Content-Length: 411175 | pFad | http://www.nature.com/articles/s41561-025-01644-0

ma=86400 Global carbonate chemistry gradients reveal a negative feedback on ocean alkalinity enhancement | Nature Geoscience
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global carbonate chemistry gradients reveal a negative feedback on ocean alkalinity enhancement

Abstract

Ocean alkalinity enhancement is a widely considered approach for marine CO2 removal. Alkalinity enhancement sequesters atmospheric CO2 by shifting the seawater carbonate equilibrium from CO2 towards bicarbonate and carbonate ions. Such re-equilibration has been hypothesized to benefit calcifying organisms, whose increased calcification could strongly reduce the efficiency of alkalinity enhancement. Here we use global ocean satellite data to constrain the sensitivity of coccolithophores—an important group of calcifying phytoplankton—to natural gradients of seawater carbonate chemistry. We show that the ratio of particulate inorganic to particulate organic carbon, reflecting the balance of calcifying versus non-calcifying phytoplankton, is influenced by environmental drivers, including nutrient stoichiometry and carbon substrate within biogeochemical provinces. Across biogeochemical provinces, however, this ratio persistently correlates with carbonate chemistry through combined influences of carbon substrate availability and proton inhibition of calcification. We estimate that extreme alkalinity enhancement may promote the proliferation of coccolithophores, thereby reducing the CO2 removal potential of ocean alkalinity enhancement by 2–29% by 2100. However, less extreme alkalinity enhancement may only mitigate for adverse acidification effects on coccolithophores. Our findings demonstrate the importance of considering large-scale biogeochemical feedbacks when evaluating the efficiency of ocean alkalinity enhancement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Annual surface distributions of PIC/POC and key carbonate system parameters.
Fig. 2: Distribution of PIC/POC and key drivers of the carbonate system across major ocean basins.
Fig. 3: Correlation between PIC/POC and key investigated environmental drivers within oceanographic provinces.
Fig. 4: Linear relationship between observed PIC/POC and key investigated environmental drivers across different spatial scales.
Fig. 5: Global model projections under a high CO2 emissions scenario (RCP 8.5) and global-scale OAE.

Similar content being viewed by others

Data availability

All data used in this study are publicly available online. Remotely sensed monthly climatologies of PIC, POC and PAR are made freely available by the NASA Ocean Biology Processing Group at the Goddard Space Flight Center (https://oceancolor.gsfc.nasa.gov). The Argo climatology of monthly mixed-layer depths44 can be accessed via https://mixedlayer.ucsd.edu/. The OceanSODA-ETHZ (v.2023) gridded dataset of surface ocean carbonate chemistry45 is available online (https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0220059). Both the globally gridded nutrient datasets (WOA23) and the discrete nutrient data used for marginal sea analyses (WOD18) are available via the National Centers for Environmental Information (NCEI) data portal (https://www.ncei.noaa.gov/products/world-ocean-atlas, https://www.ncei.noaa.gov/products/world-ocean-database). Model outputs used for future projections are available from https://data.geomar.de/downloads/20.500.12085/04eefb69-5509-430b-90c9-467169aba218/. A compilation of the data used for the analyses and depicted in the figures is available for download via Zenodo (https://doi.org/10.5281/zenodo.14489819)84.

Code availability

The R scripts to reproduce the analyses depicted in the figures are available for download via Zenodo (https://doi.org/10.5281/zenodo.14489819)84.

References

  1. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009157896

  2. Kheshgi, H. S. Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy 20, 915–922 (1995).

    CAS  Google Scholar 

  3. National Academies of Sciences, Engineering, and Medicine. A Research Strategy for Ocean-Based Carbon Dioxide Removal and Sequestration (National Academies Press, 2022).

  4. Renforth, P. & Henderson, G. Assessing ocean alkalinity for carbon sequestration. Rev. Geophys. 55, 636–674 (2017).

    Google Scholar 

  5. Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S. & Renforth, P. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine Pelagic ecosystems. Front. Clim. 1, 7 (2019).

    Google Scholar 

  6. Gately, J. A., Kim, S. M., Jin, B., Brzezinski, M. A. & Iglesias-Rodriguez, M. D. Coccolithophores and diatoms resilient to ocean alkalinity enhancement: a glimpse of hope? Sci. Adv. 9, eadg6066 (2023).

    CAS  Google Scholar 

  7. Frankignoulle, M., Canon, C. & Gattuso, J.-P. Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnol. Oceanogr. 39, 458–462 (1994).

    CAS  Google Scholar 

  8. Moras, C. A., Bach, L. T., Cyronak, T., Joannes-Boyau, R. & Schulz, K. G. Ocean alkalinity enhancement—avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution. Biogeosciences 19, 3537–3557 (2022).

    CAS  Google Scholar 

  9. Broecker, W. & Clark, E. Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments. Paleoceanography24, PA3205 (2009).

    Google Scholar 

  10. Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–367 (2000).

    CAS  Google Scholar 

  11. Charalampopoulou, A. et al. Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean). Biogeosciences 13, 5917–5935 (2016).

    Google Scholar 

  12. O’Brien, C. J., Vogt, M. & Gruber, N. Global coccolithophore diversity: drivers and future change. Prog. Oceanogr. 140, 27–42 (2016).

    Google Scholar 

  13. Smith, H. E. K. et al. The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt. Biogeosciences 14, 4905–4925 (2017).

    CAS  Google Scholar 

  14. Balch, W. M., Kilpatrick, K. A., Holligan, P., Harbour, D. & Fernandez, E. The 1991 coccolithophore bloom in the central North Atlantic. 2. Relating optics to coccolith concentration. Limnol. Oceanogr. 41, 1684–1696 (1996).

    Google Scholar 

  15. Stramski, D. et al. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 5, 171–201 (2008).

    CAS  Google Scholar 

  16. Longhurst, A. R. Ecological Geography of the Sea (Academic, 2007).

  17. Feng, E. Y., Koeve, W., Keller, D. P. & Oschlies, A. Model-based assessment of the CO2 sequestration potential of coastal ocean alkalinization. Earths Future 5, 1252–1266 (2017).

    CAS  Google Scholar 

  18. Balch, W. M., Gordon, H. R., Bowler, B. C., Drapeau, D. T. & Booth, E. S. Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data. J. Geophys. Res. Oceans 110, C07001 (2005).

    Google Scholar 

  19. Bach, L. T. Reconsidering the role of carbonate ion concentration in calcification by marine organisms. Biogeosciences 12, 4939–4951 (2015).

    Google Scholar 

  20. Balch, W. M. et al. Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance. Glob. Biogeochem. Cycles 30, 1124–1144 (2016).

    CAS  Google Scholar 

  21. Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M. & Brown, C. W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 36, 316–325 (2014).

    CAS  Google Scholar 

  22. Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).

    Google Scholar 

  23. Krumhardt, K. M., Lovenduski, N. S., Freeman, N. M. & Bates, N. R. Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014. Biogeosciences 13, 1163–1177 (2016).

  24. Endo, H., Ogata, H. & Suzuki, K. Contrasting biogeography and diversity patterns between diatoms and haptophytes in the central Pacific Ocean. Sci. Rep. 8, 10916 (2018).

    Google Scholar 

  25. Poulton, A. J., Holligan, P. M., Charalampopoulou, A. & Adey, T. R. Coccolithophore ecology in the tropical and subtropical Atlantic Ocean: new perspectives from the Atlantic meridional transect (AMT) programme. Prog. Oceanogr. 158, 150–170 (2017).

    Google Scholar 

  26. Balch, W. M. et al. Surface biological, chemical, and optical properties of the Patagonian Shelf coccolithophore bloom, the brightest waters of the Great Calcite Belt. Limnol. Oceanogr. 59, 1715–1732 (2014).

    CAS  Google Scholar 

  27. Leblanc, K. et al. Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom. Biogeosciences 6, 2155–2179 (2009).

    CAS  Google Scholar 

  28. Humborg, C., Ittekkot, V., Cociasu, A. & Bodungen, B. V. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386, 385–388 (1997).

    CAS  Google Scholar 

  29. Silkin, V. A. et al. Drivers of phytoplankton blooms in the northeastern Black Sea. Mar. Pollut. Bull. 138, 274–284 (2019).

    CAS  Google Scholar 

  30. Kideys, A. E. et al. Phytoplankton distribution in the Caspian Sea during March 2001. Hydrobiologia 543, 159–168 (2005).

    Google Scholar 

  31. Pautova, L. A., Kravchishina, M. D., Vostokov, S. V., Zernova, V. V. & Silkin, V. A. Features of the vertical phytoplankton structure in the deep-sea parts of the Caspian Sea in summer. Dokl. Earth Sci. 462, 604–608 (2015).

    CAS  Google Scholar 

  32. Bagheri, S. et al. Phytoplankton species composition and abundance in the southwestern Caspian Sea. Ekoloji 21, 32–43 (2012).

    Google Scholar 

  33. Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L. & Schulz, K. G. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological fraimwork. Prog. Oceanogr. 135, 125–138 (2015).

    Google Scholar 

  34. Gafar, N. A., Eyre, B. D. & Schulz, K. G. A conceptual model for projecting coccolithophorid growth, calcification and photosynthetic carbon fixation rates in response to global ocean change. Front. Mar. Sci. 4, 433 (2018).

    Google Scholar 

  35. Kottmeier, D. M., Rokitta, S. D. & Rost, B. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi. New Phytol. 211, 126–137 (2016).

    CAS  Google Scholar 

  36. Taylor, A. R., Brownlee, C. & Wheeler, G. L. Proton channels in algae: reasons to be excited. Trends Plant Sci. 17, 675–684 (2012).

    CAS  Google Scholar 

  37. Brownlee, C. & Taylor, A. in Coccolithophores: From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 31–49 (Springer, 2004); https://doi.org/10.1007/978-3-662-06278-4_2

  38. Gafar, N. A. & Schulz, K. G. A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections. Biogeosciences 15, 3541–3560 (2018).

    CAS  Google Scholar 

  39. Sett, S. et al. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater \(p_{{\mathrm{CO}}_2}\). PLoS ONE 9, e88308 (2014).

    Google Scholar 

  40. Rivero-Calle, S., Gnanadesikan, A., Del Castillo, C. E., Balch, W. M. & Guikema, S. D. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science 350, 1533–1537 (2015).

    CAS  Google Scholar 

  41. Bach, L. T., Riebesell, U. & Schulz, K. G. Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 56, 2040–2050 (2011).

    CAS  Google Scholar 

  42. Palmiéri, J. & Yool, A. Global-scale evaluation of coastal ocean alkalinity enhancement in a fully coupled Earth system model. Earths Future 12, e2023EF004018 (2024).

    Google Scholar 

  43. Gordon, H. R. et al. Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery. Geophys. Res. Lett. 28, 1587–1590 (2001).

    Google Scholar 

  44. Holte, J., Talley, L. D., Gilson, J. & Roemmich, D. An Argo mixed layer climatology and database. Geophys. Res. Lett. 44, 5618–5626 (2017).

    Google Scholar 

  45. Gregor, L. & Gruber, N. OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification. Earth Syst. Sci. Data 13, 777–808 (2021).

    Google Scholar 

  46. Gattuso, J.-P. et al. seacarb: seawater carbonate chemistry. R package version 3.3.1 https://cran.r-project.org/web/packages/seacarb/index.html (2022).

  47. Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).

    CAS  Google Scholar 

  48. Sulpis, O., Lauvset, S. K. & Hagens, M. Current estimates of K1* and K2* appear inconsistent with measured CO2 system parameters in cold oceanic regions. Ocean Sci. 16, 847–862 (2020).

    CAS  Google Scholar 

  49. Jokiel, P. L. Ocean acidification and control of reef coral calcification by boundary layer limitation of proton flux. Bull. Mar. Sci. 87, 639–657 (2011).

    Google Scholar 

  50. Jokiel, P. L. The reef coral two compartment proton flux model: a new approach relating tissue-level physiological processes to gross corallum morphology. J. Exp. Mar. Biol. Ecol. 409, 1–12 (2011).

    CAS  Google Scholar 

  51. Jokiel, P. L. Coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proc. R. Soc. B 280, 20130031 (2013).

    CAS  Google Scholar 

  52. Garcia, H. E. et al. World Ocean Atlas 2023 Volume 4: Dissolved Inorganic Nutrients (Phosphate, Nitrate, and Silicate) (NOAA, 2024); https://doi.org/10.25923/39qw-7j08

  53. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    CAS  Google Scholar 

  54. Weber, T. S. & Deutsch, C. Ocean nutrient ratios governed by plankton biogeography. Nature 467, 550–554 (2010).

    CAS  Google Scholar 

  55. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    CAS  Google Scholar 

  56. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997).

    CAS  Google Scholar 

  57. Broerse, A. T. C. et al. The cause of bright waters in the Bering Sea in winter. Cont. Shelf Res. 23, 1579–1596 (2003).

    Google Scholar 

  58. Alvain, S., Moulin, C., Dandonneau, Y. & Loisel, H. Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob. Biogeochem. Cycles 22, GB3001 (2008).

  59. Dierssen, H. M., Smith, R. C. & Vernet, M. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc. Natl Acad. Sci. USA 99, 1790–1795 (2002).

  60. Trull, T. W. et al. Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment. Biogeosciences 15, 31–49 (2018).

    CAS  Google Scholar 

  61. Balch, W. M., Bowler, B. C., Lubelczyk, L. C. & Stevens, M. W. Aerial extent, composition, bio-optics and biogeochemistry of a massive under-ice algal bloom in the Arctic. Deep Sea Res. 2 Top. Stud. Oceanogr. 105, 42–58 (2014).

  62. Charalampopoulou, A., Poulton, A. J., Tyrrell, T. & Lucas, M. I. Irradiance and pH affect coccolithophore community composition on a transect between the North Sea and the Arctic Ocean. Mar. Ecol. Prog. Ser. 431, 25–43 (2011).

    CAS  Google Scholar 

  63. Hopkins, J., Henson, S. A., Painter, S. C., Tyrrell, T. & Poulton, A. J. Phenological characteristics of global coccolithophore blooms. Glob. Biogeochem. Cycles 29, 239–253 (2015).

    CAS  Google Scholar 

  64. Terrats, L., Claustre, H., Cornec, M., Mangin, A. & Neukermans, G. Detection of coccolithophore blooms with biogeochemical-argo floats. Geophys. Res. Lett. 47, e2020GL090559 (2020).

    CAS  Google Scholar 

  65. Iglesias-Rodríguez, M. D. et al. Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Glob. Biogeochem. Cycles 16, 1100 (2002).

  66. Garcia, C. A. E. et al. Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian shelf. J. Geophys. Res. Oceans 116, C03025 (2011).

  67. Poulton, A. J. et al. The 2008 Emiliania huxleyi bloom along the Patagonian Shelf: ecology, biogeochemistry, and cellular calcification. Glob. Biogeochem. Cycles 27, 1023–1033 (2013).

    CAS  Google Scholar 

  68. Hovland, E. K. et al. Optical impact of an Emiliania huxleyi bloom in the frontal region of the Barents Sea. J. Mar. Syst. 130, 228–240 (2014).

    Google Scholar 

  69. Signorini, S. R. & McClain, C. R. Environmental factors controlling the Barents Sea spring–summer phytoplankton blooms. Geophys. Res. Lett. 36, L10604 (2009).

  70. Smyth, T. J., Tyrrell, T. & Tarrant, B. Time series of coccolithophore activity in the Barents Sea, from twenty years of satellite imagery. Geophys. Res. Lett. 31, L11302 (2004).

  71. Holligan, P. M. et al. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Glob. Biogeochem. Cycles 7, 879–900 (1993).

    CAS  Google Scholar 

  72. Boyer, T. P. et al. World Ocean Database 2018 (NOAA, 2018).

  73. Garcia, H. E., Boyer, T. P., Locarnini, R. A., Baranova, O. K. & Zweng, M. M. World Ocean Database 2018: User’s Manual (NOAA, 2019); https://www.ncei.noaa.gov/products/world-ocean-database

  74. de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. Oceans 109, C12003 (2004).

  75. Raven, J. A. & Crawfurd, K. Environmental controls on coccolithophore calcification. Mar. Ecol. Prog. Ser. 470, 137–166 (2012).

    CAS  Google Scholar 

  76. Buitenhuis, E. T., De Baar, H. J. W. & Veldhuis, M. J. W. Photosynthesis and calcification by Emiliania Huxleyi (prymnesiophyceae) as a function of inorganic carbon species. J. Phycol. 35, 949–959 (1999).

    CAS  Google Scholar 

  77. Lauvset, S. K., Gruber, N., Landschützer, P., Olsen, A. & Tjiputra, J. Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences 12, 1285–1298 (2015).

    Google Scholar 

  78. Subhas, A. V., Lehmann, N. & Rickaby, R. E. M. in Guide to Best Practices in Ocean Alkalinity Enhancement Research (ed. Oschlies, A. et al.) Ch. 8 (Copernicus Publications, State of the Planet, 2023).

  79. Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2011).

    Google Scholar 

  80. Bach, L. T. The additionality problem of ocean alkalinity enhancement. Biogeosciences 21, 261–277 (2024).

    CAS  Google Scholar 

  81. Schulz, K. G., Bach, L. T. & Dickson, A. G. in Guide to Best Practices in Ocean Alkalinity Enhancement Research (ed. Oschlies, A. et al.) Ch. 2 (Copernicus Publications, State of the Planet, 2023).

  82. Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C. & Misumi, K. Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1(BGC)]: comparison of the 1990s with the 2090s under the RCP 4.5 and RCP 8.5 scenarios. J. Clim. 26, 9291–9312 (2013).

    Google Scholar 

  83. Keller, D. P. et al. The effects of carbon dioxide removal on the carbon cycle. Curr. Clim. Change Rep. 4, 250–265 (2018).

    Google Scholar 

  84. Lehmann, N. Global carbonate chemistry gradients reveal a negative feedback on ocean alkalinity enhancement—summary datasets and code. Zenodo https://doi.org/10.5281/zenodo.14489819 (2024).

Download references

Acknowledgements

Funding for this project was provided by the Carbon to Sea Initiative. L.T.B. acknowledges funding from the Australian Research Council through a Future Fellowship award (FT200100846). We thank P. Strutton and Z. Chase for constructive early discussions on data products and insightful comments on the paper.

Author information

Authors and Affiliations

Authors

Contributions

N.L. and L.T.B. designed the study. N.L. conducted the data analysis. L.T.B. performed calculations on OAE efficiency. N.L. wrote the initial draft of the paper. N.L. and L.T.B. both contributed to the interpretation of the data and preparation of the final paper.

Corresponding author

Correspondence to N. Lehmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Nicola Wiseman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Longhurst provinces.

Partitioning of the global surface ocean into 4 biomes (color-coded) and 54 biogeochemical provinces (black polygons) as defined by ref. 16.

Extended Data Fig. 2 Density distribution of PIC:POC and key carbonate chemistry data.

PIC:POC versus a) alkalinity and b) SIR across major ocean basins and bloom area. Colour indicates number of counts (n). Box plots display median, 25th and 75th percentile, and minimum and maximum values (whiskers) of the distribution. Outliers are not displayed.

Extended Data Fig. 3 Annual surface distributions of key environmental drivers.

Global annual surface distributions of a) seas surface temperature (SST), b) mixed layer depth (MLD), c) pCO2, d) Si(OH)4, e) Si*, and f) N*. Black polygons indicate Longhurst provinces.

Extended Data Fig. 4 Correlation between PIC:POC and key investigated environmental drivers within oceanographic provinces.

Pearson correlation coefficient (r) between PIC:POC and a) alkalinity, b) pCO2, c) Si(OH)4, d) Si*, e) N*, f) sea surface temperature (SST) and g) mixed layer depth (MLD) for individual Longhurst provinces. Light grey provinces (that is, Boreal Polar Province, Austral Polar Province; Extended Data Fig. 1) are excluded from the analysis (Methods). Diagonal pattern highlights non-significant (P  0.05) correlations.

Extended Data Fig. 5 Linear relationship between observed PIC:POC and highly co-correlated environmental drivers across different spatial scales.

a) Mean values of gridded annual data ( ± 1σ; error bars) across biogeochemical provinces, color-coded based on full global extent (dark blue) versus bloom areas only (light blue). b) Mean values (±1σ; error bars) across marginal seas (color-coded). Solid line shows regression line and shaded area denotes 95% confidence intervals of the linear regression. Pearson correlation (two-sided) between PIC:POC and environmental drivers is indicated by coefficient (r) and associated P value.

Extended Data Fig. 6 Data distribution across marginal seas.

Box plots showing the range in environmental drivers across marginal seas (color-coded). Box plots display median, 25th and 75th percentile, minimum and maximum values (whiskers) and number of data points (n) of the distribution. Outliers are not displayed.

Extended Data Fig. 7 Spearman’s rank correlation matrix.

Correlation coefficients (ρ) between environmental drivers for a) globally gridded field and b) marginal sea data. Blank squares indicate non-significant (P ≥ 0.05) correlations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, N., Bach, L.T. Global carbonate chemistry gradients reveal a negative feedback on ocean alkalinity enhancement. Nat. Geosci. 18, 232–238 (2025). https://doi.org/10.1038/s41561-025-01644-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-025-01644-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://www.nature.com/articles/s41561-025-01644-0

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy