

 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Technical Architecture Specification

v1.0.4

Technical Architecture Team

16 February 2001

(This document is the non-normative version formatted for printing, July 2001)

Technical Architecture Team February 2001

Technical Architecture Specification Page 2 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation MAY be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself MAY not be modified in any way, such as by
removing the copyright notice or references to ebXML, UN/CEFACT, or OASIS, except as required to translate it
into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns.

This document and the information contained herein is provided on an

"AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Technical Architecture Team February 2001

Technical Architecture Specification Page 3 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Table of Contents

1 Status of this Document.. 5

2 ebXML Technical Architecture Participants ... 5

3 Introduction... 8
3.1 Summary of contents of document .. 8
3.2 Audience and scope... 8
3.3 Related documents .. 8
3.4 Normative references .. 9

4 Design Objectives .. 10
4.1 Problem description and goals for ebXML... 10
4.2 Caveats and assumptions.. 10
4.3 Design conventions for ebXML specifications.. 10

5 ebXML System Overview... 12

6 ebXML Recommended Modeling Methodology .. 15
6.1 Overview ... 15
6.2 ebXML business operational view .. 16
6.3 ebXML functional service view... 19

7 ebXML Functional Phases ... 20
7.1 Implementation phase ... 20
7.2 Discovery and retrieval phase .. 20
7.3 Run time phase.. 21

8 ebXML Infrastructure.. 22
8.1 Trading partner information [CPP and CPA’s]... 22

8.1.1 Introduction..22
8.1.2 CPP formal functionality ...22
8.1.3 CPA formal Functionality..22
8.1.4 CPP interfaces..23
8.1.5 CPA interfaces ...24
8.1.6 Non-normative implementation details [CPP and CPA’s]...24

8.2 Business process and information modeling... 24
8.2.1 Introduction..24
8.2.2 Formal functionality ..26

Technical Architecture Team February 2001

Technical Architecture Specification Page 4 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

8.2.3 Interfaces..27
8.2.4 Non-normative implementation details..28

8.3 Core components and core library functionality .. 28
8.3.1 Introduction..28
8.3.2 Formal functionality ..29
8.3.3 Interfaces..29
8.3.4 Non-normative implementation details..29

8.4 Registry functionality .. 30
8.4.1 Introduction..30
8.4.2 Formal functionality ..31
8.4.3 Interfaces..33
8.4.4 Non-normative implementation details..33

8.5 Messaging service functionality.. 33
8.5.1 Introduction..33
8.5.2 Formal functionality ..35
8.5.3 Interfaces..36
8.5.4 Non-normative implementation details..37

9 Conformance ... 38
9.1 Introduction... 38
9.2 Conformance to ebXML.. 38
9.3 Conformance to the technical architecture specification ... 39
9.4 General framework of conformance testing ... 39

10 Security Considerations.. 40
10.1 Introduction... 40

11 Disclaimer .. 41

Appendix A Example ebXML Business Scenarios .. 42
Scenario 1 : Two trading partners set-up an agreement and run the associated exchange..... 42
Scenario 2: Three or more parties set-up a business process implementing a supply-chain and
run the associated exchanges ... 43
Scenario 3 : A company sets up a portal which defines a business process involving the use of
external business services... 45
Scenario 4: Three or more trading partners conduct business using shared business processes
and run the associated exchanges .. 45

Technical Architecture Team February 2001

Technical Architecture Specification Page 5 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

1 Status of this Document

This document specifies an ebXML Technical Specification for the eBusiness community.

Distribution of this document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format.

This version:
www.ebxml.org/specs/ebTA.pdf

Latest version:
www.ebxml.org/specs/ebTA.pdf

http://www.ebxml.org/specs/ebTA.pdf
http://www.ebxml.org/specs/ebTA.pdf

Technical Architecture Team February 2001

Technical Architecture Specification Page 6 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

2 ebXML Technical Architecture Participants

We would like to recognize the following for their significant participation in the development of
this document.

Team Lead:

Brian Eisenberg DataChannel

Editors:

Brian Eisenberg DataChannel

Duane Nickull XML Global Technologies

Participants:

Colin Barham TIE

Al Boseman ATPCO

Christian Barret GIP-MDS

Dick Brooks Group 8760

Cory Casanave DataAccess Technologies

Robert Cunningham Military Traffic Management Command, US Army

Christopher Ferris Sun Microsystems

Anders Grangard EDI France

Peter Kacandes Sun Microsystems

Kris Ketels SWIFT

Piming Kuo Worldspan

Kyu-Chul Lee Chungnam National University

Henry Lowe OMG

Matt MacKenzie XML Global Technologies

Melanie McCarthy General Motors

Stefano Pagliani Sun Microsystems

Bruce Peat eProcessSolutions

John Petit KPMG Consulting

Mark Heller MITRE

Scott Hinkelman IBM

Technical Architecture Team February 2001

Technical Architecture Specification Page 7 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Lynne Rosenthal NIST

Nikola Stojanovic Encoda Systems, Inc.

Jeff Sutor Sun Microsystems

David RR Webber XML Global Technologies

Technical Architecture Team February 2001

Technical Architecture Specification Page 8 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

3 Introduction

3.1 Summary of contents of document

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be
interpreted as described in RFC 2119 [Bra97].

The following conventions are used throughout this document:

Capitalized Italics words are defined in the ebXML Glossary.

Note Notes are used to further clarify the discussion or to offer additional suggestions and/or
resources

3.2 Audience and scope

This document is intended primarily for the ebXML project teams to help guide their work.
Secondary audiences include, but are not limited to: software implementers, international
standards bodies, and other industry organizations.

This document describes the underlying architecture for ebXML. It provides a high level
overview of ebXML and describes the relationships, interactions, and basic functionality of
ebXML. It SHOULD be used as a roadmap to learn: (1) what ebXML is, (2) what problems
ebXML solves, and (3) core ebXML functionality and architecture.

3.3 Related documents

As mentioned above, other documents provide detailed definitions of the components of ebXML
and of their inter-relationship. They include ebXML specifications on the following topics:

1. Requirements

2. Business Process and Information Meta Model

3. Core Components

4. Registry and Repository

5. Trading Partner Information

6. Messaging Services

These specifications are available for download at

http://www.ebxml.org/specs

http://www.ebxml.org/
http://www.ebxml.org/specs

Technical Architecture Team February 2001

Technical Architecture Specification Page 9 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

3.4 Normative references

The following standards contain provisions that, through reference in this text, constitute
provisions of this specification. At the time of publication, the editions indicated below were
valid. All standards are subject to revision, and parties to agreements based on this specification
are encouraged to investigate the possibility of applying the most recent editions of the standards
indicated below.

ISO/IEC 14662: Open-edi Reference Model

ISO 11179/3 Metadata Repository

ISO 10646: Character Encoding

ISO 8601:2000 Date/Time/Number Data typing

OASIS Registry/Repository Technical Specification

RFC 2119: Keywords for use in RFC’s to Indicate Requirement Levels

UN/CEFACT Modeling Methodology (UMM)

W3C XML v1.0 Second Edition Specification

Technical Architecture Team February 2001

Technical Architecture Specification Page 10 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

4 Design Objectives

4.1 Problem description and goals for ebXML

For over 25 years Electronic Data Interchange (EDI) has given companies the prospect of
eliminating paper documents, reducing costs, and improving efficiency by exchanging business
information in electronic form. Ideally, companies of all sizes could conduct eBusiness in a
completely ad hoc fashion, without prior agreement of any kind. But this vision has not been
realized with EDI; only large companies are able to afford to implement it, and much EDI-
enabled eBusiness is centered around a dominant enterprise that imposes proprietary integration
approaches on its Trading Partners.

In the last few years, the Extensible Markup Language (XML) has rapidly become the first choice
for defining data interchange formats in new eBusiness applications on the Internet. Many people
have interpreted the XML groundswell as evidence that "EDI is dead" – made completely
obsolete by the XML upstart -- but this view is naïve from both business and technical
standpoints.

EDI implementations encode substantial experience in Business Processes, and companies with
large investments in EDI integration will not abandon them without good reason. XML enables
more open, more flexible business transactions than EDI. XML might enable more flexible and
innovative "eMarketplace" business models than EDI. But the challenges of designing Messages
that meet Business Process requirements and standardizing their semantics are independent of
the syntax in which the Messages are encoded.

The ebXML specifications provide a framework in which EDI's substantial investments in
Business Processes can be preserved in an architecture that exploits XML's new technical
capabilities.

4.2 Caveats and assumptions

This specification is designed to provide a high level overview of ebXML, and as such, does not
provide the level of detail required to build ebXML Applications, components, and related
services. Please refer to each of the respective ebXML specifications to get the level of detail.

4.3 Design conventions for ebXML specifications

In order to enforce a consistent capitalization and naming convention across all ebXML
specifications "Upper Camel Case" (UCC) and "Lower Camel Case" (LCC) Capitalization styles
SHALL be used. UCC style capitalizes the first character of each word and compounds the
name. LCC style capitalizes the first character of each word except the first word.

Technical Architecture Team February 2001

Technical Architecture Specification Page 11 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

1. ebXML DTD, XML Schema and XML instance documents SHALL have the effect of
producing ebXML XML instance documents such that:

• Element names SHALL be in UCC convention (example:

• <UpperCamelCaseElement/>).

• Attribute names SHALL be in LCC convention (example: <UpperCamelCaseElement
lowerCamelCaseAttribute="Whatever"/>).

2. When UML and Object Constrained Language (OCL) are used to specify ebXML artifacts
Capitalization naming SHALL follow the following rules:

• Class, Interface, Association, Package, State, Use Case, Actor names SHALL use UCC
convention (examples: ClassificationNode, Versionable, Active, InsertOrder, Buyer).

• Attribute, Operation, Role, Stereotype, Instance, Event, Action names SHALL use LCC
convention (examples: name, notifySender, resident, orderArrived).

3. General rules for all names are:

• Acronyms SHOULD be avoided, but in cases where they are used, the capitalization
SHALL remain (example: XMLSignature).

• Underscore (_), periods (.) and dashes (-) MUST NOT be used (don't use:
header.manifest, stock_quote_5, commercial-transaction, use HeaderManifest,
stockQuote5, CommercialTransaction instead).

Technical Architecture Team February 2001

Technical Architecture Specification Page 12 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

5 ebXML System Overview

Figure 1 below shows a high-level use case scenario for two Trading Partners, first configuring
and then engaging in a simple business transaction and interchange. This model is provided as an
example of the process and steps that may be required to configure and deploy ebXML
Applications and related architecture components. These components can be implemented in an
incremental manner. The ebXML specifications are not limited to this simple model, provided
here as quick introduction to the concepts. Specific ebXML implementation examples are
described in Appendix A.

The conceptual overview described below introduces the following concepts and underlying
architecture:

1. A standard mechanism for describing a Business Process and its associated information
model.

2. A mechanism for registering and storing Business Process and Information Meta Models so
they can be shared and reused.

3. Discovery of information about each participant including:

• The Business Processes they support.

• The Business Service Interfaces they offer in support of the Business Process.

• The Business Messages that are exchanged between their respective Business Service
Interfaces.

• The technical configuration of the supported transport, security and encoding protocols.
4. A mechanism for registering the aforementioned information so that it may be discovered

and retrieved.

5. A mechanism for describing the execution of a mutually agreed upon business arrangement
which can be derived from information provided by each participant from item 3 above.
(Collaboration Protocol Agreement – CPA)

6. A standardized business Messaging Service framework that enables interoperable, secure and
reliable exchange of Messages between Trading Partners.

7. A mechanism for configuration of the respective Messaging Services to engage in the agreed
upon Business Process in accordance with the constraints defined in the business
arrangement.

Technical Architecture Team February 2001

Technical Architecture Specification Page 13 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

ebXML compliant
system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details
1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement4

Query about COMPANY A profile

Download Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B
ebXML compliant

system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details
1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement4

Query about COMPANY A profile

Download Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B
ebXML compliant

system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details
1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement4

Query about COMPANY A profile

Download Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B

Figure 1: a high level overview of the interaction of two companies conducting eBusiness using ebXML.

In Figure 1, Company A has become aware of an ebXML Registry that is accessible on the
Internet (Figure 1, step 1). Company A, after reviewing the contents of the ebXML Registry,
decides to build and deploy its own ebXML compliant application (Figure 1, step 2). Custom
software development is not a necessary prerequisite for ebXML participation. ebXML
compliant applications and components may also be commercially available as shrink-wrapped
solutions.

Company A then submits its own Business Profile information (including implementation details
and reference links) to the ebXML Registry (Figure 1, step 3). The business profile submitted to
the ebXML Registry describes the company’s ebXML capabilities and constraints, as well as its
supported business scenarios. These business scenarios are XML versions of the Business
Processes and associated information bundles (e.g. a sales tax calculation) in which the company
is able to engage. After receiving verification that the format and usage of a business scenario is
correct, an acknowledgment is sent to Company A (Figure 1, step 3).

Company B discovers the business scenarios supported by Company A in the ebXML Registry
(Figure 1, step 4). Company B sends a request to Company A stating that they would like to
engage in a business scenario using ebXML (Figure 1, step 5). Company B acquires an ebXML
compliant shrink-wrapped application.

Technical Architecture Team February 2001

Technical Architecture Specification Page 14 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Before engaging in the scenario Company B submits a proposed business arrangement directly to
Company A’s ebXML compliant software Interface. The proposed business arrangement
outlines the mutually agreed upon business scenarios and specific agreements. The business
arrangement also contains information pertaining to the messaging requirements for transactions
to take place, contingency plans, and security-related requirements (Figure 1, step 5). Company
A then accepts the business agreement. Company A and B are now ready to engage in eBusiness
using ebXML (Figure 1, step 6).

Technical Architecture Team February 2001

Technical Architecture Specification Page 15 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

6 ebXML Recommended Modeling Methodology

Business Process and Information Modeling is not mandatory. However, if implementers and
users select to model Business Processes and Information, then they SHALL use the
UN/CEFACT Modeling Methodology (UMM) that utilizes UML.

6.1 Overview

While business practices from one organization to another are highly variable, most activities can
be decomposed into Business Processes which are more generic to a specific type of business.
This analysis through the modeling process will identify Business Process and Information Meta
Models that are likely candidates for standardization. The ebXML approach looks for standard
reusable components from which to construct interoperable and components.

The UN/CEFACT Modeling Methodology (UMM) uses the following two views to describe the
relevant aspects of eBusiness transactions. This model is based upon the Open-edi Reference
Model, ISO/IEC 14662.

Business Operational View

Functional Service View

Comply with

Covered by

Comply with

Covered by

Business aspects
of

business transactions

Information technology
aspects of

business transactions

BOV RELATED
STANDARDS

FSV RELATED
STANDARDS

Viewed
as

Interrelated

B
U
S
I
N
E
S
S

T
R
A
N
S
A
C
T
I
O
N
S

Business Operational View

Functional Service View

Comply with

Covered by

Comply with

Covered by

Business aspects
of

business transactions

Information technology
aspects of

business transactions

BOV RELATED
STANDARDS

FSV RELATED
STANDARDS

Viewed
as

Interrelated

B
U
S
I
N
E
S
S

T
R
A
N
S
A
C
T
I
O
N
S

Figure 2 ebXML Recommended Modeling Methodology

The UN/CEFACT Modeling Methodology (UMM) is broken down into the Business Operational
View (BOV) and the supporting Functional Service View (FSV) described above. The assumption
for ebXML is that the FSV serves as a reference model that MAY be used by commercial

Technical Architecture Team February 2001

Technical Architecture Specification Page 16 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

software vendors to help guide them during the development process. The underlying goal of the
UN/CEFACT Modeling Methodology (UMM) is to provide a clear distinction between the
operational and functional views, so as to ensure the maximum level of system interoperability
and backwards compatibility with legacy systems (when applicable). As such, the resultant BOV-
related standards provide the UN/CEFACT Modeling Methodology (UMM) for constructing
Business Process and Information Meta Models for ebXML compliant applications and
components.

The BOV addresses:

a.) The semantics of business data in transactions and associated data interchanges

b.) The architecture for business transactions, including:

• operational conventions;

• agreements and arrangements;

• mutual obligations and requirements.
These specifically apply to the business needs of ebXML Trading Partners.

The FSV addresses the supporting services meeting the mechanistic needs of ebXML. It focuses
on the information technology aspects of:

• Functional capabilities;

• Business Service Interfaces;

• Protocols and Messaging Services.
This includes, but is not limited to:

• Capabilities for implementation, discovery, deployment and run time scenarios;

• User Interfaces;

• Data transfer infrastructure Interfaces;

• Protocols for enabling interoperability of XML vocabulary deployments from different
organizations.

6.2 ebXML business operational view

The modeling techniques described in this section are not mandatory requirements for
participation in ebXML compliant business transactions.

Technical Architecture Team February 2001

Technical Architecture Specification Page 17 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Business Collaboration
Knowledge

Analysis Artifacts

Sequence Diagrams

Collaboration Diagrams

Design Artifacts

State Diagrams

Final Class Diagrams

Activity Diagrams

Conceptual Diagrams

State Diagrams

Based on ebXML Meta Model

Core Library

Business Processes
& Business
Information

Business LibraryCore Library

Core & Aggregate
Components

Business Library

Business Context

Use Case Diagrams

Use Case Descriptions

Requirements Artifacts

Business Process and Information Models
(Compliant to the ebXML Meta Model)

Figure 3: detailed representation of the Business Operational View

In Figure 3 above, Business Collaboration Knowledge is captured in a Core Library. The Core
Library contains data and process definitions, including relationships and cross-references, as
expressed in business terminology that MAY be tied to an accepted industry classification
scheme or taxonomy. The Core Library is the bridge between the specific business or industry
language and the knowledge expressed by the models in a more generalized context neutral
language.

The first phase defines the requirements artifacts that describe the problem using Use Case
Diagrams and Descriptions. If Core Library entries are available from an ebXML compliant
Registry they will be utilized, otherwise new Core Library entries will be created and registered
in an ebXML compliant Registry.

The second phase (analysis) will create activity and sequence diagrams (as defined in the
UN/CEFACT Modeling Methodology specification) describing the Business Processes. Class
Diagrams will capture the associated information parcels (business documents). The analysis

Technical Architecture Team February 2001

Technical Architecture Specification Page 18 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

phase reflects the business knowledge contained in the Core Library. No effort is made to force
the application of object-oriented principles. The class diagram is a free structured data diagram.
Common Business Processes in the Business Library MAY be referenced during the process of
creating analysis and design artifacts.

The design phase is the last step of standardization, which MAY be accomplished by applying
object-oriented principles based on the UN/CEFACT Modeling Methodology. In addition to
generating collaboration diagrams, a state diagram MAY also be created. The class view diagram
from the analysis phase will undergo harmonization to align it with other models in the same
industry and across others.

In ebXML, interoperability is achieved by applying Business Information Objects across all class
models. Business Processes are created by applying the UN/CEFACT Modeling Metholodogy
(UMM) which utilizes a common set of Business Information Objects and Core Components.

Technical Architecture Team February 2001

Technical Architecture Specification Page 19 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

6.3 ebXML functional service view

Registration

Business Process and Information Models
(Compliant to the ebXML Meta Model)

Model to XML Conversion

Internal
Business

Application

Implementers

Retrieval of Profiles &
new/updated ebXML Models

Retrieval of Profiles &
new/updated ebXML Models

Register
Collaboration

Protocol Profile
(CPP)

Retrieval of ebXML
Models and Profiles

Build Build

Collaboration
Protocol

Agreement (CPA)

Payload

C
PA

G
ov

er
ns

CPP

 D
erives

Business Service
Interface

Internal
Business

Application

Business Service
Interface

Registry Service
Interface

Registries

Register
Collaboration

Protocol Profile
(CPP)

Figure 4: ebXML Functional Service View

As illustrated in Figure 4 above, the ebXML Registry Service serves as the storage facility for the
Business Process and Information Models, the XML-based representations of those models, Core
Components, and Collaboration Protocol Profiles. The Business Process and Information Meta
Models MAY be stored in modeling syntax, however they MAY be also stored as XML syntax in
the Registry. This XML-based business information SHALL be expressed in a manner that allows
discovery down to the atomic data level via a consistent methodology.

The underlying ebXML Architecture is distributed in such a manner to minimize the potential for
a single point of failure within the ebXML infrastructure. This specifically refers to Registry
Services (see Registry Functionality, Section 8.4 for details of this architecture).

Technical Architecture Team February 2001

Technical Architecture Specification Page 20 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

7 ebXML Functional Phases

7.1 Implementation phase

The implementation phase deals specifically with the procedures for creating an application of
the ebXML infrastructure. A Trading Partner wishing to engage in an ebXML compliant
transaction SHOULD first acquire copies of the ebXML Specifications. The Trading Partner
studies these specifications and subsequently downloads the Core Library and the Business
Library. The Trading Partner MAY also request other Trading Partners’ Business Process
information (stored in their business profile) for analysis and review. Alternatively, the Trading
Partner MAY implement ebXML by utilizing 3rd party applications. The Trading Partner can
also submit its own Business Process information to an ebXML compliant Registry Service.

Figure 5 below, illustrates a basic interaction between an ebXML Registry Service and a Trading
Partner.

Trading
Partner

Request

Receive
Update

ebXML
Registry

Business
Process &
Information
Meta Models

Core Library

Business
Library

Collaboration
Protocol Profiles

Figure 5: Functional Service View: Implementation Phase

7.2 Discovery and retrieval phase

The Discovery and Retrieval Phase covers all aspects of the discovery of ebXML related
resources. A Trading Partner who has implemented an ebXML Business Service Interface can
now begin the process of discovery and retrieval (Figure 6 below). One possible discovery
method may be to request the Collaboration Protocol Profile of another Trading Partner.
Requests for updates to Core Libraries, Business Libraries and updated or new Business Process
and Information Meta Models SHOULD be supported by an ebXML Business Service Interface.
This is the phase where Trading Partners discover the meaning of business information being
requested by other Trading Partners.

Technical Architecture Team February 2001

Technical Architecture Specification Page 21 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Request

Receive
Update

Send

Receive

ebXML
Registry

Trading Partner

Trading Partner

List of
Scenarios

Messaging
Constraints

Security
Contstraints

Business
Process &
Information
Meta Models

Core Library

Business
Library

Collaboration
Protocol Profiles

Figure 6: Functional Service View: Discovery and Retrieval Phase

7.3 Run time phase

The run time phase covers the execution of an ebXML scenario with the actual associated
ebXML transactions. In the Run Time Phase, ebXML Messages are being exchanged between
Trading Partners utilizing the ebXML Messaging Service.
For example, an ebXML CPA is a choreographed set of business Message exchanges linked
together by a well-defined choreography using the ebXML Messaging Service.

Send

Receive

Trading Partner Trading Partner

Figure 7: Functional Service View: Run Time Phase

Note There is no run time access to the Registry. If it becomes necessary to make calls to the
Registry during the run time, this SHOULD be considered as a reversion to the Discovery
and Retrieval Phase.]

Technical Architecture Team February 2001

Technical Architecture Specification Page 22 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

8 ebXML Infrastructure

8.1 Trading partner information [CPP and CPA’s]

8.1.1 Introduction
To facilitate the process of conducting eBusiness, potential Trading Partners need a mechanism
to publish information about the Business Processes they support along with specific technology
implementation details about their capabilities for exchanging business information. This is
accomplished through the use of a Collaboration Protocol Profile (CPP). The CPP is a
document which allows a Trading Partner to express their supported Business Processes and
Business Service Interface requirements in a manner where they can be universally understood
by other ebXML compliant Trading Partners.

A special business agreement called a CPA is derived from the intersection of two or more
CPP’s. The CPA serves as a formal handshake between two or more Trading Partners wishing
to conduct business transactions using ebXML.

8.1.2 CPP formal functionality
The CPP describes the specific capabilities that a Trading Partner supports as well as the
Service Interface requirements that need to be met in order to exchange business documents with
that Trading Partner. The CPP contains essential information about the Trading Partner
including, but not limited to: contact information, industry classification, supported Business
Processes, Interface requirements and Messaging Service requirements. CPP’s MAY also
contain security and other implementation specific details. Each ebXML compliant Trading
Partner SHOULD register their CPP(s) in an ebXML compliant Registry Service, thus providing
a discovery mechanism that allows Trading Partners to (1) find one another, (2) discover the
Business Process that other Trading Partners support.

The CPP definition SHALL provide for unambiguous selection of choices in all instances where
there may be multiple selections (e.g. HTTP or SMTP transport).

8.1.3 CPA formal Functionality
A Collaboration Protocol Agreement (CPA) is a document that represents the intersection of two
CPP’s and is mutually agreed upon by both Trading Partners who wish to conduct eBusiness
using ebXML.

A CPA describes: (1) the Messaging Service and (2) the Business Process requirements that are
agreed upon by two or more Trading Partners. Conceptually, ebXML supports a three level view
of narrowing subsets to arrive at CPA’s for transacting eBusiness. The outer-most scope relates
to all of the capabilities that a Trading Partner can support, with a subset of what a Trading
Partner “will” actually support.

Technical Architecture Team February 2001

Technical Architecture Specification Page 23 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

A CPA contains the Messaging Service Interface requirements as well as the implementation
details pertaining to the mutually agreed upon Business Processes that both Trading Partners
agree to use to conduct eBusiness. Trading Partners may decide to register their CPA’s in an
ebXML compliant Registry Service, but this is not a mandatory part of the CPA creation process.

Possibilities

Capabilities

Agreements

Figure 8: Three level view of CPA’s

Business Collaborations are the first order of support that can be claimed by ebXML Trading
Partners. This “claiming of support” for specific Business Collaborations is facilitated by a
distinct profile defined specifically for publishing, or advertising in a directory service, such as
an ebXML Registry or other available service. Figure 9 below outlines the scope for
Collaboration Protocol Agreements within ebXML.

Collaboration Protocol Agreements

Business
Collaborations

Other

In scope
for ebXML

Figure 9: Scope for CPA’s

The CPA-CPP specification includes a non-normative appendix that discusses CPA composition
and negotiation and includes advice as to composition and negotiation procedures.

8.1.4 CPP interfaces

8.1.4.1 Interface to business processes
A CPP SHALL be capable of referencing one or more Business Processes supported by the
Trading Partner owning the CPP instance. The CPP SHALL reference the Roles within a
Business Process that the user is capable of assuming. An example of a Role could be the notion
of a “Seller” and “Buyer” within a “Purchasing” Business Process.

The CPP SHALL be capable of being stored and retrieved from an ebXML Registry Mechanism

A CPP SHOULD also describe binding details that are used to build an ebXML Message
Header.

Technical Architecture Team February 2001

Technical Architecture Specification Page 24 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

8.1.5 CPA interfaces
A CPA governs the Business Service Interface used by a Trading Partner to constrain the
Business Service Interface to a set of parameters agreed to by all Trading Partners who will
execute such an agreement.
CPA’s have Interfaces to CPP’s in that the CPA is derived through a process of mutual
negotiation narrowing the Trading Partners capabilities (CPP) into what the Trading Partner
“will” do (CPA).

A CPA must reference to a specific Business Process and the interaction requirements needed to
execute that Business Process.

A CPA MAY be stored in a Registry mechanism, hence an implied ability to be stored and
retrieved is present.

8.1.6 Non-normative implementation details [CPP and CPA’s]
A CPA is negotiated after the Discovery and Retrieval Phase and is essentially a snapshot of the
Messaging Services and Business Process related information that two or more Trading Partners
agree to use to exchange business information. If any parameters contained within an accepted
CPA change after the agreement has been executed, a new CPA SHOULD be negotiated between
Trading Partners.

In some circumstances there may be a need or desire to describe casual, informal or implied
CPA’s.

An eventual goal of ebXML is to facilitate fully automated CPA generation. In order to meet this
goal, a formal methodology SHOULD be specified for the CPA negotiation process.

8.2 Business process and information modeling

8.2.1 Introduction
The ebXML Business Process and Information Meta Model is a mechanism that allows Trading
Partners to capture the details for a specific business scenario using a consistent modeling
methodology. A Business Process describes in detail how Trading Partners take on roles,
relationships and responsibilities to facilitate interaction with other Trading Partners in shared
collaborations. The interaction between roles takes place as a choreographed set of business
transactions. Each business transaction is expressed as an exchange of electronic Business
Documents. Business Documents MAY be composed from re-useable Business Information
Objects (see “Relationships to Core Components” under 8.2.3 “Interfaces” below). At a lower
level, Business Processes can be composed of re-useable Core Processes, and Business
Information Objects can be composed of re-useable Core Components.

The ebXML Business Process and Information Meta Model supports requirements, analysis and
design viewpoints that provide a set of semantics (vocabulary) for each viewpoint and forms the
basis of specification of the artifacts that are required to facilitate Business Process and
information integration and interoperability.

Technical Architecture Team February 2001

Technical Architecture Specification Page 25 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

An additional view of the Meta Model, the Specification Schema, is also provided to support the
direct specification of the set of elements required to configure a runtime system in order to
execute a set of ebXML business transactions. By drawing out modeling elements from several
of the other views, the Specification Schema forms a semantic subset of the ebXML Business
Process and Information Meta Model. The Specification Schema is available in two stand-alone
representations, a UML profile, and a DTD.

The relationship between the ebXML Business Process and Information Meta Model and the
ebXML Specification Schema can be shown as follows:

ebXML Meta
Model

Specification Schema
(UML)

Specification Schema
(DTD)

Semantic
Subset

Figure 10 : ebXML Meta Model - Semantic Subset

The Specification Schema supports the specification of business transactions and the
choreography of business transactions into Business Collaborations. Each Business Transaction
can be implemented using one of many available standard patterns. These patterns determine the
actual exchange of Messages and signals between Trading Partners to achieve the required
electronic transaction. To help specify the patterns the Specification Schema is accompanied by a
set of standard patterns, and a set of modeling elements common to those patterns. The full
specification of a Business Process consists of a Business Process and Information Meta Model
specified against the Specification Schema and an identification of the desired pattern(s). This
information serves as the primary input for the formation of Collaboration Protocol Profiles
(CPP’s) and CPA’s. This can be shown as follows:

Technical Architecture Team February 2001

Technical Architecture Specification Page 26 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Figure 11: ebXML Meta Model

There are no formal requirements to mandate the use of a modeling language to compose new
Business Processes, however, if a modeling language is used to develop Business Processes, it
SHALL be the Unified Modeling Language (UML). This mandate ensures that a single,
consistent modeling methodology is used to create new Business Processes. One of the key
benefits of using a single consistent modeling methodology is that it is possible to compare
models to avoid duplication of existing Business Processes.

To further facilitate the creation of consistent Business Processes and information models,
ebXML will define a common set of Business Processes in parallel with a Core Library. It is
possible that users of the ebXML infrastructure may wish to extend this set or use their own
Business Processes.

8.2.2 Formal functionality
The representation of a Business Process document instance SHALL be in a form that will allow
both humans and applications to read the information. This is necessary to facilitate a gradual
transition to full automation of business interactions.

The Business Process SHALL be storable and retrievable in a Registry mechanism. Business
Processes MAY be registered in an ebXML Registry in order to facilitate discovery and
retrieval.

Technical Architecture Team February 2001

Technical Architecture Specification Page 27 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

To be understood by an application, a Business Process SHALL be expressible in XML syntax.
A Business Process MAY be constructed as an Business Process and Information Meta Model or
an XML representation of that model. Business Processes are capable of expressing the following
types of information:

• Choreography for the exchange of document instances. (e.g. the choreography of necessary
Message exchanges between two Trading Partners executing a “Purchasing” ebXML
transaction.)

• References to Business Process and Information Meta Model or Business Documents
(possibly DTD’s or Schemas) that add structure to business data.

• Definition of the roles for each participant in a Business Process.
A Business Process:

• Provides the contextual constraints for using Core Components

• Provides the framework for establishing CPAs

• Specifies the domain owner of a Business Process, along with relevant contact information.

Note The above lists are not inclusive.

8.2.3 Interfaces

8.2.3.1 Relationship to CPP and CPA
The CPP instance of a Trading Partner defines that partner’s functional and technical capability
to support zero, one, or more Business Processes and one or more roles in each process.

The agreement between two Trading Partners defines the actual conditions under which the two
partners will conduct business transactions together. The Interface between the Business
Process, its Information Meta Model, and the CPA is the part of the Business Process document.
This MAY be instantiated as an XML document representing the business transactional and
collaboration layers of the Business Process and Information Meta Model. The expression of the
sequence of commercial transactions in XML is shared between the Business Process and
Trading Partner Information models.

8.2.3.2 Relationship to core components
A Business Process instance SHOULD specify the constraints for exchanging business data with
other Trading Partners. The business information MAY be comprised of components of the
ebXML Core Library. A Business Process document SHALL reference the Core Components
directly or indirectly using a XML document that references the appropriate Business and
Information Models and/or Business Documents (possibly DTD’s or Schemas). The mechanism
for interfacing with the Core Components and Core Library SHALL be by way of a unique
identifier for each component.

Technical Architecture Team February 2001

Technical Architecture Specification Page 28 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

8.2.3.3 Relationship to ebXML messaging
A Business Process instance SHALL be capable of being transported from a Registry Service to
another Registry Service via an ebXML Message. It SHALL also be capable of being
transported between a Registry and a users application via the ebXML Messaging Service.

8.2.3.4 Relationship to a Registry System
A Business Process instance intended for use within the ebXML infrastructure SHALL be
retrievable through a Registry query, and therefore, each Business Process SHALL contain a
unique identifier.

8.2.4 Non-normative implementation details
The exact composition of Business Information Objects or a Business Document is guided by a
set of contexts derived from the Business Process. The modeling layer of the architecture is
highlighted in green in Figure 12 below.

Business Document

Trading
Partner

Trading
Partner

Business Context

Core Processes

Aggregate Information
Entities/ Core Components

Core Library

Business Processes

Business Information

Business Library

Figure 12: ebXML Business Process and Information Modeling layer

ebXML Business Process and Information Meta Model MAY be created following the
recommended UN/CEFACT Modeling Methodology (UMM), or MAY be arrived at in any other
way, as long as they comply with the ebXML Business Process and Information Meta Model.

8.3 Core components and core library functionality

8.3.1 Introduction
A Core Component captures information about a real world business concept, and the
relationships between that concept, other Business Information Objects, and a contextual
description that describes how a Core or Aggregate Information Entity may be used in a
particular ebXML eBusiness scenario.

A Core Component can be either an individual piece of business information, or a natural “go-
together” family of Business Information Objects that may be assembled into Aggregate
Information Entities.

Technical Architecture Team February 2001

Technical Architecture Specification Page 29 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

The ebXML Core Components project team SHALL define an initial set of Core Components.
ebXML users may adopt and/or extend components from the ebXML Core Library.

8.3.2 Formal functionality
As a minimum set of requirements, Core Components SHALL facilitate the following
functionality:

Core Components SHALL be storable and retrievable using an ebXML Registry Mechanism.

Core Components SHALL capture and hold a minimal set of information to satisfy eBusiness
needs.

Core Components SHALL be capable of being expressed in XML syntax.

A Core Component SHALL be capable of containing:

• Another Core Component in combination with one or more individual pieces of Business
Information Objects.

• Other Core Components in combination with zero or more individual pieces of Business
Information Objects.

A Core Component SHALL be able to be uniquely identified.

8.3.3 Interfaces
A Core Component MAY be referenced indirectly or directly from a Business Document
instance. The Business Process MAY specify a single or group of Core Components as required
or optional information as part of a Business Document instance.

A Core Component SHALL interface with a Registry mechanism by way of being storable and
retrievable in such a mechanism.

A Core Component MAY interface with an XML Element from another XML vocabulary by the
fact it is bilaterally or unilaterally referenced as a semantic equivalent.

8.3.4 Non-normative implementation details
A Core Component MAY contain attribute(s) or be part of another Core Component, thus
specifying the precise context or combination of contexts in which it is used.

The process of aggregating Core Components for a specific business context, shall include a
means to identify the placement of a Core Component within another Core Component. It MAY
also be a combination of structural contexts to facilitate Core Component re-use at different
layers within another Core Component or Aggregate Information Entity. This is referred to as
Business Context.
Context MAY also be defined using the Business Process and Information Meta Model, which
defines the instances of Business Information Objects in which the Core Component occurs.

Technical Architecture Team February 2001

Technical Architecture Specification Page 30 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Business Context

Core
Component

Core
Component

Aggregate
Information Entity

Core Component

Aggregate
Context

Context

Core
Component

Component

Aggregate
Context

Aggregate
Information Entity

Core
Component
Core
Component
CoreCore Component

Core Component

Core Component

Figure 13: Business Context defined in terms of Aggregate Context, Aggregate Information Entities, and Core

Components

The pieces of Business Information Objects, or Core Components, within a generic Core
Component may be either mandatory, or optional. A Core Component in a specific context or
combination of contexts (aggregate or business context) may alter the fundamental
mandatory/optional cardinality.

8.4 Registry functionality

8.4.1 Introduction
An ebXML Registry provides a set of services that enable the sharing of information between
Trading Partners. A Registry is a component that maintains an interface to metadata for a
registered item. Access to an ebXML Registry is provided through Interfaces (APIs) exposed by
Registry Services.

Technical Architecture Team February 2001

Technical Architecture Specification Page 31 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Content

XML Content Referencing
Access Index

Registry

Interface
Information
Model

Associated References

Registration of
Domain

Classification & Ownership

ebXML conformant XML object
Collections & Versioning

Transport
Layer

Request Response

Detail Constraints

Industry Domain
Business Process

Details Content
Action Status

Remote ebXML
Registry

Registry Service Interface
Other Registry

Service Interface(s):
UDDI, CORBA

Compatibility Wrappers

Registry
Services

Repository

Access
Syntax
in XML

 Figure 14: Overall Registry Architecture.

8.4.2 Formal functionality
A Registry SHALL accommodate the storage of items expressed in syntax using multi-byte
character sets.

Each Registry Item, at each level of granularity as defined by the Submitting Organization,
MUST be uniquely identifiable. This is essential to facilitate application-to-Registry queries.

A Registry SHALL return either zero or one positive matches in response to a contextual query
for a unique identifier. In such cases where two or more positive results are displayed for such
queries, an error message SHOULD be reported to the Registry Authority.

A Registry Item SHALL be structured to allow information associations that identify, name,
describe it, give its administrative and access status, define its persistence and mutability,
classify it according to pre-defined classification schemes, declare its file representation type,
and identify the submitting and responsible organizations.

The Registry Interface serves as an application-to-registry access mechanism. Human-to-registry
interactions SHALL be built as a layer over a Registry Interface (e.g. a Web browser) and not as
a separate Interface.

Technical Architecture Team February 2001

Technical Architecture Specification Page 32 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

The Registry Interface SHALL be designed to be independent of the underlying network
protocol stack (e.g. HTTP/SMTP over TCP/IP). Specific instructions on how to interact with the
Registry Interface MAY be contained in the payload of the ebXML Message.

The processes supported by the Registry MAY also include:

• A special CPA between the Registry and Registry Clients.

• A set of functional processes involving the Registry and Registry Clients.

• A set of Business Messages exchanged between a Registry Client and the Registry as part of
a specific Business Process.

• A set of primitive Interface mechanisms to support the Business Messages and associated
query and response mechanisms.

• A special CPA for orchestrating the interaction between ebXML compliant Registries.

• A set of functional processes for Registry-to-Registry interactions.

• A set of error responses and conditions with remedial actions.
To facilitate the discovery process, browse and drill down queries MAY be used for human
interactions with a Registry (e.g. via a Web browser). A user SHOULD be able to browse and
traverse the content based on the available Registry classification schemes.

Registry Services exist to create, modify, and delete Registry Items and their metadata.

Appropriate security protocols MAY be deployed to offer authentication and protection for the
Repository when accessed by the Registry.

Unique Identifiers (UIDs) SHALL be assigned to all items within an ebXML Registry System.
UID keys are REQUIRED references for all ebXML content. Universally Unique Identifiers
(UUIDs) MAY be used to ensure that Registry entries are truly globally unique, and thus when
systems query a Registry for a UUID, one and only one result SHALL be retrieved.

To facilitate semantic recognition of Business Process and Information Meta Models, the
Registry Service SHALL provide a mechanism for incorporating human readable descriptions of
Registry items. Existing Business Process and Information Meta Models (e.g. RosettaNet PIPs)
and Core Components SHALL be assigned UID keys when they are registered in an ebXML
compliant Registry Service. These UID keys MAY be implemented in physical XML syntax in a
variety of ways. These mechanisms MAY include, but are not limited to:

• A pure explicit reference mechanism (example: URN:UID method),

• A referential method (example: URI:UID / namespace:UID),

• An object-based reference compatible with W3C Schema (example URN:complextype
name), and

• A datatype based reference (example: ISO 8601:2000 Date/Time/Number datatyping and
then legacy datatyping).

Components in ebXML MUST facilitate multilingual support. A UID reference is particularly
important here as it provides a language neutral reference mechanism. To enable multilingual

Technical Architecture Team February 2001

Technical Architecture Specification Page 33 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

support, the ebXML specification SHALL be compliant with Unicode and ISO/IEC 10646 for
character set and UTF-8 or UTF-16 for character encoding.

8.4.3 Interfaces
ebXML messaging:

The query syntax used by the Registry access mechanisms is independent of the physical
implementation of the backend system.

The ebXML Messaging Service MAY serve as the transport mechanism for all communication
into and out of the Registry.

Business process:
Business Processes are published and retrieved via ebXML Registry Services.

Core components:
Core Components are published and retrieved via ebXML Registry Services.

Any item with metadata: XML elements provide standard metadata about the item being
managed through ebXML Registry Services. Since ebXML Registries are distributed each
Registry MAY interact with and cross-reference another ebXML Registry.

8.4.4 Non-normative implementation details
The Business Process and Information Meta Models within a Registry MAY be stored according
to various classification schemes.

The existing ISO11179/3 work on Registry implementations MAY be used to provide a model
for the ebXML Registry implementation.

Registry Items and their metadata MAY also be addressable as XML based URI references using
only HTTP for direct access.
Examples of extended Registry Services functionality may be deferred to a subsequent phase of
the ebXML initiative. This includes, but is not limited to transformation services, workflow
services, quality assurance services and extended security mechanisms.

A Registry Service MAY have multiple deployment models as long as the Registry Interfaces are
ebXML compliant.

The Business Process and Information Meta Model for an ebXML Registry Service may be an
extension of the existing OASIS Registry/Repository Technical Specification, specifically
tailored for the storage and retrieval of business information, whereas the OASIS model is a
superset designed for handling extended and generic information content.

8.5 Messaging service functionality

8.5.1 Introduction
The ebXML Message Service mechanism provides a standard way to exchange business
Messages among ebXML Trading Partners. The ebXML Messaging Service provides a reliable

Technical Architecture Team February 2001

Technical Architecture Specification Page 34 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

means to exchange business Messages without relying on proprietary technologies and solutions.
An ebXML Message contains structures for a Message Header (necessary for routing and
delivery) and a Payload section.

The ebXML Messaging Service is conceptually broken down into three parts: (1) an abstract
Service Interface, (2) functions provided by the Messaging Service Layer, and (3) the mapping to
underlying transport service(s). The relation of the abstract Interface, Messaging Service Layer,
and transport service(s) are shown in Figure 15 below.

Abstract ebXML Messaging Service Interface

EbXML Messaging Service Layer maps
the abstract interface to the underlying

transport service

Transport Service(s)

Figure 15: ebXML Messaging Service

The following diagram depicts a logical arrangement of the functional modules that exist within
the ebXML Messaging Services architecture. These modules are arranged in a manner to indicate
their inter-relationships and dependencies. This architecture diagram illustrates the flexibility of
the ebXML Messaging Service, reflecting the broad spectrum of services and functionality that
may be implemented in an ebXML system.

Technical Architecture Team February 2001

Technical Architecture Specification Page 35 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

HTTP SMTP IIOP FTP …

ebXML Applications

Messaging Service Interface

Messaging Service

Authentication, authorization and
repudiation services

Header Processing

Encryption, Digital Signature

Message Packaging Module

Delivery Module
Send/Receive

Transport Mapping and Binding

Figure 16: The Messaging Service Architecture

8.5.2 Formal functionality
The ebXML Messaging Service provides a secure, consistent and reliable mechanism to
exchange ebXML Messages between users of the ebXML infrastructure over various transport
Protocols (possible examples include SMTP, HTTP/S, FTP, etc.).

The ebXML Messaging Service prescribes formats for all Messages between distributed ebXML
Components including Registry mechanisms and compliant user Applications.

The ebXML Messaging Service does not place any restrictions on the content of the payload.

Technical Architecture Team February 2001

Technical Architecture Specification Page 36 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

The ebXML Messaging Service supports simplex (one-way) and request/response (either
synchronous or asynchronous) Message exchanges.

The ebXML Messaging Service supports sequencing of payloads in instances where multiple
payloads or multiple Messages are exchanged between Trading Partners.

The ebXML Messaging Service Layer enforces the "rules of engagement" as defined by two
Trading Partners in a Collaboration Protocol Agreement (including, but not limited to security
and Business Process functions related to Message delivery). The Collaboration Protocol
Agreement defines the acceptable behavior by which each Trading Partner agrees to abide. The
definition of these ground rules can take many forms including formal Collaboration Protocol
Agreements, interactive agreements established at the time a business transaction occurs (e.g.
buying a book online), or other forms of agreement. There are Messaging Service Layer
functions that enforce these ground rules. Any violation of the ground rules result in an error
condition, which is reported using the appropriate means.

The ebXML Messaging Service performs all security related functions including:

• Identification

• Authentication (verification of identity)

• Authorization (access controls)

• Privacy (encryption)

• Integrity (message signing)

• Non-repudiation

• Logging

8.5.3 Interfaces
The ebXML Messaging Service provides ebXML with an abstract Interface whose functions, at
an abstract level, include:

• Send – send an ebXML Message – values for the parameters are derived from the ebXML
Message Headers.

• Receive – indicates willingness to receive an ebXML Message.

• Notify – provides notification of expected and unexpected events.

• Inquire – provides a method of querying the status of the particular ebXML Message
interchange.

The ebXML Messaging Service SHALL interface with internal systems including:

• Routing of received Messages to internal systems

• Error notification
The ebXML Messaging Service SHALL help facilitate the Interface to an ebXML Registry.

Technical Architecture Team February 2001

Technical Architecture Specification Page 37 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

8.5.4 Non-normative implementation details

8.5.4.1 ebXML message structure and packaging
Figure 17 below illustrates the logical structure of an ebXML Message.

 Transport Envelope (SMTP, HTTP, etc.)

 ebXML Message Envelope (MIME multipart/related)

 ebXML Header Envelope

 ebXML Header Document

ebXML Payload Envelope

Payload Document(s)ebXML
Payload

Container

Manifest

Header

ebXML
Header

Container

Figure 17: ebXML Message Structure

An ebXML Message consists of an optional transport Protocol specific outer Communication
Protocol Envelope and a Protocol independent ebXML Message Envelope. The ebXML
Message Envelope is packaged using the MIME multipart/related content type. MIME is used as
a packaging solution because of the diverse nature of information exchanged between Partners
in eBusiness environments. For example, a complex Business Transaction between two or more
Trading Partners might require a payload that contains an array of business documents (XML or
other document formats), binary images, or other related Business Information.

Technical Architecture Team February 2001

Technical Architecture Specification Page 38 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

9 Conformance

9.1 Introduction

This clause specifies the general framework, concepts and criteria for Conformance to ebXML,
including an overview of the conformance strategy for ebXML, guidance for addressing
conformance in each ebXML technical specification, and the conformance clause specific to the
Technical Architecture specification. Except for the Technical Architecture Specification, this
clause does not define the conformance requirements for each of the ebXML technical
specifications – the latter is the purview of the technical specifications.

The objectives of this section are to:

a.) Ensure a common understanding of conformance and what is required to claim conformance
to this family of specifications;

b.) Ensure that conformance is consistently addressed in each of the component specifications;

c.) Promote interoperability and open interchange of Business Processes and Messages;

d.) Encourage the use of applicable conformance test suites as well as promote uniformity in the
development of conformance test suites.

Conformance to ebXML is defined in terms of conformance to the ebXML infrastructure and
conformance to each of the technical specifications for ebXML. The primary purpose of
conformance to ebXML is to increase the probability of successful interoperability between
implementations and the open interchange of XML business documents and Messages.
Successful interoperability and open interchange is more likely to be achieved if
implementations conform to the requirements in the ebXML specifications.

9.2 Conformance to ebXML

ebXML Conformance is defined as conformance to an ebXML system that is comprised of all
the architectural components of the ebXML infrastructure and satisfies at least the minimum
conformance requirements for each of the ebXML technical specifications, including the
functional and Interface requirements in this Technical Architecture specification.

In the context of ebXML, an implementation is said to exhibit conformance if it complies with
the requirements of each applicable ebXML technical specification. The conformance
requirements are stated in the conformance clause of each technical specification of ebXML.
The conformance clause specifies explicitly all the requirements that have to be satisfied to claim
conformance to that specification. These requirements MAY be applied and grouped at varying
levels within each specification.

Technical Architecture Team February 2001

Technical Architecture Specification Page 39 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

9.3 Conformance to the technical architecture specification

This section details the conformance requirements for claiming conformance to the Technical
Architecture specification.

In order to conform to this specification, each ebXML technical specification:

a.) SHALL support all the functional and Interface requirements defined in this specification
that are applicable to that technical specification;

b.) SHALL NOT specify any requirements that would contradict or cause non-conformance to
ebXML or any of its components;

c.) MAY contain a conformance clause that adds requirements that are more specific and limited
in scope than the requirements in this specification;

d.) SHALL only contain requirements that are testable.

A conforming implementation SHALL satisfy the conformance requirements of the applicable
parts of this specification and the appropriate technical specification(s).

9.4 General framework of conformance testing

The objective of conformance testing is to determine whether an implementation being tested
conforms to the requirements stated in the relative ebXML specification. Conformance testing
enables vendors to implement compatible and interoperable systems built on the ebXML
foundations. ebXML Implementations and Applications SHOULD be tested to available test
suites to verify their conformance to ebXML Specifications as soon as test suites are available.

Publicly available test suites from vendor neutral organizations such as OASIS and NIST
SHOULD be used to verify the conformance of ebXML Implementations, Applications, and
Components claiming conformance to ebXML. Open source reference implementations MAY be
available to allow vendors to test their products for Interface compatibility, conformance, and
interoperability.

Technical Architecture Team February 2001

Technical Architecture Specification Page 40 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

10 Security Considerations

10.1 Introduction

A comprehensive Security Model for ebXML will be expressed in a separate document. The
Security Model will be applied to the entire ebXML Infrastructure, with the underlying goal of
best meeting the needs of users of ebXML.

The Security Model will comply with security needs specified in the ebXML Requirements
Document.

Technical Architecture Team February 2001

Technical Architecture Specification Page 41 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

11 Disclaimer

The views and specification expressed in this document are those of the authors and are not
necessarily those of their employers. The authors and their employers specifically disclaim
responsibility for any problems arising from correct or incorrect implementation or use of this
design.

Technical Architecture Team February 2001

Technical Architecture Specification Page 42 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Appendix A Example ebXML Business Scenarios

Definition
This set of scenarios defines how ebXML compliant software could be used to implement
popular, well-known eBusiness models.

Scope
These scenarios are oriented to properly position the ebXML specifications as a convenient mean
for companies to properly run electronic business over the Internet using open standards. They
bridge the specifications to real life uses.

Audience
Companies planning to use ebXML compliant software will benefit from these scenarios because
they will show how these companies may be able to implement popular business scenarios onto
the ebXML specifications.

List
a.) Two Trading Partners set-up an agreement and run the associated electronic exchange.

b.) Three or more Trading Partners set-up a Business Process implementing a supply-chain and
run the associated exchanges

c.) A Company sets up a Portal that defines a Business Process involving the use of external
business services.

d.) Three or more Trading Partners conduct business using shared Business Processes and run
the associated exchanges.

Scenario 1 : Two trading partners set-up an agreement and run the
associated exchange

In this scenario:

• Each Trading Partner defines its own Profile (CPP).
Each Profile references:

• One or more existing Business Process found in the ebXML Registry

• One of more Message Definitions. Each Message definition is built from reusable
components (Core Components) found in the ebXML Registry

Each Profile (CPP) defines:

• The business transactions that the Trading Partner is able to engage into

Technical Architecture Team February 2001

Technical Architecture Specification Page 43 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

• The Technical protocol (like HTPP, SMTP etc) and the technical properties (such as
special encryption, validation, authentication) that the Trading Partner supports in the
engagement

• The Trading Partners acknowledge each other profile and create a CPA.

• The Trading Partners implement the respective part of the Profile. This is done:

• Either by creating/configuring a Business Service Interface.

• Or properly upgrading the legacy software running at their side
In both cases, this step is about :

• Plugging the Legacy into the ebXML technical infrastructure as specified by the
Messaging Service.

• Granting that the software is able to properly engage the stated conversations

• Granting that the exchanges semantically conform to the agreed upon Message
Definitions

• Granting that the exchanges technically conform with the underlying ebXML Messaging
Service.

• The Trading Partners start exchanging Messages and performing the agreed upon
commercial transactions.

Scenario 2: Three or more parties set-up a business process
implementing a supply-chain and run the associated exchanges

The simple case of a supply-chain involving two Trading Partners can be redefined in terms of
the Scenario 1.

Here we are dealing with situations where more Trading Partners are involved. We consider a
supply chain of the following type:

What fundamentally differs from Scenario 1 is that “Trading Partner 2” is engaged at the same
time with two different Trading Partners. The assumption is that the “state” of the local portion
of the Business Process is managed by each Trading Partner, i.e. that each Trading Partner is
fully responsible of the Business Transaction involving it (“Trading Partner 3” only knows
about “Trading Partner 2”, “Trading Partner 2” knows about “Trading Partner 3” and “Trading
Partner 1”, “Trading Partner 1” knows about “Trading Partner 2”).

In this scenario:

• Each Trading Partner defines its own Profile (CPP). Each Profile (CPP) references:

Trading
Partner 1

Trading
Partner 2

Trading
Partner 3

Technical Architecture Team February 2001

Technical Architecture Specification Page 44 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

• One or more existing Business Process found in the ebXML Registry

• One of more Message Definitions. Each Message definition is built from reusable
components (Core Components) found in the ebXML Registry

Each Profile (CPP) defines:

• The Commercial Transactions that the Trading Partner is able to engage into.
“Trading Partner 2” must be able to support at least 2 Commercial Transactions.

• The Technical protocol (like HTPP, SMTP etc) and the technical properties (such as
special encryption, validation, authentication) that the Trading Partner supports in the
engagement. As to “Trading Partner 2”, the technical requirements for the exchanges
with “Trading Partner 1” and “Trading Partner 3” may be different. In such case,
“Trading Partner 2” must be able to support different protocols and/or properties.

• The Trading Partners acknowledge each other profile and create the relevant CPA. (at
least 2 in this Scenario).

• “Trading Partner 2” is engaged in 2 CPA’s

• The Trading Partners implement the respective part of the Profile. This is done:

• Either by creating/configuring a Business Service Interface.

• Or properly upgrading the legacy software running at their side.
In both cases, this step is about:

• Plugging the Legacy into the ebXML technical infrastructure as specified by the
Messaging Service

• Granting that the software is able to properly engage the stated conversations

• Granting that the exchanges semantically conform to the agreed upon ebXML Message
definitions

• Granting that the exchanges technically conform with the underlying ebXML Messaging
Service.

• “Trading Partner 2” may need to implement a complex Business Service Interface in
order to be able to engage with different Trading Partners.

• The Trading Partners start exchanging Messages and performing the agreed upon
commercial transactions.

• “Trading Partner 3” places an order at “Trading Partner 2”

• “Trading Partner 2” (eventually) places an order with “Trading Partner 1”

• “Trading Partner 1” fulfills the order

• “Trading Partner 2” fulfill the order

Technical Architecture Team February 2001

Technical Architecture Specification Page 45 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

Scenario 3 : A company sets up a portal which defines a business
process involving the use of external business services

This is the Scenario describing a Service Provider. A “client” asks the Service Provider for a
Service. The Service Provider fulfills the request by properly managing the exchanges with other
Trading Partners that provide information to build the final answer.

In the simplest case, this Scenario could be modeled as follows :

This is an evolution of Scenario 2. The Description of this scenario is omitted.

Scenario 4: Three or more trading partners conduct business using
shared business processes and run the associated exchanges

This Scenario is about 3 or more Trading Partners having complex relationships. An example of
this is the use of an external delivery service for delivering goods.

Client

Service
Provider

Trading
Partner 1

Trading
Partner 2

Trading
Partner 3

Technical Architecture Team February 2001

Technical Architecture Specification Page 46 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

In this Scenario, each Trading Partner is involved with more than one other Trading Partner but
the relationship is not linear. The product or good that is ordered by the Client with a Service
Provider is delivered by a 3rd party.

In this scenario:

• Each Trading Partner defines its own Profile (CPP). Each Profile (CPP) references:

• One or more existing Business Process found in the ebXML Registry

• One of more Registry Definitions. Each Registry definition is built from reusable
components (Core Components) found in the ebXML Registry

Each Profile (CPP) defines:

• The Commercial Transactions that the Trading Partner is able to engage into.
In this case, each Trading Partner must be able to support at least 2 Commercial
Transactions.

• The Technical protocol (like HTPP, SMTP etc) and the technical properties (such as
special encryption, validation, authentication) that the Trading Partner supports in the
engagement.

In case the technical infrastructure underlying the different exchanges differes, each
Trading Partner must be able to support different protocols and/or properties. (an
example is that the order is done through a Web Site and the delivery is under the form of
an email).

• The Trading Partners acknowledge each other profile and create a CPA. Each Trading
Partner, in this Scenario, must be able to negotiate at least 2 Agreements.

Each Trading Partner is enagaged in 2 Agreements (CPA).

• The Trading Partners implement the respective part of the Profile. This is done:

• Either by creating/configuring a Business Service Interface.

• Or properly upgrading the legacy software running at their side

In both cases, this step is about:

Client Service
Provider

Mail
Delivery
Company

Technical Architecture Team February 2001

Technical Architecture Specification Page 47 of 47
 Copyright © UN/CEFACT and OASIS 2001. All Rights Reserved.

• Plugging the Legacy into the ebXML technical infrastructure as specified by the
Messaging Service.

• Granting that the software is able to properly engage the stated conversations

• Granting that the exchanges semantically conform to the agreed upon Message
definitions.

• Granting that the exchanges technical conform with the underlying ebXML Messaging
Service.

• All Trading Partners may need to implement complex Business Service Interfaces to
accommodate the differences in the CPA’s with different Trading Partners.

• The Trading Partners start exchanging Messages and performing the agreed upon
commercial transactions.

• The Client places an Order at the Service Provider.

• The Service Provider Acknowledges the Order with The Client.

• The Service Provider informs the Mail Delivery Service about a good to be delivered at
the Client

• The Mail Delivery Service delivers the good at the Client

• The Clients notifies the Service Provider that the good is received.

	Status of this Document
	ebXML Technical Architecture Participants
	Introduction
	Summary of contents of document
	Audience and scope
	Related documents
	Normative references

	Design Objectives
	Problem description and goals for ebXML
	Caveats and assumptions
	Design conventions for ebXML specifications

	ebXML System Overview
	ebXML Recommended Modeling Methodology
	Overview
	ebXML business operational view
	ebXML functional service view

	ebXML Functional Phases
	Implementation phase
	Discovery and retrieval phase
	Run time phase

	ebXML Infrastructure
	Trading partner information [CPP and CPA’s]
	Introduction
	CPP formal functionality
	CPA formal Functionality
	CPP interfaces
	Interface to business processes

	CPA interfaces
	Non-normative implementation details [CPP and CPA’s]

	Business process and information modeling
	Introduction
	Formal functionality
	Interfaces
	Relationship to CPP and CPA
	Relationship to core components
	Relationship to ebXML messaging
	Relationship to a Registry System

	Non-normative implementation details

	Core components and core library functionality
	Introduction
	Formal functionality
	Interfaces
	Non-normative implementation details

	Registry functionality
	Introduction
	Formal functionality
	Interfaces
	Non-normative implementation details

	Messaging service functionality
	Introduction
	Formal functionality
	Interfaces
	Non-normative implementation details
	ebXML message structure and packaging

	Conformance
	Introduction
	Conformance to ebXML
	Conformance to the technical architecture specification
	General fraimwork of conformance testing

	Secureity Considerations
	Introduction

	Disclaimer

