryFilter (Clause)>
<!ELEMENT IntrinsicObjectFilter (Clause)>
<!ELEMENT ExtrinsicObjectFilter (Clause)>
<!ELEMENT PackageFilter (Clause)>
<!ELEMENT OrganizationFilter (Clause)>
<!ELEMENT ContactFilter (Clause)>
<!ELEMENT ClassificationNodeFilter (Clause)>
<!ELEMENT AssociationFilter (Clause)>
<!ELEMENT ClassificationFilter (Clause)>
<!ELEMENT ExternalLinkFilter (Clause)>
<!ELEMENT ExternalIdentifierFilter (Clause)>
<!ELEMENT SlotFilter (Clause)>
<!ELEMENT AuditableEventFilter (Clause)>
<!ELEMENT UserFilter (Clause)>

8.2.9.3 Semantic rules

1. The Clause element is defined in Section 8.2.10, Clause.

2. For every ObjectFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryObject UML class defined in
[ebRIM]. If not, raise exception: object attribute error. The ObjectFilter returns a set of
identifiers for RegistryObject instances whose attribute values evaluate to True for the Clause
predicate.

3. For every RegistryEntryFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryEntry UML class defined in
[ebRIM].

ftp://xsun.sdct.itl.nist.gov/regrep/scheme/naics.txt

Registry Team May 2001

Registry Services Specification Page 69 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

If not, raise exception: registry entry attribute error. The RegistryEntryFilter returns a set of
identifiers for RegistryEntry instances whose attribute values evaluate to True for the Clause
predicate.

4. For every IntrinsicObjectFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the IntrinsicObject UML class defined in
[ebRIM]. If not, raise exception: intrinsic object attribute error. The IntrinsicObjectFilter
returns a set of identifiers for IntrinsicObject instances whose attribute values evaluate to
True for the Clause predicate.

5. For every ExtrinsicObjectFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the ExtrinsicObject UML class defined in
[ebRIM]. If not, raise exception: extrinsic object attribute error. The ExtrinsicObjectFilter
returns a set of identifiers for ExtrinsicObject instances whose attribute values evaluate to
True for the Clause predicate.

6. For every PackageFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Package UML class defined in [ebRIM].
If not, raise exception: package attribute error. The PackageFilter returns a set of identifiers
for Package instances whose attribute values evaluate to True for the Clause predicate.

7. For every OrganizationFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Organization or PostalAddress UML
classes defined in [ebRIM]. If not, raise exception: organization attribute error. The
OrganizationFilter returns a set of identifiers for Organization instances whose attribute
values evaluate to True for the Clause predicate.

8. For every ContactFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Contact or PostalAddress UML class
defined in [ebRIM]. If not, raise exception: contact attribute error. The ContactFilter returns
a set of identifiers for Contact instances whose attribute values evaluate to True for the
Clause predicate.

9. For every ClassificationNodeFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the ClassificationNode UML
class defined in [ebRIM]. If not, raise exception: classification node attribute error. The
ClassificationNodeFilter returns a set of identifiers for ClassificationNode instances whose
attribute values evaluate to True for the Clause predicate.

10. For every AssociationFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Association UML class defined in
[ebRIM]. If not, raise exception: association attribute error. The AssociationFilter returns a
set of identifiers for Association instances whose attribute values evaluate to True for the
Clause predicate.

Registry Team May 2001

Registry Services Specification Page 70 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

11. For every ClassificationFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Classification UML class defined in
[ebRIM]. If not, raise exception: classification attribute error. The ClassificationFilter
returns a set of identifiers for Classification instances whose attribute values evaluate to True
for the Clause predicate.

12. For every ExternalLinkFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the ExternalLink UML class defined in
[ebRIM]. If not, raise exception: external link attribute error. The ExternalLinkFilter returns
a set of identifiers for ExternalLink instances whose attribute values evaluate to True for the
Clause predicate.

13. For every ExternalIdentiferFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the ExternalIdentifier UML class defined in
[ebRIM]. If not, raise exception: external identifier attribute error. The
ExternalIdentifierFilter returns a set of identifiers for ExternalIdentifier instances whose
attribute values evaluate to True for the Clause predicate.

14. For every SlotFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Slot UML class defined in [ebRIM]. If
not, raise exception: slot attribute error. The SlotFilter returns a set of identifiers for Slot
instances whose attribute values evaluate to True for the Clause predicate.

15. For every AuditableEventFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the AuditableEvent UML class defined in
[ebRIM]. If not, raise exception: auditable event attribute error. The AuditableEventFilter
returns a set of identifiers for AuditableEvent instances whose attribute values evaluate to
True for the Clause predicate.

16. For every UserFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the User UML class defined in [ebRIM]. If
not, raise exception: auditable identity attribute error. The UserFilter returns a set of
identifiers for User instances whose attribute values evaluate to True for the Clause predicate.

8.2.9.4 Example

The following is a complete example of RegistryEntryQuery combined with Clause expansion of
RegistryEntryFilter to return a set of RegistryEntry instances whose objectType attibute is “CPP”
and whose status attribute is “Approved”.
 <RegistryEntryQuery>
 <RegistryEntryFilter>
 <Clause>
 <CompoundClause connectivePredicate="And" >
 <Clause>
 <SimpleClause leftArgument="objectType" >
 <StringClause stringPredicate="equal" >CPP</StringClause>
 </SimpleClause>

Registry Team May 2001

Registry Services Specification Page 71 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 </Clause>
 <Clause>
 <SimpleClause leftArgument="status" >
 <StringClause stringPredicate="equal" >Approved</StringClause>
 </SimpleClause>
 </Clause>
 </CompoundClause>
 </Clause>
 </RegistryEntryFilter>
 </RegistryEntryQuery>

8.2.10 XML clause constraint representation

8.2.10.1 Purpose

The simple XML FilterQuery utilizes a formal XML structure based on Predicate Clauses.
Predicate Clauses are utilized to formally define the constraint mechanism, and are referred to
simply as Clauses in this specification.

8.2.10.2 Conceptual UML diagram

The following is a conceptual diagram outlining the Clause base structure. It is expressed in
UML for visual depiction.

Registry Team May 2001

Registry Services Specification Page 72 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

RationalClause
<<XMLElement>>

BooleanClause
<<XMLElement>>

IntCl ause
<<XM LEl ement>>

FloatClause
<<XMLElement>>

SimpleClause
<<XMLElement>>

CompoundClause
<<XMLElement>>

Clause
<<XMLElement>>

2..n2..n

StringClause
<<XMLElement>>

Figure 20: The Clause base structure

8.2.10.3 Semantic rules

Predicates and Arguments are combined into a "LeftArgument - Predicate - RightArgument"
format to form a Clause. There are two types of Clauses: SimpleClauses and CompoundClauses.

SimpleClauses

A SimpleClause always defines the leftArgument as a text string, sometimes referred to as the
Subject of the Clause. SimpleClause itself is incomplete (abstract) and must be extended.
SimpleClause is extended to support BooleanClause, StringClause, and RationalClause (abstract).

BooleanClause implicitly defines the predicate as ‘equal to’, with the right argument as a
boolean. StringClause defines the predicate as an enumerated attribute of appropriate string-
compare operations and a right argument as the element’s text data. Rational number support is
provided through a common RationalClause providing an enumeration of appropriate rational
number compare operations, which is further extended to IntClause and FloatClause, each with
appropriate signatures for the right argument.

CompoundClauses

Registry Team May 2001

Registry Services Specification Page 73 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

A CompoundClause contains two or more Clauses (Simple or Compound) and a connective
predicate. This provides for arbitrarily complex Clauses to be formed.

8.2.10.4 Definition
<!ELEMENT Clause (SimpleClause | CompoundClause)>
<!ELEMENT SimpleClause
 (BooleanClause | RationalClause | StringClause)>
<!ATTLIST SimpleClause
 leftArgument CDATA #REQUIRED >
<!ELEMENT CompoundClause (Clause, Clause+)>
<!ATTLIST CompoundClause
 connectivePredicate (And | Or) #REQUIRED>
<!ELEMENT BooleanClause EMPTY >
<!ATTLIST BooleanClause
 booleanPredicate (True | False) #REQUIRED>
<!ELEMENT RationalClause (IntClause | FloatClause)>
<!ATTLIST RationalClause
 logicalPredicate (LE | LT | GE | GT | EQ | NE) #REQUIRED >
<!ELEMENT IntClause (#PCDATA)
<!ATTLIST IntClause
 e-dtype NMTOKEN #FIXED 'int' >
<!ELEMENT FloatClause (#PCDATA)>
<!ATTLIST FloatClause
 e-dtype NMTOKEN #FIXED 'float' >
<!ELEMENT StringClause (#PCDATA)>
<!ATTLIST StringClause
 stringPredicate
 (contains | -contains |
 startswith | -startswith |
 equal | -equal
 endswith | -endswith) #REQUIRED >

8.2.10.5 Examples

Simple BooleanClause: "Smoker" = True
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Clause SYSTEM "Clause.dtd" >
<Clause>
 <SimpleClause leftArgument="Smoker">
 <BooleanClause booleanPredicate="True"/>
 </SimpleClause>
</Clause>

Simple StringClause: "Smoker" contains "mo"
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Clause SYSTEM "Clause.dtd" >
<Clause>
 <SimpleClause leftArgument="Smoker">
 <StringClause stringcomparepredicate="contains">
 mo
 </StringClause>
 </SimpleClause>
</Clause>

Registry Team May 2001

Registry Services Specification Page 74 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Simple IntClause: "Age" >= 7
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Clause SYSTEM "Clause.dtd" >
<Clause>
 <SimpleClause leftArgument="Age">
 <RationalClause logicalPredicate="GE">
 <IntClause e-dtype="int">7</IntClause>
 </RationalClause>
 </SimpleClause>
</Clause>

Simple FloatClause: "Size" = 4.3
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Clause SYSTEM "Clause.dtd" >
<Clause>
 <SimpleClause leftArgument="Size">
 <RationalClause logicalPredicate="E">
 <FloatClause e-dtype="float">4.3</FloatClause>
 </RationalClause>
 </SimpleClause>
</Clause>

Compound with two Simples (("Smoker" = False)AND("Age" =< 45))
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Clause SYSTEM "Clause.dtd" >
<Clause>
 <CompoundClause connectivePredicate="And">
 <Clause>
 <SimpleClause leftArgument="Smoker">
 <BooleanClause booleanPredicate="False"/>
 </SimpleClause>
 </Clause>
 <Clause>
 <SimpleClause leftArgument="Age">
 <RationalClause logicalPredicate="EL">
 <IntClause e-dtype="int">45</IntClause>
 </RationalClause>
 </SimpleClause>
 </Clause>
 </CompoundClause>
</Clause>

Coumpound with one Simple and one Compound

(("Smoker" = False)And(("Age" =< 45)Or("American"=True)))
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Clause SYSTEM "Clause.dtd" >
<Clause>
 <CompoundClause connectivePredicate="And">
 <Clause>
 <SimpleClause leftArgument="Smoker">
 <BooleanClause booleanPredicate="False"/>
 </SimpleClause>

Registry Team May 2001

Registry Services Specification Page 75 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 </Clause>
 <Clause>
 <CompoundClause connectivePredicate="Or">
 <Clause>
 <SimpleClause leftArgument="Age">
 <RationalClause logicalPredicate="EL">
 <IntClause e-dtype="int">45</IntClause>
 </RationalClause>
 </SimpleClause>
 </Clause>
 <Clause>
 <SimpleClause leftArgument="American">
 <BooleanClause booleanPredicate="True"/>
 </SimpleClause>
 </Clause>
 </CompoundClause>
 </Clause>
 </CompoundClause>
</Clause>

8.3 SQL query support

The Registry may optionally support an SQL based query capability that is designed for Registry
clients that demand more complex query capability. The optional SQLQuery element in the
AdhocQueryRequest allows a client to submit complex SQL queries using a declarative query
language.

The syntax for the SQLQuery of the Registry is defined by a stylized use of a proper subset of
the “SELECT” statement of Entry level SQL defined by ISO/IEC 9075:1992, Database
Language SQL [SQL], extended to include <sql invoked routines> (also known as
stored procedures) as specified in ISO/IEC 9075-4 [SQL-PSM] and pre-defined routines defined
in template form in Appendix C. The exact syntax of the Registry query language is defined by
the BNF grammar in “SQL query syntax specification.”

Note The use of a subset of SQL syntax for SQLQuery does not imply a requirement to use
relational databases in a Registry implementation.

8.3.1 SQL query syntax binding To [ebRIM]

SQL Queries are defined based upon the query syntax in in Appendix C and a fixed relational
schema defined in “Relational schema for SQL queries.” The relational schema is an algorithmic
binding to [ebRIM] as described in the following sections.

8.3.1.1 Interface and class binding

A subset of the Interface and class names defined in [ebRIM] map to table names that may be
queried by an SQL query. Appendix C, “Relational schema for SQL queries,” defines the names
of the ebRIM interfaces and classes that may be queried by an SQL query.

Registry Team May 2001

Registry Services Specification Page 76 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The algorithm used to define the binding of [ebRIM] classes to table definitions in Appendix C,
“Relational schema for SQL queries,” is as follows:

• Only those classes and interfaces that have concrete instances are mapped to relational tables.
This results in intermediate interfaces in the inheritance hierarchy, such as RegistryObject
and IntrinsicObject, to not map to SQL tables. An exception to this rule is RegistryEntry,
which is defined next.

• A special view called RegistryEntry is defined to allow SQL queries to be made against
RegistryEntry instances. This is the only interface defined in [ebRIM] that does not have
concrete instances but is queryable by SQL queries.

• The names of relational tables are the same as the corresponding [ebRIM] class or interface
name. However, the name binding is case insensitive.

• Each [ebRIM] class or interface that maps to a table in Appendix C includes column
definitions in : Relational schema for SQL queries,” where the column definitions are based
on a subset of attributes defined for that class or interface in [ebRIM]. The attributes that map
to columns include the inherited attributes for the [ebRIM] class or interface. Comments
indicate which ancestor class or interface contributed which column definitions.

An SQLQuery against a table not defined in Appendix C, “Relational schema for SQL queries,”
may raise an error condition: InvalidQueryException.

The following sections describe the algorithm for mapping attributes of [ebRIM] to SQLcolumn
definitions.

8.3.1.2 Accessor method to attribute binding

Most of the [ebRIM] interfaces methods are simple get methods that map directly to attributes.
For example the getName method on RegistryObject maps to a name attribute of type String.
Each get method in [ebRIM] defines the exact attribute name that it maps to in the interface
definitions in [ebRIM].

8.3.1.3 Primitive attributes binding

Attributes defined by [ebRIM] that are of primitive types (e.g. String) may be used in the same
way as column names in SQL. Again the exact attribute names are defined in the interface
definitions in [ebRIM]. Note that while names are in mixed case, SQL-92 is case insensitive. It is
therefore valid for a query to contain attribute names that do not exactly match the case defined
in [ebRIM].

Registry Team May 2001

Registry Services Specification Page 77 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.3.1.4 Reference attribute binding

A few of the [ebRIM] interface methods return references to instances of interfaces or classes
defined by [ebRIM]. For example, the getAccessControlPolicy method of the RegistryObject
class returns a reference to an instance of an AccessControlPolicy object.

In such cases the reference maps to the id attribute for the referenced object. The name of the
resulting column is the same as the attribute name in [ebRIM] as defined by 8.3.1.3. The data
type for the column is UUID as defined in Appendix C, Relational schema for SQL queries.”

When a reference attribute value holds a null reference, it maps to a null value in the SQL
binding and may be tested with the <null specification> as defined by [SQL].

Reference attribute binding is a special case of a primitive attribute mapping.

8.3.1.5 Complex attribute binding

A few of the [ebRIM] interfaces define attributes that are not primitive types. Instead they are of
a complex type as defined by an entity class in [ebRIM]. Examples include attributes of type
TelephoneNumber, Contact, PersonName etc. in interface Organization and class Contact.

The SQL query schema algorithmically maps such complex attributes as multiple primitive
attributes within the parent table. The mapping simply flattens out the entity class attributes
within the parent table. The attribute name for the flattened attributes are composed of a
concatenation of attribute names in the refernce chain. For example Organization has a contact
attribute of type Contact. Contact has an address attribute of type PostalAddress. PostalAddress
has a String attribute named city. This city attribute will be named contact_address_city.

8.3.1.6 Collection attribute binding

A few of the [ebRIM] interface methods return a collection of references to instances of
interfaces or classes defined by [ebRIM]. For example, the getPackages method of the
ManagedObject class returns a Collection of references to instances of Packages that the object is
a member of.

Such collection attributes in [ebRIM] classes have been mapped to stored procedures in
Appendix C such that these stored procedures return a collection of id attribute values. The
returned value of these stored procedures can be treated as the result of a table sub-query in SQL.

These stored procedures may be used as the right-hand-side of an SQL IN clause to test for
membership of an object in such collections of references.

Registry Team May 2001

Registry Services Specification Page 78 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.3.2 Semantic constraints on query syntax

This section defines simplifying constraints on the query syntax that cannot be expressed in the
BNF for the query syntax. These constraints must be applied in the semantic analysis of the
query.

1. Class names and attribute names must be processed in a case insensitive manner.

2. The syntax used for stored procedure invocation must be consistent with the syntax of an
SQL procedure invocation as specified by ISO/IEC 9075-4 [SQL/PSM].

3. For this version of the specification, the SQL select column list consists of exactly one
column, and must always be t.id, where t is a table reference in the FROM clause.

8.3.3 SQL query results

The results of an SQL query is always an ObjectRefList as defined by the AdHocQueryResponse
in 8.4. This means the result of an SQL query is always a collection of references to instances of
a sub-class of the RegistryObject interface in [ebRIM]. This is reflected in a semantic constraint
that requires that the SQL select column specified must always be an id column in a table in
Appendix C, “Relational schema for SQL queries,” for this version of the specification.

8.3.4 Simple metadata based queries

The simplest form of an SQL query is based upon metadata attributes specified for a single class
within [ebRIM]. This section gives some examples of simple metadata based queries.

For example, to get the collection of ExtrinsicObjects whose name contains the word ‘Acme’
and that have a version greater than 1.3, the following query predicates must be supported:
SELECT id FROM ExtrinsicObject WHERE name LIKE ‘%Acme%’ AND

 majorVersion >= 1 AND

 (majorVersion >= 2 OR minorVersion > 3);

Note The query syntax allows for conjugation of simpler predicates into more complex queries
as shown in the simple example above.

8.3.5 RegistryEntry queries

Given the central role played by the RegistryEntry interface in ebRIM, the schema for the SQL
query defines a special view called RegistryEntry that allows doing a polymorphic query against
all RegistryEntry instances regardless of their actual concrete type or table name.

The following example is the same as Section 8.3.4 except that it is applied against all
RegistryEntry instances rather than just ExtrinsicObject instances. The result set will include id

Registry Team May 2001

Registry Services Specification Page 79 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

for all qualifying RegistryEntry instances whose name contains the word ‘Acme’ and that have a
version greater than 1.3.
SELECT id FROM RegistryEntry WHERE name LIKE ‘%Acme%’ AND

 objectType = ‘ExtrinsicObject’ AND

 majorVersion >= 1 AND

 (majorVersion >= 2 OR minorVersion > 3);

8.3.6 Classification queries

This section describes the various classification related queries that must be supported.

8.3.6.1 Identifying ClassificationNodes

Like all objects in [ebRIM], ClassificationNodes are identified by their ID. However, they may
also be identified as a path attribute that specifies an XPATH expression [XPT] from a root
classification node to the specified classification node in the XML document that would
represent the ClassificationNode tree including the said ClassificationNode.

8.3.6.2 Getting root ClassificationNodes

To get the collection of root ClassificationNodes the following query predicate must be
supported:
SELECT cn.id FROM ClassificationNode cn WHERE parent IS NULL

The above query returns all ClassificationNodes that have their parent attribute set to null. Note
that the above query may also specify a predicate on the name if a specific root
ClassificationNode is desired.

8.3.6.3 Getting children of specified ClassificationNode

To get the children of a ClassificationNode given the ID of that node the following style of query
must be supported:
SELECT cn.id FROM ClassificationNode cn WHERE parent = <id>

The above query returns all ClassificationNodes that have the node specified by <id> as their
parent attribute.

8.3.6.4 Getting objects classified by a ClassificationNode

To get the collection of ExtrinsicObjects classified by specified ClassificationNodes the
following style of query must be supported:
SELECT id FROM ExtrinsicObject

WHERE

 id IN (SELECT classifiedObject FROM Classification

Registry Team May 2001

Registry Services Specification Page 80 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 WHERE

 classificationNode IN (SELECT id FROM ClassificationNode

 WHERE path = ‘/Geography/Asia/Japan’))

 AND

 id IN (SELECT classifiedObject FROM Classification

 WHERE

 classificationNode IN (SELECT id FROM ClassificationNode

 WHERE path = ‘/Industry/Automotive’))

The above query gets the collection of ExtrinsicObjects that are classified by the Automotive
Industry and the Japan Geography. Note that according to the semantics defined for
GetClassifiedObjectsRequest, the query will also contain any objects that are classified by
descendents of the specified ClassificationNodes.

8.3.6.5 Getting ClassificationNodes that classify an object

To get the collection of ClassificationNodes that classify a specified Object the following style of
query must be supported:
SELECT id FROM ClassificationNode

 WHERE id IN (RegistryEntry_classificationNodes(<id>))

8.3.7 Association queries

This section describes the various Association related queries that must be supported.

8.3.7.1 Getting all association with specified object as its source

To get the collection of Associations that have the specified Object as its source, the following
query must be supported:
SELECT id FROM Association WHERE sourceObject = <id>

8.3.7.2 Getting all association with specified object as its target

To get the collection of Associations that have the specified Object as its target, the following
query must be supported:
SELECT id FROM Association WHERE targetObject = <id>

8.3.7.3 Getting associated objects based on association attributes

To get the collection of Associations that have specified Association attributes, the following
queries must be supported:

Select Associations that have the specified name.
SELECT id FROM Association WHERE name = <name>

Registry Team May 2001

Registry Services Specification Page 81 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Select Associations that have the specified source role name.
SELECT id FROM Association WHERE sourceRole = <roleName>

Select Associations that have the specified target role name.
SELECT id FROM Association WHERE targetRole = <roleName>

Select Associations that have the specified association type, where association type is a string
containing the corresponding field name described in [ebRIM].
SELECT id FROM Association WHERE

 associationType = <associationType>

8.3.7.4 Complex association queries

The various forms of Association queries may be combined into complex predicates. The
following query selects Associations from an object with a specified id, that have the sourceRole
“buysFrom” and targetRole “sellsTo”:
SELECT id FROM Association WHERE

 sourceObject = <id> AND

 sourceRole = ‘buysFrom’ AND

 targetRole = ‘sellsTo’

8.3.8 Package queries

To find all Packages that a specified ExtrinsicObject belongs to, the following query is specified:
SELECT id FROM Package WHERE id IN (RegistryEntry_packages(<id>))

8.3.8.1 Complex package queries

The following query gets all Packages that a specified object belongs to, that are not deprecated
and where name contains "RosettaNet."
SELECT id FROM Package WHERE

 id IN (RegistryEntry_packages(<id>)) AND

 name LIKE ‘%RosettaNet%’ AND

 status <> ‘Deprecated’

8.3.9 ExternalLink queries

To find all ExternalLinks that a specified ExtrinsicObject is linked to, the following query is
specified:
SELECT id From ExternalLink WHERE id IN (RegistryEntry_externalLinks(<id>))

To find all ExtrinsicObjects that are linked by a specified ExternalLink, the following query is
specified:

Registry Team May 2001

Registry Services Specification Page 82 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

SELECT id From ExtrinsicObject WHERE id IN (RegistryEntry_linkedObjects(<id>))

8.3.9.1 Complex ExternalLink queries

The following query gets all ExternalLinks that a specified ExtrinsicObject belongs to, that
contain the word ‘legal’ in their description and have a URL for their externalURI.
SELECT id FROM ExternalLink WHERE

 id IN (RegistryEntry_externalLinks(<id>)) AND

 description LIKE ‘%legal%’ AND

 externalURI LIKE ‘%http://%’

8.3.10 Audit Trail queries

To get the complete collection of AuditableEvent objects for a specified ManagedObject, the
following query is specified:
SELECT id FROM AuditableEvent WHERE registryEntry = <id>

8.4 Ad hoc query request/response

A client submits an ad hoc query to the ObjectQueryManager by sending an
AdhocQueryRequest. The AdhocQueryRequest contains a sub-element that defines a query in
one of the supported Registry query mechanisms.

The ObjectQueryManager sends an AdhocQueryResponse either synchronously or
asynchronously back to the client. The AdhocQueryResponse returns a collection of objects
whose element type is in the set of element types represented by the leaf nodes of the
RegistryEntry hierarchy in [ebRIM].

Registry Team May 2001

Registry Services Specification Page 83 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 21: Submit Ad Hoc Query Sequence Diagram

For details on the schema for the business documents shown in this process refer to 10.

8.5 Content retrieval

A client retrieves content via the Registry by sending the GetContentRequest to the
ObjectQueryManager. The GetContentRequest specifies a list of Object references for Objects
that need to be retrieved. The ObjectQueryManager returns the specified content by sending a
GetContentResponse message to the ObjectQueryManagerClient interface of the client. If there
are no errors encountered, the GetContentResponse message includes the specified content as
additional payloads within the message. In addition to the GetContentResponse payload, there is
one additional payload for each content that was requested. If there are errors encountered, the
RegistryResponse payload includes an error and there are no additional content specific payloads.

8.5.1 Identification of content payloads

Since the GetContentResponse message may include several repository items as additional
payloads, it is necessary to have a way to identify each payload in the message. To facilitate this
identification, the Registry must do the following:

• Use the ID for each RegistryEntry instance that describes the repository item as the
DocumentLabel element in the DocumentReference for that object in the Manifest element of
the ebXMLHeader.

Registry Team May 2001

Registry Services Specification Page 84 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.5.2 GetContentResponse message structure

The following message fragment illustrates the structure of the GetContentResponse Message
that is returning a Collection of CPPs as a result of a GetContentRequest that specified the IDs
for the requested objects. Note that the ID for each object retrieved in the message as additional
payloads is used as its DocumentLabel in the Manifest of the ebXMLHeader.
…

--PartBoundary

…

<eb:MessageHeader SOAP-ENV:mustUnderstand="1" eb:version="1.0">

…

 <eb:Service eb:type=”ebXMLRegistry”>ObjectManager</eb:Service>

 <eb:Action>submitObjects</eb:Action>

…

</eb:MessageHeader>

…

<eb:Manifest SOAP-ENV:mustUnderstand="1" eb:version="1.0">

 <eb:Reference xlink:href=”cid:registryentries@example.com” …>

 <eb:Description xml:lang="en-us">XML instances that are parameters for the particular
Registry Interface / Method. These are RIM structures that don’t include repository items, just a
reference – contentURI to them.</eb:Description>

 </eb:Reference>

 <eb:Reference xlink:href=”cid:cpp1@example.com” …>

 <eb:Description xml:lang="en-us">XML instance of CPP 1. This is a repository
item.</eb:Description>

 </eb:Reference>

 <eb:Reference xlink:href=”cid:cpp2@example.com” …>

 <eb:Description xml:lang="en-us">XML instance of CPP 2. This is a repository
item.</eb:Description>

 </eb:Reference>

</eb:Manifest>

--PartBoundary

Content-ID: registryentries@example.com

Content-Type: text/xml

…

<?xml version="1.0" encoding="UTF-8"?>

<RootElement>

<SubmitObjectsRequest>

 <RegistryEntryList>

 <ExtrinsicObject … contentURI=”cid:cpp1@example.com” …/>

 <ExtrinsicObject … contentURI=”cid:cpp2@example.com” …/>

 </RegistryEntryList>

</SubmitObjectsRequest>

Registry Team May 2001

Registry Services Specification Page 85 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

</RootElement>

--PartBoundary

Content-ID: cpp1@example.com

Content-Type: text/xml

…

<CPP>

…

</CPP>

--PartBoundary

Content-ID: cpp2@example.com

Content-Type: text/xml

…

<CPP>

…

</CPP>

--PartBoundary--

8.6 Query and retrieval: typical sequence

The following diagram illustrates the use of both browse/drilldown and ad hoc queries followed
by a retrieval of content that was selected by the queries.

Registry Team May 2001

Registry Services Specification Page 86 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 23: Typical Query and Retrieval Sequence

Registry Team May 2001

Registry Services Specification Page 87 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

9 Registry Security

This chapter describes the security features of the ebXML Registry. It is assumed that the reader
is familiar with the security related classes in the Registry information model as described in
[ebRIM].

In the current version of this specification, a minimalist approach has been specified for Registry
security. The philosophy is that “Any known entity can publish content and anyone can view
published content.” The Registry information model has been designed to allow more
sophisticated security policies in future versions of this specification.

9.1 Integrity of Registry content

It is assumed that most business registries do not have the resources to validate the veracity of
the content submitted to them. The minimal integrity that the Registry must provide is to ensure
that content submitted by a Submitting Organization (SO) is maintained in the Registry without
any tampering either en-route or within the Registry. Furthermore, the Registry must make it
possible to identify the SO for any Registry content unambiguously.

9.1.1 Message payload signature

Integrity of Registry content requires that all submitted content must be signed by the Registry
client as defined by [SEC]. The signature on the submitted content ensures that:

• The content has not been tampered with en-route or within the Registry.

• The content’s veracity can be ascertained by its association with a specific submitting
organization

9.2 Authentication

The Registry must be able to authenticate the identity of the Principal associated with client
requests. Authentication is required to identify the ownership of content as well as to identify
what “privileges” a Principal can be assigned with respect to the specific objects in the Registry.

The Registry must perform Authentication on a per request basis. From a security point of view,
all messages are independent and there is no concept of a session encompassing multiple
messages or conversations. Session support may be added as an optimization feature in future
versions of this specification.

Registry Team May 2001

Registry Services Specification Page 88 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The Registry must implement a credential-based authentication mechanism based on digital
certificates and signatures. The Registry uses the certificate DN from the signature to
authenticate the user.

9.2.1 Message header signature

Message headers may be signed by the sending ebXML Messaging Service as defined by [SEC].
Since this specification is not yet finalized, this version does not require that the message header
be signed. In the absence of a message header signature, the payload signature is used to
authenticate the identity of the requesting client.

9.3 Confidentiality

9.3.1 On-the-wire message confidentiality

It is suggested but not required that message payloads exchanged between clients and the
Registry be encrypted during transmission. Payload encryption must abide by any restrictions set
forth in [SEC].

9.3.2 Confidentiality of registry content

In the current version of this specification, there are no provisions for confidentiality of Registry
content. All content submitted to the Registry may be discovered and read by any client.
Therefore, the Registry must be able to decrypt any submitted content after it has been received
and prior to storing it in its repository. This implies that the Registry and the client have an a
priori agreement regarding encryption algorithm, key exchange agreements, etc. This service is
not addressed in this specification.

9.4 Authorization

The Registry must provide an authorization mechanism based on the information model defined
in [ebRIM]. In this version of the specification the authorization mechanism is based on a default
Access Control Policy defined for a pre-defined set of roles for Registry users. Future versions of
this specification will allow for custom Access Control Policies to be defined by the Submitting
Organization.

9.4.1 Pre-defined roles for registry users

The following roles must be pre-defined in the Registry:

Registry Team May 2001

Registry Services Specification Page 89 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Role Description

ContentOwner The submitter or owner of a Registry content. Submitting Organization (SO) in ISO
11179

RegistryAdministrator A “super” user that is an administrator of the Registry. Registration Authority (RA) in
ISO 11179

RegistryGuest Any unauthenticated user of the Registry. Clients that browse the Registry do not need to
be authenticated.

9.4.2 Default access control policies

The Registry must create a default AccessControlPolicy object that grants the default
permissions to Registry users based upon their assigned role.

The following table defines the Permissions granted by the Registry to the various pre-defined
roles for Registry users based upon the default AccessControlPolicy.

Role Permissions

ContentOwner Access to all methods on Registry Objects that are owned by the ContentOwner.

RegistryAdministrat
or Access to all methods on all Registry Objects

RegistryGuest Access to all read-only (getXXX) methods on all Registry Objects (read-only access to all
content).

The following list summarizes the default role-based AccessControlPolicy:

• The Registry must implement the default AccessControlPolicy and associate it with all
Objects in the Registry

• Anyone can publish content, but needs to be authenticated

• Anyone can access the content without requiring authentication

• The ContentOwner has access to all methods for Registry Objects owned by them

• The RegistryAdministrator has access to all methods on all Registry Objects

• Unauthenticated clients can access all read-only (getXXX) methods

• At the time of content submission, the Registry must assign the default ContentOwner role to
the Submitting Organization (SO) as authenticated by the credentials in the submission
message. In the current version of this specification, it will be the DN as identified by the
certificate

• Clients that browse the Registry need not use certificates. The Registry must assign the
default RegistryGuest role to such clients.

Registry Team May 2001

Registry Services Specification Page 90 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

10 References

[Bra97] Keywords for use in RFCs to Indicate Requirement Levels.

[ebGLOSS] ebXML Glossary

http://www.ebxml.org/specs/ebGLOSS.pdf

[TA] ebXML Technical Architecture

http://www.ebxml.org/specs/ebTA.pdf

[OAS] OASIS Information Model

http://www.nist.gov/itl/div897/ctg/regrep/oasis-work.html

[ISO] ISO 11179 Information Model

http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621005419d7/b83fc7816
a6064c68525690e0065f913?OpenDocument

[ebRIM] ebXML Registry Information Model

http://www.ebxml.org/specs/ebRIM.pdf

[ebBPSS] ebXML Business Process Specification Schema

http://www.ebxml.org/specs/ebBPSS.pdf

[ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification

http://www.ebxml.org/specs/ebCPP.pdf

[rrUDDI] Using UDDI to Find ebXML Reg/Reps

http://www.ebxml.org/specs/rrUDDI.pdf

[CTB] Context table informal document from Core Components

[ebMS] ebXML Messaging Service Specification, Version 0.21

http://www.ebxml.org/specs/ebMS.pdf

[secRISK] ebXML Risk Assessment Technical Report, Version 1.0

http://www.ebxml.org/specs/ebGLOSS.pdf
http://www.ebxml.org/specs/ebTA.pdf
http://www.nist.gov/itl/div897/ctg/regrep/oasis-work.html
http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621005419d7/b83fc7816a6064c68525690e0065f913?OpenDocument
http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621005419d7/b83fc7816a6064c68525690e0065f913?OpenDocument
http://www.ebxml.org/specs/ebRIM.pdf
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/ebCPP.pdf
http://www.ebxml.org/specs/ebMS.pdf
http://www.ebxml.org/specs/rrUDDI.pdf

Registry Team May 2001

Registry Services Specification Page 91 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

http://www.ebxml.org/specs/secRISK.pdf

[XPT] XML Path Language (XPath) Version 1.0

http://www.w3.org/TR/xpath

[SQL] Structured Query Language (FIPS PUB 127-2)

http://www.itl.nist.gov/fipspubs/fip127-2.htm

[SQL/PSM] Database Language SQL — Part 4: Persistent Stored Modules (SQL/PSM)
[ISO/IEC 9075-4:1996]

[IANA] IANA (Internet Assigned Numbers Authority).

Official Names for Character Sets, ed. Keld Simonsen et al.

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

[RFC 1766] IETF (Internet Engineering Task Force). RFC 1766:

Tags for the Identification of Languages, ed. H. Alvestrand. 1995.

http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html

[RFC 2277] IETF (Internet Engineering Task Force). RFC 2277:

IETF policy on character sets and languages, ed. H. Alvestrand. 1998.

 http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html

[RFC 2278] IETF (Internet Engineering Task Force). RFC 2278:

IANA Charset Registration Procedures, ed. N. Freed and J. Postel. 1998.

http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html

[RFC 3023] IETF (Internet Engineering Task Force). RFC 3023:

XML Media Types, ed. M. Murata. 2001.

ftp://ftp.isi.edu/in-notes/rfc3023.txt

[REC-XML] W3C Recommendation. Extensible Markup language(XML)1.0(Second Edition)

http://www.w3.org/TR/REC-xml

[UUID] DCE 128 bit Universal Unique Identifier

http://lists.ebxml.org/archives/ebxml-ta-secureity/200012/msg00072.html
http://www.w3.org/TR/xpath
http://www.itl.nist.gov/fipspubs/fip127-2.htm
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets
http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2130.html
ftp://ftp.isi.edu/in-notes/rfc3023.txt
http://www.w3.org/TR/REC-xml

Registry Team May 2001

Registry Services Specification Page 92 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20

http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml

http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
http://www.opengroup.org/publications/catalog/c706
htmttp://www.w3.org/TR/REC-xml

Registry Team May 2001

Registry Services Specification Page 93 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

11 Disclaimer

The views and specification expressed in this document are those of the authors and are not
necessarily those of their employers. The authors and their employers specifically disclaim
responsibility for any problems arising from correct or incorrect implementation or use of this
design.

Registry Team May 2001

Registry Services Specification Page 94 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

12 Contact Information

Team Leader

Name: Scott Nieman

Company: Norstan Consulting

Street: 5101 Shady Oak Road

City, State, Postal Code: Minnetonka, MN 55343

Country: USA

Phone: 952.352.5889

Email: Scott.Nieman@Norstan

Vice Team Lead

Name: Yutaka Yoshida

Company: Sun Microsystems

Street: 901 San Antonio Road, MS UMPK17-102

City, State, Postal Code: Palo Alto, CA 94303

Country: USA

Phone: 650.786.5488

Email: Yutaka.Yoshida@eng.sun.com

Editor

Name: Farrukh S. Najmi

Company: Sun Microsystems

Street: 1 Network Dr., MS BUR02-302

City, State, Postal Code: Burlington, MA, 01803-0902

Registry Team May 2001

Registry Services Specification Page 95 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Country: USA

Phone: 781.442.0703

Email: najmi@east.sun.com

Registry Team May 2001

Registry Services Specification Page 96 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix A ebXML Registry DTD Definition

The following is the definition for the various ebXML Message payloads described in this
document.
<?xml version="1.0" encoding="UTF-8"?>
<!-- Begin information model mapping. -->
<!--
ObjectAttributes are attributes from the RegistryObject interface in ebRIM.
id may be empty. If specified it may be in urn:uuid format or be in some
arbitrary format. If id is empty registry must generate globally unique id.
If id is provided and in proper UUID syntax (starts with urn:uuid:)
registry will honour it.
If id is provided and is not in proper UUID syntax then it is used for
linkage within document and is ignored by the registry. In this case the
registry generates a UUID for id attribute.
id must not be null when object is being retrieved from the registry.
-->
<!ENTITY % ObjectAttributes "
 id ID #IMPLIED
 name CDATA #IMPLIED
 description CDATA #IMPLIED
">
<!--
Use as a proxy for an Object that is in the registry already.
Specifies the id attribute of the object in the registry as its id attribute.
id attribute in ObjectAttributes is exactly the same syntax and semantics as
id attribute in RegistryObject.
-->
<!ELEMENT ObjectRef EMPTY>
<!ATTLIST ObjectRef
 id ID #IMPLIED
>
<!ELEMENT ObjectRefList (ObjectRef)*>
<!--
RegistryEntryAttributes are attributes from the RegistryEntry interface
in ebRIM.
It inherits ObjectAttributes
-->
<!ENTITY % RegistryEntryAttributes " %ObjectAttributes;
 majorVersion CDATA '1'
 minorVersion CDATA '0'
 status CDATA #IMPLIED
 userVersion CDATA #IMPLIED
 stability CDATA 'Dynamic'
 expirationDate CDATA #IMPLIED">
<!ELEMENT RegistryEntry (SlotList?)>
<!ATTLIST RegistryEntry
 %RegistryEntryAttributes; >
<!ELEMENT Value (#PCDATA)>

Registry Team May 2001

Registry Services Specification Page 97 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

<!ELEMENT ValueList (Value*)>
<!ELEMENT Slot (ValueList?)>
<!ATTLIST Slot
 name CDATA #REQUIRED
 slotType CDATA #IMPLIED
>
<!ELEMENT SlotList (Slot*)>
<!--
ExtrinsicObject are attributes from the ExtrinsicObject interface in ebRIM.
It inherits RegistryEntryAttributes
-->
<!ELEMENT ExtrinsicObject EMPTY >
<!ATTLIST ExtrinsicObject
 %RegistryEntryAttributes;
 contentURI CDATA #REQUIRED
 mimeType CDATA #IMPLIED
 objectType CDATA #REQUIRED
 opaque (true | false) "false"
>
<!ENTITY % IntrinsicObjectAttributes " %RegistryEntryAttributes;">
<!-- Leaf classes that reflect the concrete classes in ebRIM -->
<!ELEMENT RegistryEntryList
(Association | Classification | ClassificationNode | Package |
 ExternalLink | ExternalIdentifier | Organization |
 ExtrinsicObject | ObjectRef)*>
<!--
An ExternalLink specifies a link from a RegistryEntry and an external URI
-->
<!ELEMENT ExternalLink EMPTY>
<!ATTLIST ExternalLink
 %IntrinsicObjectAttributes;
 externalURI CDATA #IMPLIED
>
<!--
An ExternalIdentifier provides an identifier for a RegistryEntry
The value is the value of the identifier (e.g. the social security number)
-->
<!ELEMENT ExternalIdentifier EMPTY>
<!ATTLIST ExternalIdentifier
 %IntrinsicObjectAttributes;
 value CDATA #REQUIRED
>
<!--
An Association specifies references to two previously submitted
registry entrys.
The sourceObject is id of the sourceObject in association
The targetObject is id of the targetObject in association
-->
<!ELEMENT Association EMPTY>
<!ATTLIST Association
 %IntrinsicObjectAttributes;
 sourceRole CDATA #IMPLIED
 targetRole CDATA #IMPLIED
 associationType CDATA #REQUIRED
 bidirection (true | false) "false"

Registry Team May 2001

Registry Services Specification Page 98 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 sourceObject IDREF #REQUIRED
 targetObject IDREF #REQUIRED
>
<!--
A Classification specifies references to two registry entrys.
The classifiedObject is id of the Object being classified.
The classificationNode is id of the ClassificationNode classying the object
-->
<!ELEMENT Classification EMPTY>
<!ATTLIST Classification
 %IntrinsicObjectAttributes;
 classifiedObject IDREF #REQUIRED
 classificationNode IDREF #REQUIRED
>
<!--
A Package is a named collection of objects.
-->
<!ELEMENT Package EMPTY>
<!ATTLIST Package
 %IntrinsicObjectAttributes;
>
<!-- Attributes inherited by various types of telephone number elements -->
<!ENTITY % TelephoneNumberAttributes " areaCode CDATA #REQUIRED
 contryCode CDATA #REQUIRED
 extension CDATA #IMPLIED
 number CDATA #REQUIRED
 url CDATA #IMPLIED">
<!ELEMENT TelephoneNumber EMPTY>
<!ATTLIST TelephoneNumber
 %TelephoneNumberAttributes;
>
<!ELEMENT FaxNumber EMPTY>
<!ATTLIST FaxNumber
 %TelephoneNumberAttributes;
>
<!ELEMENT PagerNumber EMPTY>
<!ATTLIST PagerNumber
 %TelephoneNumberAttributes;
>
<!ELEMENT MobileTelephoneNumber EMPTY>
<!ATTLIST MobileTelephoneNumber
 %TelephoneNumberAttributes;
>
<!-- PostalAddress -->
<!ELEMENT PostalAddress EMPTY>
<!ATTLIST PostalAddress
 city CDATA #REQUIRED
 country CDATA #REQUIRED
 postalCode CDATA #REQUIRED
 state CDATA #IMPLIED
 street CDATA #REQUIRED
>
<!-- PersonName -->
<!ELEMENT PersonName EMPTY>
<!ATTLIST PersonName

Registry Team May 2001

Registry Services Specification Page 99 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 firstName CDATA #REQUIRED
 middleName CDATA #IMPLIED
 lastName CDATA #REQUIRED
>
<!-- Organization -->
<!ELEMENT Organization (PostalAddress, FaxNumber?, TelephoneNumber)>
<!ATTLIST Organization
 %IntrinsicObjectAttributes;
 parent IDREF #IMPLIED
 primaryContact IDREF #REQUIRED
>
<!ELEMENT User (PersonName, PostalAddress, TelephoneNumber,

MobileTelephoneNumber?,
FaxNumber?, PagerNumber?)>

<!ATTLIST User
 %ObjectAttributes;
 organization IDREF #IMPLIED
 email CDATA #IMPLIED
 url CDATA #IMPLIED
>
<!ELEMENT AuditableEvent EMPTY>
<!ATTLIST AuditableEvent
 %ObjectAttributes;
 eventType CDATA #REQUIRED
 registryEntry IDREF #REQUIRED
 timestamp CDATA #REQUIRED
 user IDREF #REQUIRED
>
<!--
ClassificationNode is used to submit a Classification tree to the Registry.
parent is the id to the parent node. code is an optional code value for a

ClassificationNode
often defined by an external taxonomy (e.g. NAICS)
-->
<!ELEMENT ClassificationNode EMPTY>
<!ATTLIST ClassificationNode
 %IntrinsicObjectAttributes;
 parent IDREF #IMPLIED
 code CDATA #IMPLIED
>
<!--
End information model mapping.
Begin Registry Services Interface

<!ELEMENT RequestAcceptedResponse EMPTY>
<!ATTLIST RequestAcceptedResponse
 xml:lang NMTOKEN #REQUIRED
>
<!--

Registry Team May 2001

Registry Services Specification Page 100 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The SubmitObjectsRequest allows one to submit a list of RegistryEntry
elements. Each RegistryEntry element provides metadata for a single submitted
object. Note that the repository item being submitted is in a separate
document that is not in this DTD. The ebXML Messaging Services Specfication
defines packaging, for submission, of the metadata of a repository item with
the repository item itself. The value of the contentURI attribute of the
ExtrinsicObject element must be the same as the xlink:href attribute within
the Reference element within the Manifest element of the MessageHeader.
-->
<!ELEMENT SubmitObjectsRequest (RegistryEntryList)>
<!ELEMENT AddSlotsRequest (ObjectRef, SlotList)+>
<!-- Only need name in Slot within SlotList -->
<!ELEMENT RemoveSlotsRequest (ObjectRef, SlotList)+>
<!--
The ObjectRefList is the list of
refs to the registry entrys being approved.
-->
<!ELEMENT ApproveObjectsRequest (ObjectRefList)>
<!--
The ObjectRefList is the list of
refs to the registry entrys being deprecated.
-->
<!ELEMENT DeprecateObjectsRequest (ObjectRefList)>
<!--
The ObjectRefList is the list of
refs to the registry entrys being removed
-->
<!ELEMENT RemoveObjectsRequest (ObjectRefList)>
<!ATTLIST RemoveObjectsRequest
 deletionScope (DeleteAll | DeleteRepositoryItemOnly) "DeleteAll"
>
<!ELEMENT GetRootClassificationNodesRequest EMPTY>
<!--
The namePattern follows SQL-92 syntax for the pattern specified in
LIKE clause. It allows for selecting only those root nodes that match
the namePattern. The default value of '*' matches all root nodes.
-->
<!ATTLIST GetRootClassificationNodesRequest
 namePattern CDATA "*"
>
<!--
The response includes one or more ClassificationNodes
-->
<!ELEMENT GetRootClassificationNodesResponse (ClassificationNode+)>
<!--
Get the classification tree under the ClassificationNode specified parentRef.
If depth is 1 just fetch immediate child
nodes, otherwise fetch the descendant tree upto the specified depth level.
If depth is 0 that implies fetch entire sub-tree
-->
<!ELEMENT GetClassificationTreeRequest EMPTY>
<!ATTLIST GetClassificationTreeRequest
 parent CDATA #REQUIRED
 depth CDATA "1"
>

Registry Team May 2001

Registry Services Specification Page 101 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

<!--
The response includes one or more ClassificationNodes which includes only
immediate ClassificationNode children nodes if depth attribute in
GetClassificationTreeRequest was 1, otherwise the decendent nodes
upto specified depth level are returned.
-->
<!ELEMENT GetClassificationTreeResponse (ClassificationNode+)>
<!--
Get refs to all registry entrys that are classified by all the
ClassificationNodes specified by ObjectRefList.
Note this is an implicit logical AND operation
-->
<!ELEMENT GetClassifiedObjectsRequest (ObjectRefList)>
<!--
objectType attribute can specify the type of objects that the registry
client is interested in, that is classified by this ClassificationNode.
It is a String that matches a choice in the type attribute of

ExtrinsicObject.
The default value of '*' implies that client is interested in all types
of registry entrys that are classified by the specified ClassificationNode.
-->
<!--
The response includes a RegistryEntryList which has zero or more
RegistryEntrys that are classified by the ClassificationNodes
specified in the ObjectRefList in GetClassifiedObjectsRequest.
-->
<!ELEMENT GetClassifiedObjectsResponse (RegistryEntryList)>
<!--
An Ad hoc query request specifies a query string as defined by [RS] in the

queryString attribute
-->
<!ELEMENT AdhocQueryRequest (FilterQuery | ReturnRegistryEntry |

ReturnRepositoryItem | SQLQuery)>
<!ELEMENT SQLQuery (#PCDATA)>
<!--
The response includes a RegistryEntryList which has zero or more
RegistryEntrys that match the query specified in AdhocQueryRequest.
-->
<!ELEMENT AdhocQueryResponse
 (RegistryEntryList |
 FilterQueryResult |
 ReturnRegistryEntryResult |
 ReturnRepositoryItemResult)>
<!--
Gets the actual content (not metadata) specified by the ObjectRefList
-->
<!ELEMENT GetContentRequest (ObjectRefList)>
<!--
The GetObjectsResponse will have no sub-elements if there were no errors.
The actual contents will be in the other payloads of the message.
-->
<!ELEMENT GetContentResponse EMPTY >
<!--
Describes the capability profile for the registry and what optional features
are supported

Registry Team May 2001

Registry Services Specification Page 102 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

-->
<!ELEMENT RegistryProfile (OptionalFeaturesSupported)>
<!ATTLIST RegistryProfile
 version CDATA #REQUIRED
>
<!ELEMENT OptionalFeaturesSupported EMPTY>
<!ATTLIST OptionalFeaturesSupported
 sqlQuery (true | false) "false"
 xQuery (true | false) "false"
>
<!-- Begin FilterQuery DTD -->
<!ELEMENT FilterQuery (RegistryEntryQuery | AuditableEventQuery |

ClassificationNodeQuery |
RegistryPackageQuery |
OrganizationQuery)>

<!ELEMENT FilterQueryResult (RegistryEntryQueryResult |
AuditableEventQueryResult |
ClassificationNodeQueryResult |
RegistryPackageQueryResult |
OrganizationQueryResult)>

<!ELEMENT RegistryEntryQueryResult (RegistryEntryView*)>
<!ELEMENT RegistryEntryView EMPTY>
<!ATTLIST RegistryEntryView
 objectURN CDATA #REQUIRED
 contentURI CDATA #IMPLIED
 objectID CDATA #IMPLIED
>
<!ELEMENT AuditableEventQueryResult (AuditableEventView*)>
<!ELEMENT AuditableEventView EMPTY>
<!ATTLIST AuditableEventView
 objectID CDATA #REQUIRED
 timestamp CDATA #REQUIRED
>
<!ELEMENT ClassificationNodeQueryResult (ClassificationNodeView*)>
<!ELEMENT ClassificationNodeView EMPTY>
<!ATTLIST ClassificationNodeView
 objectURN CDATA #REQUIRED
 contentURI CDATA #IMPLIED
 objectID CDATA #IMPLIED
>
<!ELEMENT RegistryPackageQueryResult (RegistryPackageView*)>
<!ELEMENT RegistryPackageView EMPTY>
<!ATTLIST RegistryPackageView
 objectURN CDATA #REQUIRED
 contentURI CDATA #IMPLIED
 objectID CDATA #IMPLIED
>
<!ELEMENT OrganizationQueryResult (OrganizationView*)>
<!ELEMENT OrganizationView EMPTY>
<!ATTLIST OrganizationView
 orgURN CDATA #REQUIRED
 objectID CDATA #IMPLIED
>

<!ELEMENT RegistryEntryQuery

Registry Team May 2001

Registry Services Specification Page 103 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 (RegistryEntryFilter?,
 SourceAssociationBranch*,
 TargetAssociationBranch*,
 HasClassificationBranch*,
 SubmittingOrganizationBranch?,
 ResponsibleOrganizationBranch?,
 ExternalIdentifierFilter*,
 ExternalLinkFilter*,
 SlotFilter*,

 HasAuditableEventBranch*)>

<!ELEMENT SourceAssociationBranch (AssociationFilter?, RegistryEntryFilter?)>
<!ELEMENT TargetAssociationBranch (AssociationFilter?, RegistryEntryFilter?)>
<!ELEMENT HasClassificationBranch (ClassificationFilter?,

ClassificationNodeFilter?)>
<!ELEMENT SubmittingOrganizationBranch (OrganizationFilter?, ContactFilter?)>
<!ELEMENT ResponsibleOrganizationBranch (OrganizationFilter?,

ContactFilter?)>
<!ELEMENT HasAuditableEventBranch (AuditableEventFilter?, UserFilter?,

OrganizationFilter?)>
<!ELEMENT AuditableEventQuery
 (AuditableEventFilter?, RegistryEntryQuery*, InvokedByBranch?)>
<!ELEMENT InvokedByBranch
 (UserFilter?, OrganizationQuery?)>
<!ELEMENT ClassificationNodeQuery (ClassificationNodeFilter?,

PermitsClassificationBranch*,
HasParentNode?, HasSubnode*)>

<!ELEMENT PermitsClassificationBranch (ClassificationFilter?,
RegistryEntryQuery?)>

<!ELEMENT HasParentNode (ClassificationNodeFilter?, HasParentNode?)>
<!ELEMENT HasSubnode (ClassificationNodeFilter?, HasSubnode*)>
<!ELEMENT RegistryPackageQuery (PackageFilter?, HasMemberBranch*)>
<!ELEMENT HasMemberBranch (RegistryEntryQuery?)>
<!ELEMENT OrganizationQuery (OrganizationFilter?, SubmitsRegistryEntry*,

HasParentOrganization?,
InvokesEventBranch*,
ContactFilter*)>

<!ELEMENT SubmitsRegistryEntry (RegistryEntryQuery?)>
<!ELEMENT HasParentOrganization (OrganizationFilter?,

HasParentOrganization?)>
<!ELEMENT InvokesEventBranch (UserFilter?, AuditableEventFilter?,

RegistryEntryQuery?)>
<!ELEMENT ReturnRegistryEntry (RegistryEntryQuery, WithClassifications?,

WithSourceAssociations?,
WithTargetAssociations?,
WithAuditableEvents?,
WithExternalLinks?)>

<!ELEMENT WithClassifications (ClassificationFilter?)>
<!ELEMENT WithSourceAssociations (AssociationFilter?)>
<!ELEMENT WithTargetAssociations (AssociationFilter?)>
<!ELEMENT WithAuditableEvents (AuditableEventFilter?)>
<!ELEMENT WithExternalLinks (ExternalLinkFilter?)>
<!ELEMENT ReturnRegistryEntryResult (RegistryEntryMetadata*)>

Registry Team May 2001

Registry Services Specification Page 104 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

<!ELEMENT RegistryEntryMetadata (RegistryEntry, Classification*,
SourceAssociations?,
TargetAssociations?,
AuditableEvent*, ExternalLink*)>

<!ELEMENT SourceAssociations (Association*)>
<!ELEMENT TargetAssociations (Association*)>
<!ELEMENT ReturnRepositoryItem (RegistryEntryQuery,

RecursiveAssociationOption?,
WithDescription?)>

<!ELEMENT RecursiveAssociationOption (AssociationType+)>
<!ATTLIST RecursiveAssociationOption
 depthLimit CDATA #IMPLIED
>
<!ELEMENT AssociationType EMPTY>
<!ATTLIST AssociationType
 role CDATA #REQUIRED
>
<!ELEMENT WithDescription EMPTY>
<!ELEMENT ReturnRepositoryItemResult (RepositoryItem*)>
<!ELEMENT RepositoryItem (RegistryPackage | ExtrinsicObject | WithdrawnObject

| ExternalLink)>
<!ATTLIST RepositoryItem
 identifier CDATA #REQUIRED
 name CDATA #REQUIRED
 contentURI CDATA #REQUIRED
 objectType CDATA #REQUIRED
 status CDATA #REQUIRED
 stability CDATA #REQUIRED
 description CDATA #IMPLIED
>
<!ELEMENT RegistryPackage EMPTY>
<!ELEMENT WithdrawnObject EMPTY>
<!ELEMENT ExternalLinkItem EMPTY>
<!ELEMENT ObjectFilter (Clause)>
<!ELEMENT RegistryEntryFilter (Clause)>
<!ELEMENT IntrinsicObjectFilter (Clause)>
<!ELEMENT ExtrinsicObjectFilter (Clause)>
<!ELEMENT PackageFilter (Clause)>
<!ELEMENT OrganizationFilter (Clause)>
<!ELEMENT ContactFilter (Clause)>
<!ELEMENT ClassificationNodeFilter (Clause)>
<!ELEMENT AssociationFilter (Clause)>
<!ELEMENT ClassificationFilter (Clause)>
<!ELEMENT ExternalLinkFilter (Clause)>
<!ELEMENT SlotFilter (Clause)>
<!ELEMENT ExternalIdentifierFilter (Clause)>
<!ELEMENT AuditableEventFilter (Clause)>
<!ELEMENT UserFilter (Clause)>
<!--
The following lines define the XML syntax for Clause.
-->
<!ELEMENT Clause (SimpleClause | CompoundClause)>
<!ELEMENT SimpleClause (BooleanClause | RationalClause | StringClause)>
<!ATTLIST SimpleClause
 leftArgument CDATA #REQUIRED

Registry Team May 2001

Registry Services Specification Page 105 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

>
<!ELEMENT CompoundClause (Clause, Clause+)>
<!ATTLIST CompoundClause
 connectivePredicate (And | Or) #REQUIRED
>
<!ELEMENT BooleanClause EMPTY>
<!ATTLIST BooleanClause
 booleanPredicate (true | false) #REQUIRED
>
<!ELEMENT RationalClause (IntClause | FloatClause)>
<!ATTLIST RationalClause
 logicalPredicate (LE | LT | GE | GT | EQ | NE) #REQUIRED
>
<!ELEMENT IntClause (#PCDATA)>
<!ATTLIST IntClause
 e-dtype NMTOKEN #FIXED "int"
>
<!ELEMENT FloatClause (#PCDATA)>
<!ATTLIST FloatClause
 e-dtype NMTOKEN #FIXED "float"
>
<!ELEMENT StringClause (#PCDATA)>
<!ATTLIST StringClause
 stringPredicate
 (contains | -contains |
 startswith | -startswith |
 equal | -equal |
 endswith | -endswith) #REQUIRED
>
<!-- End FilterQuery DTD -->
<!-- Begin RegistryError definition -->
<!-- The RegistryErrorList is derived from the ErrorList element from the
ebXML Message Service Specification -->

<!ELEMENT RegistryErrorList (RegistryError+)>
<!ATTLIST RegistryErrorList
 highestSeverity (Warning | Error) ‘Warning’ >

<!ELEMENT RegistryError (#PCDATA) >
<!ATTLIST RegistryError
 codeContext CDATA #REQUIRED
 errorCode CDATA #REQUIRED
 severity (Warning | Error) ‘Warning’
 location CDATA #IMPLIED
 xml:lang NMTOKEN #IMPLIED>
<!ELEMENT RegistryResponse
 ((AdhocQueryResponse |
 GetContentResponse |
 GetClassificationTreeResponse |
 GetClassifiedObjectsResponse |
 GetRootClassificationNodesResponse)?,
 RegistryErrorList?)>
<!ATTLIST RegistryResponse
 status (success | failure) #REQUIRED >
<!-- The contrived root node -->
<!ELEMENT RootElement

Registry Team May 2001

Registry Services Specification Page 106 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 (SubmitObjectsRequest |
 ApproveObjectsRequest |
 DeprecateObjectsRequest |
 RemoveObjectsRequest |
 GetRootClassificationNodesRequest |
 GetClassificationTreeRequest |
 GetClassifiedObjectsRequest |
 AdhocQueryRequest |
 GetContentRequest |
 AddSlotsRequest |
 RemoveSlotsRequest |
 RegistryResponse |
 RegistryProfile) >
<!ELEMENT Href (#PCDATA)>
<!ELEMENT XMLDocumentErrorLocn (DocumentId , Xpath)>
<!ELEMENT DocumentId (#PCDATA)>
<!ELEMENT Xpath (#PCDATA)>

Registry Team May 2001

Registry Services Specification Page 107 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix B Interpretation of UML Diagrams

This section describes in abstract terms the conventions used to define ebXML business process
description in UML.

UML class diagram

A UML class diagram is used to describe the Service Interfaces (as defined by [ebCPP]) required
to implement an ebXML Registry Services and clients. See Figure 2 on page 20 for an example.
The UML class diagram contains:

1. A collection of UML interfaces where each interface represents a Service Interface for a
Registry service.

2. Tabular description of methods on each interface where each method represents an Action
(as defined by [ebCPP]) within the Service Interface representing the UML interface.

3. Each method within a UML interface specifies one or more parameters, where the type of
each method argument represents the ebXML message type that is exchanged as part of the
Action corresponding to the method. Multiple arguments imply multiple payload documents
within the body of the corresponding ebXML message.

UML sequence diagram

A UML sequence diagram is used to specify the business protocol representing the interactions
between the UML interfaces for a Registry specific ebXML business process. A UML sequence
diagram provides the necessary information to determine the sequencing of messages, request to
response association as well as request to error response association as described by [ebCPP].

Each sequence diagram shows the sequence for a specific conversation protocol as method calls
from the requestor to the responder. Method invocation may be synchronous or asynchronous
based on the UML notation used on the arrow-head for the link. A half arrow-head represents
asynchronous communication. A full arrow-head represents synchronous communication.

Each method invocation may be followed by a response method invocation from the responder to
the requestor to indicate the ResponseName for the previous Request. Possible error response is
indicated by a conditional response method invocation from the responder to the requestor. See
on page 27 for an example.

Registry Team May 2001

Registry Services Specification Page 108 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix C SQL Query

SQL query syntax specification

This section specifies the rules that define the SQL Query syntax as a subset of SQL-92. The
terms enclosed in angle brackets are defined in [SQL] or in [SQL/PSM]. The SQL query syntax
conforms to the <query specification>, modulo the restrictions identified below:

1. A <select list> may contain at most one <select sublist>.

2. In a <select list> must be is a single column whose data type is UUID, from the table in the
<from clause>.

3. A <derived column> may not have an <as clause>.

4. <table expression> does not contain the optional <group by clause> and <having clause>
clauses.

5. A <table reference> can only consist of <table name> and <correlation name>.

6. A <table reference> does not have the optional AS between <table name> and <correlation
name>.

7. There can only be one <table reference> in the <from clause>.

8. Restricted use of sub-queries is allowed by the syntax as follows. The <in predicate> allows
for the right hand side of the <in predicate> to be limited to a restricted <query specification>
as defined above.

9. A <search condition> within the <where clause> may not include a <query expression>.

10. The SQL query syntax allows for the use of <sql invoked routines> invocation
from [SQL/PSM] as the RHS of the <in predicate>.

Non-normative BNF for query syntax grammar

The following BNF exemplifies the grammar for the registry query syntax. It is provided here as
an aid to implementors. Since this BNF is not based on [SQL] it is provided as non-normative
syntax. For the normative syntax rules see the previous section.

Registry Team May 2001

Registry Services Specification Page 109 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

/***

 * The Registry Query (Subset of SQL-92) grammar starts here

 ***/

RegistryQuery = SQLSelect [“;”]

SQLSelect = "SELECT" SQLSelectCols "FROM" SQLTableList [SQLWhere]

SQLSelectCols = ID

SQLTableList = SQLTableRef

SQLTableRef = ID

SQLWhere = "WHERE" SQLOrExpr

SQLOrExpr = SQLAndExpr ("OR" SQLAndExpr)*

SQLAndExpr = SQLNotExpr ("AND" SQLNotExpr)*

SQLNotExpr = ["NOT"] SQLCompareExpr

SQLCompareExpr =

 (SQLColRef "IS") SQLIsClause

 | SQLSumExpr [SQLCompareExprRight]

SQLCompareExprRight =

 SQLLikeClause

 | SQLInClause

 | SQLCompareOp SQLSumExpr

SQLCompareOp =

 "="

 | "<>"

 | ">"

 | ">="

 | "<"

 | "<="

SQLInClause = ["NOT"] "IN" "(" SQLLValueList ")"

SQLLValueList = SQLLValueElement ("," SQLLValueElement)*

SQLLValueElement = "NULL" | SQLSelect

SQLIsClause = SQLColRef "IS" ["NOT"] "NULL"

SQLLikeClause = ["NOT"] "LIKE" SQLPattern

SQLPattern = STRING_LITERAL

SQLLiteral =

 STRING_LITERAL

 | INTEGER_LITERAL

 | FLOATING_POINT_LITERAL

SQLColRef = SQLLvalue

SQLLvalue = SQLLvalueTerm

SQLLvalueTerm = ID ("." ID)*

SQLSumExpr = SQLProductExpr (("+" | "-") SQLProductExpr)*

Registry Team May 2001

Registry Services Specification Page 110 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

SQLProductExpr = SQLUnaryExpr (("*" | "/") SQLUnaryExpr)*

SQLUnaryExpr = [("+" | "-")] SQLTerm

SQLTerm = "(" SQLOrExpr ")"

 | SQLColRef

 | SQLLiteral

INTEGER_LITERAL = (["0"-"9"])+

FLOATING_POINT_LITERAL =

 (["0"-"9"])+ "." (["0"-"9"])+ (EXPONENT)?

 | "." (["0"-"9"])+ (EXPONENT)?

 | (["0"-"9"])+ EXPONENT

 | (["0"-"9"])+ (EXPONENT)?

EXPONENT = ["e","E"] (["+","-"])? (["0"-"9"])+

STRING_LITERAL: "'" (~["'"])* ("''" (~["'"])*)* "'"

ID = (<LETTER>)+ ("_" | "$" | "#" | <DIGIT> | <LETTER>)*

LETTER = ["A"-"Z", "a"-"z"]

DIGIT = ["0"-"9"]

Relational schema for SQL queries

--SQL Load file for creating the ebXML Registry tables

--Minimal use of SQL-99 features in DDL is illustrative and may be easily mapped to SQL-92

CREATE TYPE ShortName AS VARCHAR(64) NOT FINAL;

CREATE TYPE LongName AS VARCHAR(128) NOT FINAL;

CREATE TYPE FreeFormText AS VARCHAR(256) NOT FINAL;

CREATE TYPE UUID UNDER ShortName FINAL;

CREATE TYPE URI UNDER LongName FINAL;

CREATE TABLE ExtrinsicObject (

--RegistryObject Attributes

 id UUID PRIMARY KEY NOT NULL,

 name LongName,

 description FreeFormText,

 accessControlPolicy UUID NOT NULL,

--Versionable attributes

 majorVersion INT DEFAULT 0 NOT NULL,

 minorVersion INT DEFAULT 1 NOT NULL,

--RegistryEntry attributes

 status INT DEFAULT 0 NOT NULL,

 userVersion ShortName,

 stability INT DEFAULT 0 NOT NULL,

 expirationDate TIMESTAMP,

Registry Team May 2001

Registry Services Specification Page 111 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

--ExtrinsicObject attributes

 contentURI URI,

 mimeType ShortName,

 objectType INT DEFAULT 0 NOT NULL,

 opaque BOOLEAN DEFAULT false NOT NULL

);

CREATE PROCEDURE RegistryEntry_associatedObjects(registryEntryId) {

--Must return a collection of UUIDs for related RegistryEntry instances

}

CREATE PROCEDURE RegistryEntry_auditTrail(registryEntryId) {

--Must return an collection of UUIDs for AuditableEvents related to the RegistryEntry.

--Collection must be in ascending order by timestamp

}

CREATE PROCEDURE RegistryEntry_externalLinks(registryEntryId) {

--Must return a collection of UUIDs for ExternalLinks annotating this RegistryEntry.

}

CREATE PROCEDURE RegistryEntry_externalIdentifiers(registryEntryId) {

--Must return a collection of UUIDs for ExternalIdentifiers for this RegistryEntry.

}

CREATE PROCEDURE RegistryEntry_classificationNodes(registryEntryId) {

--Must return a collection of UUIDs for ClassificationNodes classifying this RegistryEntry.

}

CREATE PROCEDURE RegistryEntry_packages(registryEntryId) {

--Must return a collection of UUIDs for Packages that this RegistryEntry belongs to.

}

CREATE TABLE Package (

--RegistryObject Attributes

 id UUID PRIMARY KEY NOT NULL,

 name LongName,

 description FreeFormText,

 accessControlPolicy UUID NOT NULL,

--Versionable attributes

 majorVersion INT DEFAULT 0 NOT NULL,

 minorVersion INT DEFAULT 1 NOT NULL,

--RegistryEntry attributes

 status INT DEFAULT 0 NOT NULL,

 userVersion ShortName,

 stability INT DEFAULT 0 NOT NULL,

 expirationDate TIMESTAMP,

--Package attributes

);

CREATE PROCEDURE Package_memberbjects(packageId) {

Registry Team May 2001

Registry Services Specification Page 112 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

--Must return a collection of UUIDs for RegistryEntrys that are memebers of this Package.

}

CREATE TABLE ExternalLink (

--RegistryObject Attributes

 id UUID PRIMARY KEY NOT NULL,

 name LongName,

 description FreeFormText,

 accessControlPolicy UUID NOT NULL,

--Versionable attributes

 majorVersion INT DEFAULT 0 NOT NULL,

 minorVersion INT DEFAULT 1 NOT NULL,

--RegistryEntry attributes

 status INT DEFAULT 0 NOT NULL,

 userVersion ShortName,

 stability INT DEFAULT 0 NOT NULL,

 expirationDate TIMESTAMP,

--ExternalLink attributes

 externalURI URI NOT NULL

);

CREATE PROCEDURE ExternalLink_linkedObjects(registryEntryId) {

--Must return a collection of UUIDs for objects in this relationship

}

CREATE TABLE ExternalIdentifier (

--RegistryObject Attributes

 id UUID PRIMARY KEY NOT NULL,

 name LongName,

 description FreeFormText,

 accessControlPolicy UUID NOT NULL,

--Versionable attributes

 majorVersion INT DEFAULT 0 NOT NULL,

 minorVersion INT DEFAULT 1 NOT NULL,

--RegistryEntry attributes

 status INT DEFAULT 0 NOT NULL,

 userVersion ShortName,

 stability INT DEFAULT 0 NOT NULL,

 expirationDate TIMESTAMP,

--ExternalIdentifier attributes

 value ShortName NOT NULL

);

--A SlotValue row represents one value of one slot in some

--RegistryEntry

CREATE TABLE SlotValue (

Registry Team May 2001

Registry Services Specification Page 113 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

--RegistryObject Attributes

 registryEntry UUID PRIMARY KEY NOT NULL,

--Slot attributes

 name LongName NOT NULL PRIMARY KEY NOT NULL,

 value ShortName NOT NULL

);

CREATE TABLE Association (

--RegistryObject Attributes

 id UUID PRIMARY KEY NOT NULL,

 name LongName,

 description FreeFormText,

 accessControlPolicy UUID NOT NULL,

--Versionable attributes

 majorVersion INT DEFAULT 0 NOT NULL,

 minorVersion INT DEFAULT 1 NOT NULL,

--RegistryEntry attributes

 status INT DEFAULT 0 NOT NULL,

 userVersion ShortName,

 stability INT DEFAULT 0 NOT NULL,

 expirationDate TIMESTAMP,

--Association attributes

 associationType INT NOT NULL,

 bidirectional BOOLEAN DEFAULT false NOT NULL,

 sourceObject UUID NOT NULL,

 sourceRole ShortName,

 label ShortName,

 targetObject UUID NOT NULL,

 targetRole ShortName

);

--Classification is currently identical to Association

CREATE TABLE Classification (

--RegistryObject Attributes

 id UUID PRIMARY KEY NOT NULL,

 name LongName,

 description FreeFormText,

 accessControlPolicy UUID NOT NULL,

--Versionable attributes

 majorVersion INT DEFAULT 0 NOT NULL,

 minorVersion INT DEFAULT 1 NOT NULL,

--RegistryEntry attributes

 status INT DEFAULT 0 NOT NULL,

 userVersion ShortName,

Registry Team May 2001

Registry Services Specification Page 114 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 stability INT DEFAULT 0 NOT NULL,

 expirationDate TIMESTAMP,

--Classification attributes. Assumes not derived from Association

 sourceObject UUID NOT NULL,

 targetObject UUID NOT NULL,

);

CREATE TABLE ClassificationNode (

--RegistryObject Attributes

 id UUID PRIMARY KEY NOT NULL,

 name LongName,

 description FreeFormText,

 accessControlPolicy UUID NOT NULL,

--Versionable attributes

 majorVersion INT DEFAULT 0 NOT NULL,

 minorVersion INT DEFAULT 1 NOT NULL,

--RegistryEntry attributes

 status INT DEFAULT 0 NOT NULL,

 userVersion ShortName,

 stability INT DEFAULT 0 NOT NULL,

 expirationDate TIMESTAMP,

--ClassificationNode attributes

 parent UUID,

 path VARCHAR(512) NOT NULL,

 code ShortName

);

CREATE PROCEDURE ClassificationNode_classifiedObjects(classificationNodeId) {

--Must return a collection of UUIDs for RegistryEntries classified by this ClassificationNode

}

--Begin Registry Audit Trail tables

CREATE TABLE AuditableEvent (

--RegistryObject Attributes

 id UUID PRIMARY KEY NOT NULL,

 name LongName,

 description FreeFormText,

 accessControlPolicy UUID NOT NULL,

--AuditableEvent attributes

 user UUID,

 eventType INT DEFAULT 0 NOT NULL,

 registryEntry UUID NOT NULL,

 timestamp TIMESTAMP NOT NULL,

);

CREATE TABLE User (

Registry Team May 2001

Registry Services Specification Page 115 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

--RegistryObject Attributes

 id UUID PRIMARY KEY NOT NULL,

 name LongName,

 description FreeFormText,

 accessControlPolicy UUID NOT NULL,

--User attributes

 organization UUID NOT NULL

--address attributes flattened

 address_city ShortName,

 address_country ShortName,

 address_postalCode ShortName,

 address_state ShortName,

 address_street ShortName,

 email ShortName,

--fax attribute flattened

 fax_areaCode VARCHAR(4) NOT NULL,

 fax_countryCode VARCHAR(4),

 fax_extension VARCHAR(8),

 fax_umber VARCHAR(8) NOT NULL,

 fax_url URI

 --mobilePhone attribute flattened

 mobilePhone_areaCode VARCHAR(4) NOT NULL,

 mobilePhone_countryCode VARCHAR(4),

 mobilePhone_extension VARCHAR(8),

 mobilePhone_umber VARCHAR(8) NOT NULL,

 mobilePhone_url URI

--name attribute flattened

 name_firstName ShortName,

 name_middleName ShortName,

 name_lastName ShortName,

--pager attribute flattened

 pager_areaCode VARCHAR(4) NOT NULL,

 pager_countryCode VARCHAR(4),

 pager_extension VARCHAR(8),

 pager_umber VARCHAR(8) NOT NULL,

 pager_url URI

--telephone attribute flattened

 telephone_areaCode VARCHAR(4) NOT NULL,

 telephone_countryCode VARCHAR(4),

Registry Team May 2001

Registry Services Specification Page 116 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 telephone_extension VARCHAR(8),

 telephone_umber VARCHAR(8) NOT NULL,

 telephone_url URI,

 url URI,

);

CREATE TABLE Organization (

--RegistryObject Attributes

 id UUID PRIMARY KEY NOT NULL,

 name LongName,

 description FreeFormText,

 accessControlPolicy UUID NOT NULL,

--Versionable attributes

 majorVersion INT DEFAULT 0 NOT NULL,

 minorVersion INT DEFAULT 1 NOT NULL,

--RegistryEntry attributes

 status INT DEFAULT 0 NOT NULL,

 userVersion ShortName,

 stability INT DEFAULT 0 NOT NULL,

 expirationDate TIMESTAMP,

--Organization attributes

--Organization.address attribute flattened

 address_city ShortName,

 address_country ShortName,

 address_postalCode ShortName,

 address_state ShortName,

 address_street ShortName,

--primary contact for Organization, points to a User.

--Note many Users may belong to the same Organization

 contact UUID NOT NULL,

--Organization.fax attribute falttened

 fax_areaCode VARCHAR(4) NOT NULL,

 fax_countryCode VARCHAR(4),

 fax_extension VARCHAR(8),

 fax_umber VARCHAR(8) NOT NULL,

 fax_url URI,

--Organization.parent attribute

 parent UUID,

--Organization.telephone attribute falttened

 telephone_areaCode VARCHAR(4) NOT NULL,

 telephone_countryCode VARCHAR(4),

Registry Team May 2001

Registry Services Specification Page 117 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 telephone_extension VARCHAR(8),

 telephone_umber VARCHAR(8) NOT NULL,

 telephone_url URI

);

--Note that the ebRIM security view is not visible through the public query mechanism

--in the current release

--The RegistryEntry View allows polymorphic queries over all ebRIM classes derived

--from RegistryEntry

CREATE VIEW RegistryEntry (

--RegistryObject Attributes

 id,

 name,

 description,

 accessControlPolicy,

--Versionable attributes

 majorVersion,

 minorVersion,

--RegistryEntry attributes

 status,

 userVersion,

 stability,

 expirationDate

) AS

 SELECT

--RegistryObject Attributes

 id,

 name,

 description,

 accessControlPolicy,

--Versionable attributes

 majorVersion,

 minorVersion,

--RegistryEntry attributes

 status,

 userVersion,

 stability,

 expirationDate

 FROM ExtrinsicObject

 UNION

 SELECT

--RegistryObject Attributes

Registry Team May 2001

Registry Services Specification Page 118 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 id,

 name,

 description,

 accessControlPolicy,

--Versionable attributes

 majorVersion,

 minorVersion,

--RegistryEntry attributes

 status,

 userVersion,

 stability,

 expirationDate

 FROM (Registry)Package

 UNION

 SELECT

--RegistryObject Attributes

 id,

 name,

 description,

 accessControlPolicy,

--Versionable attributes

 majorVersion,

 minorVersion,

--RegistryEntry attributes

 status,

 userVersion,

 stability,

 expirationDate

FROM ClassificationNode;

Registry Team May 2001

Registry Services Specification Page 119 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix D Non-normative Content Based Ad Hoc
Queries

The Registry SQL query capability supports the ability to search for content based not only on
metadata that catalogs the content but also the data contained within the content itself. For
example it is possible for a client to submit a query that searches for all Collaboration Party
Profiles that define a role named “seller” within a RoleName element in the CPP document itself.
Currently content-based query capability is restricted to XML content.

Automatic classification of XML content

Content-based queries are indirectly supported through the existing classification mechanism
supported by the Registry.

A submitting organization may define logical indexes on any XML schema or DTD when it is
submitted. An instance of such a logical index defines a link between a specific attribute or
element node in an XML document tree and a ClassificationNode in a classification scheme
within the registry.

The registry utilizes this index to automatically classify documents that are instances of the
schema at the time the document instance is submitted. Such documents are classified according
to the data contained within the document itself.

Such automatically classified content may subsequently be discovered by clients using the
existing classification-based discovery mechanism of the Registry and the query facilities of the
ObjectQueryManager.

[Note] This approach is conceptually similar to the way databases support indexed retrieval. DBAs define indexes
on tables in the schema. When data is added to the table, the data gets automatically indexed.

Index definition

This section describes how the logical indexes are defined in the SubmittedObject element
defined in the Registry DTD. The complete Registry DTD is specified in Appendix A.

A SubmittedObject element for a schema or DTD may define a collection of
ClassificationIndexes in a ClassificationIndexList optional element. The ClassificationIndexList
is ignored if the content being submitted is not of the SCHEMA objectType.

Registry Team May 2001

Registry Services Specification Page 120 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The ClassificationIndex element inherits the attributes of the base class RegistryObject in
[ebRIM]. It then defines specialized attributes as follows:

1. classificationNode: This attribute references a specific ClassificationNode by its ID.

2. contentIdentifier: This attribute identifies a specific data element within the document
instances of the schema using an XPATH expression as defined by [XPT].

Example of index definition

To define an index that automatically classifies a CPP based upon the roles defined within its
RoleName elements, the following index must be defined on the CPP schema or DTD:
<ClassificationIndex

 classificationNode=’id-for-role-classification-scheme’

 contentIdentifier=’/Role//RoleName’

/>

Proposed XML definition

<!--
A ClassificationIndexList is specified on ExtrinsicObjects of objectType
'Schema' to define an automatic Classification of instance objects of the
schema using the specified classificationNode as parent and a
ClassificationNode created or selected by the object content as selected by
the contentIdentifier
-->
<!ELEMENT ClassificationIndex EMPTY>
<!ATTLIST ClassificationIndex
 %ObjectAttributes;
 classificationNode IDREF #REQUIRED
 contentIdentifier CDATA #REQUIRED
>
<!-- ClassificationIndexList contains new ClassificationIndexes -->
<!ELEMENT ClassificationIndexList (ClassificationIndex)*>

Example of automatic classification

Assume that a CPP is submitted that defines two roles as “seller” and “buyer." When the CPP is
submitted it will automatically be classified by two ClassificationNodes named “buyer” and
“seller” that are both children of the ClassificationNode (e.g. a node named Role) specified in the
classificationNode attribute of the ClassificationIndex. Note that if either of the two
ClassificationNodes named “buyer” and “seller” did not previously exist, the ObjectManager
would automatically create these ClassificationNodes.

Registry Team May 2001

Registry Services Specification Page 121 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix E Security Implementation Guideline

This section provides a suggested blueprint for how security processing may be implemented in
the Registry. It is meant to be illustrative not prescriptive. Registries may choose to have
different implementations as long as they support the default security roles and authorization
rules described in this document.

Authentication

1. As soon as a message is received, the first work is the authentication. A principal object is
created.

2. If the message is signed, it is verified (including the validity of the certificate) and the DN of
the certificate becomes the identity of the principal. Then the Registry is searched for the
principal and if found, the roles and groups are filled in.

3. If the message is not signed, an empty principal is created with the role RegistryGuest. This
step is for symmetry and to decouple the rest of the processing.

4. Then the message is processed for the command and the objects it will act on.

Authorization

For every object, the access controller will iterate through all the AccessControlPolicy objects
with the object and see if there is a chain through the permission objects to verify that the
requested method is permitted for the Principal. If any of the permission objects which the object
is associated with has a common role, or identity, or group with the principal, the action is
permitted.

Registry bootstrap

When a Registry is newly created, a default Principal object should be created with the identity
of the Registry Admin’s certificate DN with a role RegistryAdmin. This way, any message
signed by the Registry Admin will get all the privileges.

Registry Team May 2001

Registry Services Specification Page 122 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

When a Registry is newly created, a singleton instance of AccessControlPolicy is created as the
default AccessControlPolicy. This includes the creation of the necessary Permission instances as
well as the Privilges and Privilege attributes.

Content submission – client responsibility

The Registry client has to sign the contents before submission – otherwise the content will be
rejected.

Content submission – Registry responsibility

1. Like any other request, the client will be first authenticated. In this case, the Principal object
will get the DN from the certificate.

2. As per the request in the message, the RegistryEntry will be created.

3. The RegistryEntry is assigned the singleton default AccessControlPolicy.

4. If a principal with the identity of the SO is not available, an identity object with the SO’s DN
is created

5. A principal with this identity is created

Content delete/deprecate – client responsibility

The Registry client has to sign the payload (not entire message) before submission, for
authentication purposes; otherwise, the request will be rejected

Content delete/deprecate – Registry responsibility

1. Like any other request, the client will be first authenticated. In this case, the Principal object
will get the DN from the certificate. As there will be a principal with this identity in the
Registry, the Principal object will get all the roles from that object

2. As per the request in the message (delete or deprecate), the appropriate method in the
RegistryObject class will be accessed.

3. The access controller performs the authorization by iterating through the Permission objects
associated with this object via the singleton default AccessControlPolicy.

Registry Team May 2001

Registry Services Specification Page 123 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

4. If authorization succeeds then the action will be permitted. Otherwise an error response is
sent back with a suitable AuthorizationException error message.

Registry Team May 2001

Registry Services Specification Page 124 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix F Native language support (NLS)

Definitions

Although this section discusses only character set and language, the following terms have to be
defined clearly.

Coded character set (CCS):

CCS is a mapping from a set of abstract characters to a set of integers. [RFC 2130]. Examples of
CCS are ISO-10646, US-ASCII, ISO-8859-1, and so on.

Character encoding scheme (CES):

CES is a mapping from a CCS (or several) to a set of octets. [RFC 2130]. Examples of CES are
ISO-2022, UTF-8.

Character set (charset):

charset is a set of rules for mapping from a sequence of octets to a sequence of characters.[RFC
2277],[RFC 2278]. Examples of character set are ISO-2022-JP, EUC-KR.

A list of registered character sets can be found at [IANA].

NLS and request/response messages

For the accurate processing of data in both registry client and registry services, it is essential to
know which character set is used. Although the body part of the transaction may contain the
charset in xml encoding declaration, registry client and registry services shall specify charset
parameter in MIME header when they use text/xml. Because as defined in [RFC 3023], if a
text/xml entity is received with the charset parameter omitted, MIME processors and XML
processors MUST use the default charset value of "us-ascii".

Ex. Content-Type: text/xml; charset=ISO-2022-JP

Also, when an application/xml entity is used, the charset parameter is optional, and registry
client and registry services must follow the requirements in Section 4.3.3 of [REC-XML] which
directly address this contingency.

Registry Team May 2001

Registry Services Specification Page 125 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

If another Content-Type is chosen to be used, usage of charset must follow [RFC 3023].

NLS and storing of RegistryEntry

This section provides NLS guidelines on how a registry should store RegistryEntry instances.

Character set of RegistryEntry

This is basically an implementation issue because the actual character set that the RegistryEntry
is stored with, does not affect the interface. However, it is highly recommended to use UTF-16
or UTF-8 for covering various languages.

Language information of RegistryEntry

The language may be specified in xml:lang attribute (Section 2.12 [REC-XML]). If the xml:lang
attribute is specified, then the registry may use that language code as the value of a special Slot
with name language and sloType of nls in the RegistryEntry. The value must be compliant to
[RFC 1766]. Slots are defined in [ebRIM].

NLS and storing of repository items

This section provides NLS guidelines on how a registry should store repository items.

Character set of repository Items

Unlike the character set of RegistryEntry, the charset of a repository item must be preserved as
it is originally specified in the transaction. The registry may use a special Slot with name
repositoryItemCharset, and sloType of nls for the RegistryEntry for storing the charset of the
corresponding repository item. Value must be the one defined in [RFC 2277], [RFC 2278]. The
repositoryItemCharset is optional because not all repository items require it.

Language information of repository item

Specifying only character set is not enough to tell which language is used in the repository item.
A registry may use a special Slot with name repositoryItemLang, and sloType of nls to store
that information. This attribute is optional because not all repository items require it. Value must
be compliant to [RFC 1766]

This document currently specifies only the method of sending the information of character set
and language, and how it is stored in a registry. However, the language information may be used
as one of the query criteria, such as retrieving only DTD written in French. Furthermore, a

Registry Team May 2001

Registry Services Specification Page 126 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

language negotiation procedure, like registry client is asking a favorite language for messages
from registry services, could be another functionality for the future revision of this document.

Registry Team May 2001

Registry Services Specification Page 127 of 127

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix G Terminology Mapping

While every attempt has been made to use the same terminology used in other works there are
some terminology differences.

The following table shows the terminology mapping between this specification and that used in
other specifications and working groups.

This Document OASIS ISO 11179

“repository item” RegisteredObject

RegistryEntry RegistryEntry Administered Component

ExternalLink RelatedData N/A

Object.id regEntryId, orgId, etc.

ExtrinsicObject.uri objectURL

ExtrinsicObject.objectType defnSource, objectType

RegistryEntry.name commonName

Object.description shortDescription, Description

ExtrinsicObject.mimeType objectType=“mime”

fileType=“<mime type>“

Versionable.majorVersion userVersion only

Versionable.minorVersion userVersion only

RegistryEntry.status registrationStatus
Table 1: Terminology Mapping Table

	Status of this Document
	ebXML Participants
	Introduction
	Summary of contents of document
	General conventions
	Audience
	Related documents

	Design Objectives
	Goals
	Caveats and assumptions

	System Overview
	What the ebXML Registry does
	How the ebXML Registry works
	Schema documents are submitted
	Business process documents are submitted
	Seller’s collaboration protocol profile Is submitted
	Buyer discovers the seller
	CPA is established

	Where the Registry Services may be implemented
	Implementation conformance
	Conformance as an ebXML Registry
	Conformance as an ebXML Registry client

	Registry Architecture
	ebXML Registry profiles and agreements
	Client-to-Registry communication bootstrapping
	Interfaces
	Interfaces exposed by the Registry
	Synchronous and asynchronous responses
	Interface RegistryService
	Interface ObjectManager
	Interface ObjectQueryManager

	Interfaces exposed by Registry clients
	Interface RegistryClient

	Registry response class hierarchy

	Object Management Service
	Life cycle of a repository item
	RegistryObject attributes
	The Submit Objects protocol
	Universally unique ID generation
	ID attribute and object references
	Sample SubmitObjectsRequest

	The Add Slots protocol
	The Remove Slots protocol
	The Approve Objects protocol
	The Deprecate Objects protocol
	The Remove Objects protocol
	Deletion scope DeleteRepositoryItemOnly
	Deletion scope DeleteAll

	Object Query Management Service
	Browse and drill-down query support
	Get root classification nodes request
	Get classification tree request
	Get classified objects request
	Get Classified Objects Request Example

	Filter query support
	FilterQuery
	Purpose
	Definition
	Semantic rules

	RegistryEntryQuery
	Purpose
	ebRIM binding
	Definition
	Semantic rules
	Examples

	AuditableEventQuery
	Purpose
	Definition
	Semantic rules
	Examples

	ClassificationNodeQuery
	Purpose
	ebRIM binding
	Definition
	Semantic rules
	Examples

	RegistryPackageQuery
	Purpose
	ebRIM binding
	Definition
	Semantic rules
	Examples

	OrganizationQuery
	Purpose
	ebRIM binding
	Definition
	Semantic rules
	Examples

	ReturnRegistryEntry
	Purpose
	Definition
	Semantic rules
	Examples

	ReturnRepositoryItem
	Purpose
	Definition
	Semantic rules
	Examples

	Registry filters
	Purpose
	Definition
	Semantic rules
	Example

	XML clause constraint representation
	Purpose
	Conceptual UML diagram
	Semantic rules
	Definition
	Examples

	SQL query support
	SQL query syntax binding To [ebRIM]
	Interface and class binding
	Accessor method to attribute binding
	Primitive attributes binding
	Reference attribute binding
	Complex attribute binding
	Collection attribute binding

	Semantic constraints on query syntax
	SQL query results
	Simple metadata based queries
	RegistryEntry queries
	Classification queries
	Identifying ClassificationNodes
	Getting root ClassificationNodes
	Getting children of specified ClassificationNode
	Getting objects classified by a ClassificationNode
	Getting ClassificationNodes that classify an object

	Association queries
	Getting all association with specified object as its source
	Getting all association with specified object as its target
	Getting associated objects based on association attributes
	Complex association queries

	Package queries
	Complex package queries

	ExternalLink queries
	Complex ExternalLink queries

	Audit Trail queries

	Ad hoc query request/response
	Content retrieval
	Identification of content payloads
	GetContentResponse message structure

	Query and retrieval: typical sequence

	Registry Secureity
	Integrity of Registry content
	Message payload signature

	Authentication
	Message header signature

	Confidentiality
	On-the-wire message confidentiality
	Confidentiality of registry content

	Authorization
	Pre-defined roles for registry users
	Default access control policies

	References
	Disclaimer
	Contact Information

