
a truck or plane. It sounds like a very complicated way to deliver one message, but
this system makes the overall task of delivering many messages easier, not harder. For
example, there now can be facilities that only deal with mailbags and do not worry
about an individual letter’s language or the transportation details.

THE TCP/IP PROTOCOL SUITE
The protocol stack used on the Internet is the Internet Protocol Suite. It is usually
called TCP/IP after two of its most prominent protocols, but there are other proto-
cols as well. The TCP/IP model is based on a fi ve-layer model for networking. From
bottom (the link) to top (the user application), these are the physical, data link, net-
work, transport, and application layers. Not all layers are completely defi ned by the
model, so these layers are “fi lled in” by external standards and protocols. The layers
have names but no numbers, and although sometimes people speak of “Layer 2” or
“Layer 3,” these are not TCP/IP terms. Terms like these are actually from the OSI Refer-
ence Model.

The TCP/IP stack is open, which means that there are no “secrets” as to how it
works. (There are “open systems” too, but with TCP/IP, the systems do not have to be
“open” and often are not.) Two compatible end-system applications can communicate
regardless of their underlying architectures, although the connections between layers
are not defi ned.

The OSI Reference Model
The TCP/IP or Internet model is not the only standard way to build a protocol suite
or stack. The Open Standard Interconnection (OSI) reference model is a seven-
layer model that loosely maps into the fi ve layers of TCP/IP. Until the Web became
widely popular in the 1990s, the OSI reference model, with distinctive names and
numbers for its layers, was proposed as the standard model for all communication
networks. Today, the OSI reference model (OSI-RM) is often used as a learning tool
to introduce the functions of TCP/IP.

The TCP/IP stack is comprised of modules. Each module provides a specifi c
 function, but the modules are fairly independent. The TCP/IP layers contain relatively
independent protocols that can be used depending on the needs of the system to
provide whatever function is desired. In TCP/IP, each higher layer protocol is sup-
ported by lower layer protocols. The whole collection of protocols forms a type of
hourglass shape, with IP in the middle, and more and more protocols up or down
from there.

CHAPTER 1 Protocols and Layers 25

The TCP/IP Layers
The TCP/IP protocol stack models a series of protocol layers for networks and systems
that allows communications between any types of devices. The model consists of fi ve
separate but related layers, as shown in Figure 1.9. The Internet protocol suite is based
on these fi ve layers. TCP/IP says most about the network and transport layers, and a
lot about the application layer. TCP/IP also defi nes how to interface the network layer
with the data link and physical layers, but is not directly concerned with these two
layers themselves.

The Internet protocol suite assumes that a layer is there and available, so TCP/IP
does not defi ne the layers themselves. The stack consist of protocols, not implementa-
tions, so describing a layer or protocols says almost nothing about how these things
should actually be built.

Not all systems on a network need to implement all fi ve layers of TCP/IP. Devices
using the TCP/IP protocol stack fall into two general categories: a host or end system
(ES) and an intermediate node (often a router) or an intermediate system (IS). The

User Application Programs

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Network Link(s)

FIGURE 1.9

The fi ve layers of TCP/IP. Older models often show only four layers, combining the physical and
data link layers.

Suite, Stack, and Model
The term “protocol stack” is often used synonymously with “protocol suite” as an
implementation of a reference model. However, the term “protocol suite” properly
refers to a collection of all the protocols that can make up a layer in the reference
model. The Internet protocol suite is an example of the Internet or TCP/IP refer-
ence model protocols, and a TCP/IP protocol stack implements one or more of
these protocols at each layer.

26 PART I Networking Basics

intermediate nodes usually only involve the fi rst three layers of TCP/IP (although many
of them still have all fi ve layers for other reasons, as we have seen).

In TCP/IP, as with most layered protocols, the most fundamental elements of the
process of sending and receiving data are collected into the groups that become the
layers. Each layer’s major functions are distinct from all the others, but layers can
be combined for performance reasons. Each implemented layer has an interface with
the layers above and below it (except for the application and physical layers, of course)
and provides its defi ned service to the layer above and obtains services from the layer
below. In other words, there is a service interface between each layer, but these are not
standardized and vary widely by operating system.

TCP/IP is designed to be comprehensive and fl exible. It can be extended to meet
new requirements, and has been. Individual layers can be combined for implementation
purposes, as long as the service interfaces to the layers remain intact. Layers can even
be split when necessary, and new service interfaces defi ned. Services are provided to
the layer above after the higher layer provides the lower layer with the command, data,
and necessary parameters for the lower layer to carry out the task.

Layers on the same system provide and obtain services to and from adjacent layers.
However, a peer-to-peer protocol process allows the same layers on different systems to
communicate. The term peer means every implementation of some layer is essentially
equal to all others. There is no “master” system at the protocol level. Communications
between peer layers on different systems use the defi ned protocols appropriate to the
given layer.

In other words, services refer to communications between layers within the same
process, and protocols refer to communications between processes. This can be con-
fusing, so more information about these points is a good idea.

Protocols and Interfaces
It is important to note that when the layers of TCP/IP are on different systems, they
are only connected at the physical layer. Direct peer-to-peer communication between
all other layers is impossible. This means that all data from an application have to fl ow
“down” through all fi ve layers at the sender, and “up” all fi ve layers at the receiver to
reach the correct process on the other system. These data are sometimes called a ser-
vice data unit (SDU).

Each layer on the sending system adds information to the data it receives from the
layer above and passes it all to the layer below (except for the physical layer, which
has no lower layers to rely on in the model and actually has to send the bits in a form
appropriate for the communications link used).

Likewise, each layer on the receiving system unwraps the received message, often
called a protocol data unit (PDU), with each layer examining, using, and stripping off
the information it needs to complete its task, and passing the remainder up to the next
layer (except for the application layer, which passes what’s left off to the application
program itself). For example, the data link layer removes the wrapper meant for it, uses
it to decide what it should do with this data unit, and then passes the remainder up to
the network layer.

CHAPTER 1 Protocols and Layers 27

The whole interface and protocol process is shown in Figure 1.10. Although TCP/IP
layers only have names, layer numbers are also used in the fi gure, but only for illustra-
tion. (The numbers come from the ISO-RM.)

As shown in the fi gure, there is a natural grouping of the fi ve-layer protocol stack
at the network layer and the transport layer. The lower three layers of TCP/IP, some-
times called the network support layers, must be present and functional on all systems,
regardless of the end system or intermediate node role. The transport layer links the
upper and lower layers together. This layer can be used to make sure that what was
sent was received, and what was sent is useful to the receiver (and not, for example,
a stray PDU misdirected to the host or unreasonably delayed).

The process of encapsulation makes the whole architecture workable. Encapsu-
lation of one layer’s information inside another layer is a key part of how TCP/IP
works.

Encapsulation
Each layer uses encapsulation to add the information its peer needs on the receiving
system. The network layer adds a header to the information it receives from the trans-
port at the sender and passes the whole unit down to the data link layer. At the receiver,

Intermediate
System (node)

Intermediate
System (node)

Device BDevice A

Application

Transport

Network Network
L3

L2

L1

L3

L2

L1

L3

L2

5

4

3

2

1

5
4–5 Interface

3–4 Interface

2–3 Interface

1–2 Interface

4

3

2

1
L1

Data Link Data Link

Physical

Application

Transport

Network

Data Link

Physical

Network

Data Link

PhysicalPhysical

Peer-to-Peer Protocol at Layer 5

Physical Communication Links

2–3 Interface 2–3 Interface

4–5 Interface

3–4 Interface

2–3 Interface

1–2 Interface1–2 Interface 1–2 Interface

Peer-to-Peer Protocol at Layer 4

FIGURE 1.10

Protocols and interfaces, showing how devices are only physically connected at the lowest layer
(Layer 1). Note that functionally, intermediate nodes only require the bottom three layers of the
model.

28 PART I Networking Basics

the network layer looks at the control information, usually in a header, in the data it
receives from the data link layer and passes the remainder up to the transport layer for
further processing. This is called encapsulation because one layer has no idea what the
structure or meaning of the PDU is at other layers. The PDU has several more or less
offi cial names for the structure at each layer.

The exception to this general rule is the data link layer, which adds both a header
and a trailer to the data it receives from the network layer. The general fl ow of encap-
sulation in TCP/IP is shown in Figure 1.11. Note that on the transmission media itself
(or communications link), there are only bits, and that some “extra” bits are added by
the communication link for its own purposes. Each PDU at the other layers is labeled
as data for its layer, and the headers are abbreviated by layer name. The exception is the
second layer, the data link layer, which shows a header and trailer added at that level
of encapsulation.

Although the intermediate nodes are not shown, these network devices will only
process the data (at most) through the fi rst three layers. In other words, there is no
transport layer to which to pass network-layer PDUs on these systems for data com-
munications (management is another issue).

Device A

Data from Application

Device B

Data to Application

Application Layer Data

Transport Layer Data

Application Layer Data

TH

Network Layer Data

Data Link Layer Data

NH

Hdr

Network Layer Data NH

Transport Layer Data TH

Trl Data Link Layer Data HdrTrl

Transmission Media

010101010101011100101010101010101011110 110 010101010101011100101010101010101011110 110

FIGURE 1.11

TCP/IP encapsulation and headers. The unstructured stream of bits represents frames with
 distinct content.

CHAPTER 1 Protocols and Layers 29

THE LAYERS OF TCP/IP
TCP/IP is mature and stable, and is the only protocol stack used on the Internet. This
book is all about networking with TCP/IP, but it is easy to get lost in the particulars of
TCP/IP if some discussion of the general tasks that TCP/IP is intended to accomplish is
not included. This section takes a closer look at the TCP/IP layers, but only as a general
guide to how the layers work.

TCP/IP Layers in Brief

■ Physical Layer: Contains all the functions needed to carry the bit stream over a
physical medium to another system.

■ Data Link Layer: Organizes the bit stream into a data unit called a “frame” and
delivers the frame to an adjacent system.

■ Network Layer: Delivers data in the form of a packet from source to destina-
tion, across as many links as necessary, to non-adjacent systems.

■ Transport Layer: Concerned with process-to-process delivery of information.

■ Application Layer: Concerned with differences in internal representation, user
interfaces, and anything else that the user requires.

The Physical Layer
The physical layer contains all the functions needed to carry the bit stream over a
 physical medium to another system. Figure 1.12 shows the position of the physical layer
to the data link layer and the transmission medium. The transmission medium forms a
pure “bit pipe” and should not change the bits sent in any way. Now, transmission “on
the wire” might send bits through an extremely complex transform, but the goal is to
enable the receiver to reconstruct the bit stream exactly as sent. Some information in
the form of transmission framing can be added to the data link layer data, but this is
only used by the physical layer and the transmission medium itself. In some cases, the
transmission medium sends a constant idle bit pattern until interrupted by data.

Physical layer specifi cations have four parts: mechanical, electrical or optical,
 functional, and procedural. The mechanical part specifi es the physical size and shape of
the connector itself so that components will plug into each other easily. The electrical/
optical specifi cation determines what value of voltage or line condition determines
whether a pin is active or what exactly represents a 0 or 1 bit. The functional specifi -
cation specifi es the function of each pin or lead on the connector (fi rst lead is send,
second is receive, and so on). The procedural specifi cation details the sequence of
actions that must take place to send or receive bits on the interface. (For Ethernet, the
send pair is activated, then a “preamble” is sent, and so forth.) The Ethernet twisted-

There are other things that the physical layer must determine, or be confi gured to
expect.

Data rate—This transmission rate is the number of bits per second that can be
sent. It also defines the duration of a symbol on the wire. Symbols usually
represent one or more bits, although there are schemes in which one bit is
represented by multiple symbols.

Bit synchronization—The sender and receiver must be synchronized at the sym-
bol level so that the number of bits expected per unit time is the same. In other
words, the sender and receiver clocks must be synchronized (timing is in the
millisecond or microsecond range). On modern links, the timing information is
often “recovered” from the received data stream.

Configuration—So far we’ve assumed simple point-to-point links, but this is not
the only way that systems are connected. In a multipoint configuration, a link
connects more than two devices, and in a multisystem bus/broadcast topol-
ogy such as a LAN, the number of systems can be very high.

Topology—The devices can be arranged in a number of ways. In a full mesh topol-
ogy, all devices are directly connected and one hop away, but this requires a
staggering amount of links for even a modest network. Systems can also be
arranged as a star topology, with all systems reachable through a central system.
There is also the bus (all devices are on a common link) and the ring (devices
are chained together, and the last is linked to the first, forming a ring).

Mode—So far, we’ve only talked about one of the systems as the sender and the
other as the receiver. This is operation in simplex mode, where a device can
only send or receive, such as with weather sensors reporting to a remote

Data Link Layer

Physical
Layer

Physical
Layer

Data Link Layer

Transmission
Framing

Transmission Media

“bit pipe”

010101011100101010101010101011110 10110 010101011100101010101010101011110 10110

FIGURE 1.12

The physical layer. The transmission framing bits are used for transmission media purposes only,
such as low-level control.

CHAPTER 1 Protocols and Layers 31

weather station. More realistic devices use duplex mode, where all systems
can send or receive with equal facility. This is often further distinguished as
half-duplex (the system can send and receive, but not at the same time) and
full-duplex (simultaneous sending and receiving).

The Data Link Layer
Bits are just bits. With only a physical layer, System A has no way to tell System B, “Get
ready some bits,” “Here are the bits,” and “Did you get those bits okay?” The data link
layer solves this problem by organizing the bit stream into a data unit called a frame.

It is important to note that frames are the data link layer PDUs, and these are not the
same as the physical layer transmission frames mentioned in the previous section. For
example, network engineers often speak about T1 frames or SONET frames, but these
are distinct from the data link layer frames that are carried inside the T1 or SONET
frames. Transmission frames have control information used to manage the physical link
itself and has little to do directly with process-to-process communications. This “dou-
ble-frame” arrangement might sound redundant, but many transmission frames origi-
nated with voice because digitized voice has no framing at the “data link” layer.

The data link layer moves bits across the link and can add reliability to the raw com-
munications link. The data link layer can be very simple, or make the link appear error-
free to the layer above, the network layer. The data link layer usually adds both a header
and trailer to the data presented by the network layer. This is shown in Figure 1.13.

The frame header typically contains a source and destination address (known as the
“physical address” since it refers to the physical communication port) and some con-
trol information. The control information is data passed from one data link layer to the

From Network Layer

To Physical Layer From Physical Layer

To Network Layer

Frame
Trailer

Frame
Header

Trl HdrData Link Layer Data Trl HdrData Link Layer Data

Frame

FIGURE 1.13

The data link layer, showing that data link layer frames have both header and trailer.

32 PART I Networking Basics

other data link layer, and not user data. The body of the frame contains the sequence of
bits being transferred across the network. The trailer usually contains information used
in detecting bit errors (such as cyclical redundancy check [CRC]). A maximum size is
associated with the frame that cannot be exceeded because all systems must allocate
memory space (buffers) for the data. In a networking context, a buffer is just special
memory allocated for communications.

The data link layer performs framing, physical addressing, and error detection
(error correction is another matter entirely, and can be handled in many ways, such
as by resending a copy of the frame that had the errors). However, when it comes to
frame error detection and correction in the real world, error detection bits are some-
times ignored and frames that defy processing due to errors are simply discarded. This
does not mean that error detection and correction are not part of the data link layer
 standards: It means that in these cases, ignoring and discarding are the chosen meth-
ods of implementation. In discard cases, the chore of handling the error condition is
“pushed up the stack” to a higher layer protocol.

This layer also performs access control (this determines whose turn it is to send
over or control the link, an issue that becomes more and more interesting as the
number of devices sharing the link grows). In LANs, this media access control (MAC)
forms a sublayer of the data link layer and has its own addressing scheme known (not
surprisingly) as the MAC layer address or MAC address. We’ll look at MAC addresses
in the next chapter. For now, it is enough to note that LANs such as Ethernet do not
have “real” physical layer addresses and that the MAC address performs this addressing
function.

In addition, the data link layer can perform some type of fl ow control. Flow control
makes sure senders do not overwhelm receivers: a receiver must have adequate time
to process the data arriving in its buffers. At this layer, the fl ow control, if provided, is
link-by-link. (We’ll see shortly that end-to-end—host-to-host—fl ow control is provided
by the transport layer.) LANs do not usually provide fl ow control at the data link layer,
although they can.

Not all destination systems are directly reachable by the sender. This means that
when bits at the data link layer are sent from an originating system, the bits do not arrive
at the destination system as the “next hop” along the way. Directly reachable systems
are called adjacent systems, and adjacent systems are always “one hop away” from the
sender. When the destination system is not directly reachable by the sender, one or
more intermediate nodes are needed. Consider the network shown in Figure 1.14.

Now the sender (System A) is not directly connected to the receiver (System B).
Another system, System 3, receives the frame and must forward it toward the
destination. This system is usually called a switch or router (there are even other names),
depending on internal architecture and network role. On a WAN (but not on a LAN),
this second frame is a different frame because there is no guarantee that the second
link is identical to the fi rst. Different links need different frames. Identical frames are
only delivered to systems that are directly reachable, or adjacent, to the sender, such as
by an Ethernet switch on a LAN.

CHAPTER 1 Protocols and Layers 33

Frames

Bits

Data Link

Physical

End System A

End System B

Intermediate
System 1

Intermediate
System 2

Intermediate
System 3

Hop-by-Hop
Forwarding

Hop-by-Hop
Forwarding

Hop-by-Hop
Forwarding

End System C

FIGURE 1.15

Hop-by-hop forwarding of frames. The intermediate systems also have a Layer 3, but this is not
shown in the fi gure for clarity.

Networking with intermediate systems is called hop-by-hop delivery. A “hop” is the
usual term used on the Internet or a router network to indicate the forwarding of a
packet between one router or another (or between a host and router). Frames can “hop”
between Layer 2 switches, but the term is most commonly used for Layer 3 router hops
(which can consist of multiple switch-to-switch frame “hops”). There can be more than
one intermediate system between the source and destination end systems, of course,
as shown in Figure 1.15. Consider the case where End System A is sending a bit stream
to End System C.

System A
(sender)

System 3
(switch/router)

System B
(receiver)

A Frame A Different
Frame

Send “STUFF”
to System B

Intermediate
System

I got “STUFF”
from System A

FIGURE 1.14

A more complex network. Note that the frames are technically different even if the same medium
is used on both links.

34 PART I Networking Basics

Note that the intermediate systems (routers) have two distinct physical and data link
layers, refl ecting the fact that the systems have two (and often more) communication
links, which can differ in many ways. (The fi gure shows a typical WAN confi guration
with point-to-point links, but routers on LANs, and on some types of public data service
WANs, can be deployed in more complicated ways.)

However, there is something obviously missing from this fi gure. There is no con-
nection between the data link layers on the intermediate systems! How does the
router know to which output port and link to forward the data in order to ultimately
reach the destination? (In the fi gure, note that Intermediate System 1 can send data to
either Intermediate System 2 or Intermediate System 3, but only through Intermediate
 System 3, which forwards the data, is the destination reachable.)

These forwarding decisions are made at the TCP/IP network layer.

The Network Layer
The network layer delivers data in the form of a packet from source to destination,
across as many links as necessary. The biggest difference between the network layer
and the data link layer is that the data link layer is in charge of data delivery between
adjacent systems (directly connected systems one hop away), while the network layer
delivers data to systems that are not directly connected to the source. There can be
many different types of data link and physical layers on the network, depending on the
variety of the link types, but the network layer is essentially the same on all systems,
end systems, and intermediate systems alike.

Figure 1.16 shows the relationship between the network layer and the transport
layer above and the data link layer below. A packet header is put in place at the sender
and interpreted by the receiver. A router simply looks at the packet header and makes
a forwarding decision based on this information. The transport layer does not play a
role in the forwarding decision.

From Transport Layer

To Data Link Layer From Data Link Layer

Network Layer Data Network Layer Data

Packet
Header

NH NH

Packet

To Transport Layer

FIGURE 1.16

The network layer. These data units are packets with their own destination and source address
formats.

CHAPTER 1 Protocols and Layers 35

How does the network layer know where the packet came from (so the sender can
reply)? The key concept at the network layer is the network address, which provides
this information. In TCP/IP, the network address is the IP address.

Every system in the network receives a network address, whether an end system
or intermediate system. Systems require at least one network address (and sometimes
many more). It is important to realize that this network address is different from, and
independent of, the physical address used by the frames that carry the packets between
adjacent systems.

Why should the systems need two addresses for the two layers? Why can’t they
just both use either the data link (“physical”) address or the network address at
both layers? There are actually several reasons. First, LAN addresses like those used
in Ethernet come from one group (the IEEE), while those used in TCP/IP come
from another group (ICANN). Also, the IP address is universally used on the Inter-
net, while there are many types of physical addresses. Finally, there is no systematic
assignment of physical addresses (and many addresses on WANs can be duplicates
and so have “local signifi cance only”). On the other hand, IP network addresses are
globally administered, unique, and have a portion under which many devices are
grouped. Therefore, many devices can be addressed concisely by this network por-
tion of the IP address.

A key issue is how the network addresses “map” to physical addresses, a process
known generally as address resolution. In TCP/IP, a special family of address resolution
protocols takes care of this process.

The network address is a logical address. Network addresses should be organized so
that devices can be grouped under a part of that address. In other words, the network
address should be organized in a fashion similar to a telephone number, for example,
212-555-1212 in the North American public switched telephone network (PSTN). The
sender need only look at the area code or “network” portion of this address (212) to
determine if the destination is local (area codes are the same) or needs to be sent to
an intermediate system to reach the 212 area code (source and destination area codes
differ).

For this scheme to work effectively, however, all telephones that share the 212 area
code should be grouped together. The whole telephone number beginning with 212
therefore means “this telephone in the 212 area code.” In TCP/IP, the network address
is the beginning of the device’s complete IP address. A group of hosts is gathered under
the network portion of the IP address. IP network addresses, like area codes, are glob-
ally administered to prevent duplication, while the rest of the IP address, like the rest
of the telephone number, is locally administered, often independently.

In some cases, the packet that arrives at an intermediate system inside a frame is too
large to fi t inside the frame that must be sent out. This is not uncommon: different link
and LAN types have different maximum frame sizes. The network layer must be able
to fragment a data unit across multiple frames and reassemble the fragments at the
destination. We’ll say more about fragmentation in a later chapter.

36 PART I Networking Basics

End System A

End System B

Hop-by-Hop
Forwarding

Hop-by-Hop
Forwarding

Network Packets

Frames

Bits

Data Link

Physical

Hop-by-Hop
Forwarding

Intermediate
System 1

Intermediate
System 2

Intermediate
System 3

End System C

End-to-End
Delivery

The network layer uses one or more routing tables to store information about
reachable systems. The routing tables must be created, maintained, and purged of old
information as the network changes due to failures, the addition or deletion of systems
and links, or other confi guration changes. This whole process of building tables to pass
data from source to destination is called routing, and the use of these tables for packet
delivery is called forwarding. The forwarding of packets inside frames always takes
place hop by hop. This is shown in Figure 1.17, which adds the network layer to the
data link layers already present and distinguishes between hop-by-hop forwarding and
end-to-end delivery.

On the Internet, the intermediate systems that act at the packet level (Layer 3)
are called routers. Devices that act on frames (Layer 2) are called switches, and some
older telephony-based WAN architectures use switches as intermediate network nodes.
Whether a node is called a switch or router depends on how they function internally.

FIGURE 1.17

Source-to-destination delivery at the network layer. The intermediate systems now have all three
required layers.

CHAPTER 1 Protocols and Layers 37

In a very real sense, the network layer is at the very heart of any protocol stack, and
TCP/IP is no exception. The protocol at this layer is IP, either IPv4 or IPv6 (some think
that IPv6 is distinct enough to be known as TCPv6/IPv6).

The Transport Layer
Process-to-process delivery is the task of the transport layer. Getting a packet to the
destination system is not quite the same thing as determining which process should
receive the packet’s content. A system can be running fi le transfer, email, and other
network processes all at the same time, and all over a single physical interface. Natu-
rally, the destination process has to know on which process the sender originated the
bits inside the packet in order to reply. Also, systems cannot simply transfer a huge
 multimegabit fi le all in one packet. Many data units exceed the maximum allowable
size of a packet.

This process of dividing message content into packets is known as segmentation. The
network layer forwards each and every packet independently, and does not recognize
any relationship between the packets. (Is this a fi le transfer or email packet? The net-
work layer does not care.) The transport layer, in contrast, can make sure the whole
message, often strung out in a sequence of packets, arrives in order (packets can be
delivered out of sequence) and intact (there are no errors in the entire message). This
function of the transport layer involves some method of fl ow control and error con-
trol (error detection and error correction) at the transport layer, functions which are
absent at the network layer. The transport-layer protocol that performs all of these
functions is TCP.

The transport-layer protocol does not have to do any of this, of course. In many
cases, the content of the packet forms a complete unit all by itself, called a datagram.
(The term “datagram” is often used to refer to the whole IP packet, but not in this book.)
Self-contained datagrams are not concerned with sequencing or fl ow control, and these
functions are absent in the User Datagram Protocol (UDP) at the transport layer.

So there are two very popular protocol packages at the transport layer:

■ TCP—This is a connection-oriented, “reliable” service that provides ordered
 delivery of packet contents.

■ UDP—This is a connectionless, “unreliable” service that does not provide
ordered delivery of packet contents.

In addition to UDP and TCP, there are other transport-layer protocols that can be used
in TCP/IP, all of which differ in terms of how they handle transport-layer tasks. Devel-
opers are not limited to the standard choices for applications. If neither TCP nor UDP
nor any other defi ned transport-layer service is appropriate for your application, you
can write your own transport-layer protocols and get others to adapt it (or use your
application package exclusively).

38 PART I Networking Basics

In TCP/IP, it is often said that the network layer (IP itself) offers an “unreliable” or
“best effort” service, while the transport layer adds “reliability” in the form of fl ow and
error control. Later in this book, we’ll see why these terms are unfortunate and what
they really mean.

The network layer gets a single packet to the right system, and the transport
 layer gets the entire message to the right process. Figure 1.18 shows the transport
layer breaking up a message at the sender into three pieces (each labeled “TL data” for
 transport-layer data and “TH” for transport-layer header). The fi gure then shows the
transport layer reassembling the message at the receiver from the various segments that
make up a message. In TCP/IP, there are also data units known as datagrams, which are
always handled as self-contained units. There are profound differences between how
the transport layer treats segments and datagrams, but this fi gure is just a general illus-
tration of segment handling.

The functions that the transport layer, which in some protocols is called the end-to-
end layer, might have to include follow:

Process addressing and multiplexing—Also known as “service-point addressing,”
the transport layer has to decide which process originated the message and to
which process the message must be delivered. These are also known as port
addresses in TCP/IP. Port addresses are an important portion of the application
socket in TCP/IP.

Segment handling—In cases where each message is divided into segments, each
segment has a sequence number used to put the message back together at the
destination. When datagrams are used, each data unit is handled independently
and sequencing is not necessary.

From Application Layer To Application Layer

To Network Layer

TL data TH

Segments

TL data TL dataTH TH TL data

Chunk of Data

TH

2

From Network Layer

Chunk of Data

TL data TH

3
TL data TH

1

FIGURE 1.18

The transport layer, showing how data are broken up if necessary and reassembled at the
 destination.

CHAPTER 1 Protocols and Layers 39

Connection control—The transport layer can be connectionless or connec-
tion-oriented (in fact, several layers can operate in either one of these ways).
 Connectionless (CL) layers treat every data unit as a self-contained, independent
unit. Connection-oriented (CO) layers go through a three-phase process every
time there is data to send to a destination after an idle period (connection
durations can vary). First, some control messages establish the connection,
then the data are sent (and exchanged if replies are necessary), and finally the
connection is closed. Many times, a comparison is made between a telephone
conversation (“dial, talk, hang up”) with connections and an intercom (“push
and talk any time”) for connectionless communications, but this is not precise.
Generally, segments are connection-oriented data units, and datagrams are con-
nectionless data units.

Flow control—Just as with the data link layer, the transport layer can include flow
control mechanisms to prevent senders from overwhelming receivers. In this
case, however, the flow control is end-to-end rather than link-by-link. Data-
grams do not require this service.

Error control—This is another function that can be performed at the data link
layer, but again end-to-end at the transport layer rather than link-by-link. Com-
munications links are not the only source of errors, which can occur inside a
system as well. Again, datagrams do not require this service.

Figure 1.19 shows the relationship between the network layer and transport layer
more clearly. The network layer operates from network interface to network interface,
while the transport layer is more specifi c and operates from process to process.

Process on System A Process on System B

Internetwork
(for example, the Internet)

Network Layer
End-to-End Delivery

Transport Layer
 Process-to-Process Delivery

FIGURE 1.19

Reliable process-to-process delivery with the transport layer.

40 PART I Networking Basics

The Application Layer
It might seem that once data are transferred from end-system process to end-system
process, the networking task is pretty much complete. There is a lot that still needs
to be done at the application level itself. In models of protocol stacks, it is common
to place another layer between the transport layer and the user, the application layer.
However, the TCP/IP protocol stack really stops at the transport layer (where TCP and
UDP are). It is up to the application programmer to decide what should happen at the
client and server level at that point, although there are individual RFCs for guidance,
such as for FTP.

Although it is common to gather these TCP/IP applications into their own layer,
there really is no such thing in TCP/IP as an application layer to act as some kind of
“glue” between the application’s user and the network.

In nearly all TCP/IP stacks, the application layer is part of the application process.
In spite of the lack of a defi ned layer, a TCP/IP application might still have a lot to do,
and in some ways the application layer is the most complex “layer” of all.

There are two major tasks that the application often needs to accomplish: session
support and conversion of internal representation. Not all applications need both, of
course, and some applications might not need either, but this overview includes both
major functions.

Session Support
A session is a type of dialog controller between two processes that establishes, main-
tains, and synchronizes (controls) the interaction (dialog). A session decides if the com-
munication can be half-duplex (both ends take turns sending) or full-duplex (both
ends can send whenever they want). It also keeps a kind of “history” of the interaction
between endpoints, so that when things go wrong or when the two communicate
again, some information does not have to be resent.

In practical terms, the session consists of all “state variables” necessary to construct
the history of the connection between the two devices. It is more diffi cult, but not
impossible, to implement sessions in a connectionless environment because there is
no easy way to associate the variables with a convenient label.

Internal Representation Conversion
The role of internal representation conversion is to make sure that the data exchange
over the network is useful to the receivers. If the internal representation of data dif-
fers on the two systems (integer size, bit order in memory, etc.), the application layer
translates between the formats so the application program does not have to. This layer
can also provide encryption and compression functions, although it is more common
to implement these last two functions separately from the network.

Standard protocol specifi cations can use the Abstract Syntax Notation 1 (ASN.1)
defi nitions for translation purposes. ASN.1 can be used in programming, network

CHAPTER 1 Protocols and Layers 41

 management, and other places. ASN.1 defi nes various things such as which bit is “fi rst
on the wire” regardless of how it is stored internally, how many bits are to be sent for
the numbers 0 through 255 (8), and so on. Everything can be translated into ASN.1, sent
across the network, and translated back to whatever internal format is required at the
destination.

The role of internal representation conversion is shown in Figure 1.20. The fi gure
shows four sequential memory locations, each storing the letter “a” followed by the
integer 259. Note that not only are there differences between the amount of memory
addressed at once, but also in the order of the bits for numerics.

In some protocol stacks, the application program can rely on the services of a fully
functional conversion for internal representation to perform these services. However,
in TCP/IP, every network application program must do these things for itself.

Applications in TCP/IP
TCP/IP does not provide session or presentation services directly to an application.
Programmers are on their own, but this does not mean they have to create everything
from scratch. For example, applications can use a character-based presentation ser-
vice called the Network Virtual Terminal (NVT), part of the Internet’s telnet remote
access specifi cation. Other applications can use Sun’s External Data Representation
(XDR) or IBM’s (and Microsoft’s) NetBIOS programming libraries for presentation
services. In this respect, there are many presentation layer services that TCP/IP can
use, but there is no formal presentation service standard in TCP/IP that all applica-
tions must use.

Host TCP/IP implementations typically provide a range of applications that provide
users with access to the data handled by the transport-layer protocols. These appli-
cations use a number of protocols that are not part of TCP/IP proper, but are used
with TCP/IP. These protocols include the Hyper-Text Transfer Protocol (HTTP) used by
Web browsers, the Simple Message Transfer Protocol (SMTP) used for email, and many
 others.

Architecture A

a

00000001

00000011

a

00000001

text “a”

integer 259
00000011

Architecture B

FIGURE 1.20

Internal representation differences. Integers can have different bit lengths and can be stored
 differently in memory.

42 PART I Networking Basics

In TCP/IP, the application protocol, the application service, and the user application
itself often share the same name. The fi le transfer protocol in TCP/IP, called FTP, is at
once an application protocol, an application service, and an application run by a user.
It can sometimes be confusing as to just which aspect of FTP is under discussion.

The role of TCP/IP applications is shown in Figure 1.21. Note that this “layer” sits on
top of the TCP/IP protocol stack and interfaces with programs or users directly.

Some protocols provide separate layers for sessions, internal representation
 conversion, and application services. In practice, these are seldom implemented
 independently. It just makes more sense to bundle them together by major application,
as in TCP/IP.

THE TCP/IP PROTOCOL SUITE
To sum up, the fi ve layers of TCP/IP are physical, data link, network, transport, and
application. The TCP/IP stack is a hierarchical model made up of interactive mod-
ules. Each module provides a specifi c function. In TCP/IP, the layers contain rela-
tively independent protocols that can be “mixed and matched” depending on the
needs of the system to provide whatever function is desired. TCP/IP is hierarchical
in the sense that each higher layer protocol is supported by one or more lower layer
 protocols.

Figure 1.22 maps some of the protocols used in TCP/IP to the various layers of TCP/IP.
Every protocol in the fi gure will be discussed in this book, most in chapters all their own.

From User

HTTP NVT (others) HTTP NVT (others)

Application Data

Content of Segment or Datagram

To Transport Layer From Transport Layer

To User

Application Data

SMTPSMTP

FIGURE 1.21

TCP/IP applications, showing how multiple applications can all share the same network
 connection.

CHAPTER 1 Protocols and Layers 43

FTP DNS SSH SNMP

DHCPTFTPHTTP

Application

Transport

Network

IPv4

IPv6 IPSec

ARP RARP

Protocols and Links Determined by Underlying Network
(includes SLIP and PPP)

Data Link

Physical

IP NAT IP Support
Protocols:
ICMPv4
ICMPv6
Neighbor
Discovery

Routing
Protocols:
RIP, OSPF,

BGP

UDP TCP Others

SMTP

FIGURE 1.22

TCP/IP protocols and layers. Note the position of some protocols between layers.

With few exceptions, the TCP/IP protocol suite does not really defi ne any low-level
protocols below the network layer. TCP/IP usually specifi es how to put IP packets into
frames and how to get them out again. Many RFCs defi ne IP mapping into these lower-
layer protocols. We’ll talk more about this mapping process in Chapter 2.

44 PART I Networking Basics

Let’s look at the fi elds that are emphasized. First, we have captured an Ethernet II
frame with an IPv4 packet inside. The frame’s type fi eld value of 0x800 determines this.
In the IP packet, the message from the client to the server, which starts on the next
line, the source address is 10.10.12.166 (lnxclient) and the destination address is
10.10.11.66 (lnxserver), as they should be.

We can ignore the rest of the IP header fi elds for now, and skip down to where the
source and destination port are highlighted. The source port chosen by the client is
32825 and the port on the server that will receive the data is 55555. We decided that
55555 would be the server port, and the client chose a port number to use based on
certain rules, which we will talk about in a later chapter.

Now that we know the IP addresses and ports used, we can determine the socket
at each host. This is shown in Table 2.1.

THE TCP/IP PROTOCOL STACK
The layering of TCP/IP is important if IP packets are to run on almost any type of
 network. The IP packet layer is only one layer, and from the TCP/IP perspective, the
layer or layers below the IP layer are not as important as the overall fl ow of packets
from one host (end system) to another across the network.

Layering means that you only have to adapt one type of packet to an underlying net-
work type to get the entire TCP/IP suite. Once the packet has been “framed,” you need
not worry about TCP/UDP, or any other protocol: they come along for the ride with the
layering. Only the IP layer has to deal with the underlying hardware.

All that really matters is that the device at the receiving end understands the type of
IP packet encapsulation used at the sending end. If only one form of packet encapsula-
tion was used, the IP packets could remain inside the frame with a globally unique MAC
address from source to destination. Network nodes could forward the frame without
having to deal with the packet inside. We’ll talk more about the differences between
forwarding frames and forwarding packets later on in this book.

TCP/IP is considered to be a peer protocol stack, which means that every implemen-
tation of TCP/IP is considered to have the same capabilities as every other. There are
no “restricted” or “master” versions of TCP/IP that anyone need be concerned about. So,
for example, there is no special server stack needed.

However, this does not mean that all protocol stacks function in precisely the same
way. TCP/IP, like many other protocol stacks, is implemented according to a model
known as the client–server model.

Table 2.1 Port and Sockets

Value Inxclient lnxserver

IP address 10.10.12.166 10.10.11.66

Port 32825 55555

Socket 10.10.12.166:32825 10.10.11.66:55555

54 PART I Networking Basics

THE CLIENT–SERVER MODEL
The hosts that run TCP/IP usually fall into one of two major categories: The host
could be client or the host could be a server. However, this is mostly an application-
layer model issue because most computers are fully multitasking-capable today. It
is possible that the same host could be running the client version of a program for
one application (e.g., the Web browser) and the server version of another program
(e.g., a fi le transfer server) at the same time. Dedicated servers are most common
on the Internet, but almost all client computers can act as servers for a variety of
 applications. The details are not as important as the interplay among layers and
 applications.

Peer-to-Peer Models
The client–server model is not the only way to implement a protocol stack. Many
applications implement a peer-to-peer model. Peer applications have exactly the
same capabilities whether used as a client or as a server. Distributed fi le-sharing
systems on the Internet typically function as both client (fetching fi les for the
user) and as a server (allowing user fi les to be shared by others).

The differences between client–server and peer-to-peer models are mainly appli-
cation layer differences. A desktop computer that runs a Web browser and has fi le
sharing turned on is both client and server, but is not now peer-to-peer. As an aside,
in X-windows, which is not discussed in this book, the terms “client” and “server”
are actually reversed and users sit in front of “X-servers” and access “X-clients.”

TCP/IP LAYERS AND CLIENT–SERVER
TCP/IP has fi ve layers. The bottom layers are the physical layer and underlying net-
work layer. The underlying network technologies at the network layer are the topic of
the next chapter. Above the data link layer is the IP layer itself. The IP layer forms and
routes the IP packet (also called a datagram in a lot of documentation) and IP is the
major protocol at this layer.

The transport layer of TCP/IP consists of two major protocols: the Transmission
Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP is a reliable layer
added on top of the best-effort IP layer to make sure that even if packets are lost in
transit, the hosts will be able to detect and resend missing information. TCP data units
are called segments. UDP is as best-effort as IP itself, and UDP data units are called
datagrams. The messages that applications exchange are made up of strings of seg-
ments or datagrams. Segments and datagrams are used to chop up application content,
such as huge, multimegabyte fi les, into more easily handled pieces.

TCP is reliable in the sense that TCP always resends corrupt or lost segments. This
strategy has many implications for delay-sensitive applications such as voice or video.

CHAPTER 2 TCP/IP Protocols and Devices 55

TCP is a connection-oriented layer on top of the connectionless IP layer. This means
that before any TCP segment can be sent to another host, a TCP connection must be
established to that host. Connectionless IP has no concept of a connection, and simply
forwards packets without any understanding if the packets ever really got where they
were going.

In contrast to TCP, UDP is a connectionless transport layer on top of connectionless
IP. UDP segments are simply forwarded to a destination under the assumption that
sooner or later a response will come back from the remote host. The response forms
an implied or formal acknowledgment that the UDP segment arrived.

At the top of the TCP/IP stack is the application, or application services, layer. This is
where the client–server concept comes into play. The applications themselves typically
come in client or server versions, which is not true at other layers of TCP/IP. While a
host computer might be able to run client processes and server processes at the same
time, in the simplest case, these processes are two different applications.

Client–server application implementation can be extremely simple. A server process
can start and basically sit and “listen” for clients to “talk” to the server. For example, a
Web server is brought up on a host successfully whether there is a browser client
pointed at it or not. The Web server process issues a passive open to TCP/IP and essen-
tially remains idle on the network side until some client requests content. However,
the Web browser (the client) process issues an active open to TCP/IP and attempts to

Other
TCP

Client–
Server

Applica-
tions

FTP

Some
Routing
Protocols

TCP
Connection-Oriented, Reliable

UDP
Connectionless, Best-Effort

SMTP SSH NFS* SNMP DNS*
Other
UDP

Client–
Server

Applica-
tions

File
Transfer Email

Remote
Access

Remote
File

Access

Network
Manage-

ment

Name
Lookup
Service

IP (Best-effort) ICMP ARPs

Network Access and Physical Layer
(Etherent LANs or other)

*In some instances, NFS and DNS use TCP.

FIGURE 2.4

The TCP/IP protocol stack in detail. The many possible applications on top and many possible
network links on the bottom all funnel through the IP “hourglass.”

56 PART I Networking Basics

send packets to a Web site immediately. If the Web site is not reachable, that causes an
error condition.

To sum up the simplest application cases: Clients talk and servers listen (and usu-
ally reply). It is very easy to program an application that either talks or listens, although
TCP/IP specifi cations allow for the transition of passive and active open from one state
to another. We’ll talk more about client and server application and passive and active
opens in the chapter on sockets.

A more detailed look at the TCP/IP protocol stack is shown in Figure 2.4. The
TCP/IP stack bridges the gap between interface connector on the network side (hard-
ware) and the memory address space of the application on the host (software).

The names of the protocol data units used at each layer are worth reviewing. The
unit of the network layer is the frame. Inside the frame is the data unit of the IP layer,
the packet. The unit of the transport layer is the segment in TCP and datagram in
UDP. The segment or datagram by defi nition is the content of the information-bear-
ing packet. Finally, applications exchange messages. Segments and datagrams taken
together form the messages that the applications are sending to each other.

This is a good place to explore some of the operational aspects of the TCP/IP
 protocol stack above the network access (or data link) layer.

THE IP LAYER
The connectionless IP layer routes the IP packets independently through the collection
of network nodes such as routers that make up the “internetwork” that connects the
LANs. Packets at the IP layer do not follow “paths” or “virtual circuits” or anything else
set up by signaled or manually defi ned connections for packet fl ow in other types of
network layers. However, this also means that the packets’ content might arrive out of
sequence, or even with gaps in the sequence due to lost packets, at the destination.

IP does not care to which application a packet belongs. IP delivers all packets with-
out a sense of priority or sensitivity to loss. The whole point of IP is to get packets from
one network interface to another. IP itself is not concerned with the lack of guaranteed
quality of service (QoS) parameters such as bandwidth availability or minimal delay,
and this is characteristic of all connectionless, best-effort networks. Even the basics,
such as sequenced delivery of packet content, priorities, and guaranteed delivery in the
form of acknowledgments (if these are needed by the application), must be provided
by the higher layers of the TCP/IP protocol stack. These reliable transport functions are
not functions of the IP layer, and some are not even functions of TCP.

Two other major protocols run at the IP layer besides IPv4 or IPv6 (or both). The
routers that form the network nodes in a TCP/IP network must be able to send error
messages to the hosts if a router must discard a packet (e.g., due to lack of buffer
space because of congestion). This protocol is known as the Internet Control Message
 Protocol (ICMP). ICMP messages are sent inside IP packets, but ICMP is still considered
a different protocol and not a separate layer.

CHAPTER 2 TCP/IP Protocols and Devices 57

The other major protocol placed at the IP layer has many different functions
depending on the type of network that IP is running on. This is the Address Resolu-
tion Protocol (ARP). The main function of ARP is to provide a method for IPv4, which
technically knows only about packets, to fi nd out the proper network layer address to
place in the frame header destination fi eld. On LANs, this is the MAC address. Without
this address, the network beneath the IP layer could not deliver the frame containing
the IP packet to the proper destination. (IPv6 does not use ARP: IPv6 uses multicast for
this purpose.)

On a LAN, ARP is a way for IPv4 to send a broadcast message onto the LAN asking,
in effect, “Who has IP address 192.168.13.84?” Each system, whether host or router, on
the LAN will examine the ARP message (all systems must pay attention to a broadcast)
and the system having the IP address in question will reply to the sender’s MAC address
found in the source fi eld of the frame. This target system will also cache the IP address
information so that it knows the MAC address of the sender (this cuts down on ARP
traffi c on the network). The MAC layer address needed by the sending system is found
in the source address fi eld of the frame carrying the ARP reply packet.

ARP messages are broadcast to every host in what is called the network layer broad-
cast domain. The broadcast domain can be a single physical group (e.g., all hosts
attached to a single group of hubs) or a logical grouping of hosts forming a virtual LAN
(VLAN). More will be said about broadcast domains and VLANs later in this chapter.

THE TRANSPORT LAYER
The two main protocols that run above the IP layer at the transport layer are TCP and
UDP. Lately, UDP has been assuming more and more prominence on the Internet, espe-
cially with applications such as voice and multicast traffi c such as video. One reason is
that TCP, with its reliable resending, is not particularly well suited for real-time applica-
tions (real time just means that the network delays must be low and stable or else the
application will not function properly). For these applications, late-arriving data are
worse than data that do not arrive at all, especially if the late data cause all the data
“behind” it to also arrive late. (Of course, in spite of these limitations, TCP is still widely
used for audio streaming and similar applications.)

Transmission Control Protocol
TCP’s built-in reliability features include sequence numbering with resending, which
is used to detect and resend missing or out-of-sequence segments. TCP also includes
a complete fl ow control mechanism (called windowing) to prevent any sender from
overwhelming a receiver. Neither of these built-in TCP features is good for real-time
audio and video on the Internet. These applications cannot “pause” and wait for miss-
ing segments, nor should they slow down or speed up as traffi c loads vary on the
Internet. (The fact that they do just points out the incomplete nature of TCP/IP when
it comes to quality of service for these applications and services.)

58 PART I Networking Basics

TCP contains all the functions and mechanisms needed to make up for the
best-effort connectionless delivery provided by the IP layer. Packets could arrive at a
host with errors, out of their correct sequence, duplicated, or with gaps in sequence
due to lost (or discarded) packets. TCP must guarantee that the data stream is delivered
to the destination application error-free, with all data in sequence and complete. Fol-
lowing the practice used in connection-oriented networks, TCP uses acknowledgments
that periodically fl ow from the destination to the source to assure the sender that all is
well with the data received to that point in time.

On the sending side, TCP passes segments to the IP layer for encapsulation in
 packets, which the IP layer in hosts and routers route connectionlessly to the destina-
tion host. On the receiving side, TCP accepts the incoming segments from the IP layer
and delivers the data they represent to the proper application running above TCP in
the exact order in which the data were sent.

User Datagram Protocol
The TCP/IP transport layer has another major protocol. UDP is as connectionless as IP.
When applications use UDP instead of TCP, there is no need to establish, maintain, or
tear down a connection between a source and destination before sending data. Connec-
tion management adds overhead and some initial delay to the network. UDP is a way to
send data quickly and simply. However, UDP offers none of the reliability services that
TCP does. UDP applications cannot rely on TCP to ensure error-free, guaranteed (via
acknowledgments), in-sequence delivery of data to the destination.

For some simple applications, purely connectionless data delivery is good enough.
Single request–response message pairs between applications are sent more effi ciently
with UDP because there is no need to exchange a fl urry of initial TCP segments to
establish a connection. Many applications will not be satisfi ed with this mode of opera-
tion, however, because it puts the burden of reliability on the application itself.

UDP is often used for short transactions that fi t into one datagram and packet.
Real-time applications often use UDP with another header inside called the real-time
transport protocol (RTP). RTP borrows what it needs from the TCP header, such as a
sequence number to detect (but not to resend) missing packets of audio and video, and
uses these desirable features in UDP.

THE APPLICATION LAYER
At the top of the TCP/IP protocol stack, at the application layer, are the basic applica-
tions and services of the TCP/IP architecture. Several basic applications are typically
bundled with the TCP/IP software distributed from various sources and, fortunately, are
generally interoperable.

The standard application services suite usually includes a fi le transfer method
(File Transfer Protocol: FTP), a remote terminal access method (Telnet, which is not
 commonly used today, and others, which are), an electronic mail system (Simple Mail

CHAPTER 2 TCP/IP Protocols and Devices 59

Transfer Protocol: SMTP), and a Domain Name System (DNS) resolver for domain name
to IP address translation (and vice versa), and more. Many TCP/IP implementations also
include a way of accessing fi les remotely (rather than transferring the whole fi le to the
other host) known as the Network File System (NFS). There is also the Simple Network
Management Protocol (SNMP) for network operations. For the Web, the server and
browser applications are based on the Hypertext Transfer Protocol (HTTP). Some of
these applications are defi ned to run on TCP and others are defi ned to run on UDP, and
in many cases can run on either.

BRIDGES, ROUTERS, AND SWITCHES
The TCP/IP protocol stack establishes an architecture for internetworking. These
 protocols can be used to connect LANs in the same building, on a campus, or around
the world. Not all internetworking devices are the same. Generally, network architects
seeking to extend the reach of a LAN can choose from one of four major interconnec-
tion devices: repeaters, bridges, routers, and switches.

Not long ago, the network confi guration and the available devices determined
which type of internetworking device should be used. Today, network confi gurations
are growing more and more complex, and the devices available often combine the fea-
tures of several of these devices. For example, the routers on the Illustrated Network
have all the features of traditional routers, plus some switching capabilities.

In their simplest forms, repeaters, bridges, and routers operate at different layers of
the TCP/IP protocol stack, as shown in Figure 2.5. Roughly, repeaters forward bits from
one LAN segment to another, bridges forward frames, and routers forward packets.

Layer 4

Layer 5

Layer 3

Layer 2

Layer 1

Host

Application Layer

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Host

Application Layer

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Bridge

Repeater

Router

FIGURE 2.5

Repeater, bridge, and router. A repeater “spits bits,” while a bridge deals with complete frames.
A router operates at the packet level and is the main mode of the Internet.

60 PART I Networking Basics

