
#WWDC17

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Daniel Chimene, Core Darwin
Daniel A. Steffen, Core Darwin
Pierre Habouzit, Core Darwin

•Modernizing GCD Usage
•How to stay on core
• Session 706

System Frameworks

DispatchWorkItem.notify

DispatchQueue.async

DispatchQueue.sync

DispatchQueue.concurrentPerform

DispatchSource.setEventHandler

DispatchSource.activatedispatch_activate

dispatch_sync

dispatch_source_create

dispatch_queue_create

dispatch_applydispatch_once

dispatch_after

dispatch_async

A8 A10A9A7A6A5A4

Efficiency Through Observation
Going off core during an operation reduces efficiency

10µs 500µs 1ms

Efficiency

Observation Time

faster after combining queue hierarchies

1.3x

•Parallelism and concurrency

•Parallelism and concurrency
•Using GCD for concurrency

•Parallelism and concurrency
•Using GCD for concurrency
•Unified Queue Identity

•Parallelism and concurrency
•Using GCD for concurrency
•Unified Queue Identity
•Finding problem spots

Simultaneous execution of closely related computations

Parallelism

Concurrency
Composition of independently executed tasks

•Parallelism

Parallelism
Simultaneous execution of closely related computations

Parallelism
Simultaneous execution of closely related computations

Parallelism
Simultaneous execution of closely related computations

Take Advantage of System Frameworks

Metal 2Accelerate Core ML Core Animation

Parallelism with GCD

Express explicit parallelism with DispatchQueue.concurrentPerform

Parallel for-loop—calling thread participates in the computation

More efficient than many asyncs to a concurrent queue

DispatchQueue.concurrentPerform(1000) { i in /* iteration i */ }

Parallelism with GCD

Express explicit parallelism with DispatchQueue.concurrentPerform

Parallel for-loop—calling thread participates in the computation

More efficient than many asyncs to a concurrent queue

DispatchQueue.concurrentPerform(1000) { i in /* iteration i */ }

Parallelism with GCD

Express explicit parallelism with DispatchQueue.concurrentPerform

Parallel for-loop—calling thread participates in the computation

More efficient than many asyncs to a concurrent queue

DispatchQueue.concurrentPerform(1000) { i in /* iteration i */ }

NEW

dispatch_apply(DISPATCH_APPLY_AUTO, 1000, ^(size_t i){ /* iteration i */ })

DISPATCH_APPLY_AUTO deploys back to macOS 10.9, iOS 7.0

Dynamic Resource Availability
Choosing an iteration count

{…}

{…}

{…}

DispatchQueue.concurrentPerform(3) { i in /* iteration i */ }

Dynamic Resource Availability
Choosing an iteration count

{…}

{…} {…}

UI Rendering

DispatchQueue.concurrentPerform(3) { i in /* iteration i */ }

Dynamic Resource Availability
Choosing an iteration count

{…}

{…}

Bubble!

{…}

UI Rendering

DispatchQueue.concurrentPerform(3) { i in /* iteration i */ }

Dynamic Resource Availability
Choosing an iteration count

{…}

{…} {…}

{…}

{…}

{…}

UI Rendering

DispatchQueue.concurrentPerform(6) { i in /* iteration i */ }

Dynamic Resource Availability
Choosing an iteration count

{…}

{…} {…}

{…}

{…}

{…}

UI Rendering

DispatchQueue.concurrentPerform(6) { i in /* iteration i */ }

Dynamic Resource Availability
Choosing an iteration count

UI Rendering

DispatchQueue.concurrentPerform(11) { i in /* iteration i */ }

Dynamic Resource Availability
Choosing an iteration count

UI Rendering

DispatchQueue.concurrentPerform(11) { i in /* iteration i */ }

Dynamic Resource Availability
Choosing an iteration count

UI Rendering

DispatchQueue.concurrentPerform(1000) { i in /* iteration i */ }

Leverage system frameworks

Use DispatchQueue.concurrentPerform

Consider dynamic availability

Parallelism

•Concurrency

Concurrency
Composition of independently executed tasks

Concurrency
Composition of independently executed tasks

Concurrency
Composition of independently executed tasks

DatabaseNetworking

User Interface

Concurrency
Composition of independently executed tasks

DatabaseNetworking

User Interface

User Interface

Concurrency
Composition of independently executed tasks

Database

User Interface

Concurrency
Composition of independently executed tasks

Database

Networking

User Interface

Concurrency
Composition of independently executed tasks

Database

Networking

User Interface

Concurrency
Composition of independently executed tasks

Touch!

Database

Networking

User Interface

Concurrency
Composition of independently executed tasks

Touch!

Concurrency
Context switching

User Interface Database Networking

Concurrency
Context switching

User Interface Database Networking

System Trace in Depth WWDC 2016

Context Switching
The power of concurrency

The OS can choose a new thread at any time

User Interface Database Networking

Context Switching
The power of concurrency

The OS can choose a new thread at any time
• A higher priority thread needs the CPU

User Interface Database Networking

Context Switching
The power of concurrency

The OS can choose a new thread at any time
• A higher priority thread needs the CPU
• A thread finishes its current work

User Interface Database Networking

Context Switching
The power of concurrency

The OS can choose a new thread at any time
• A higher priority thread needs the CPU
• A thread finishes its current work
• Waiting to acquire a resource

User Interface Database Networking

Context Switching
The power of concurrency

The OS can choose a new thread at any time
• A higher priority thread needs the CPU
• A thread finishes its current work
• Waiting to acquire a resource
• Waiting for an asynchronous request to complete

User Interface Database Networking

Excessive Context Switching
Too much of a good thing

Repeatedly bouncing between contexts can become expensive

Excessive Context Switching
Too much of a good thing

Repeatedly bouncing between contexts can become expensive

Excessive Context Switching
Too much of a good thing

Repeatedly bouncing between contexts can become expensive
• CPU runs less efficiently

Excessive Context Switching
Too much of a good thing

Repeatedly bouncing between contexts can become expensive
• CPU runs less efficiently

Excessive Context Switching
Too much of a good thing

Repeatedly bouncing between contexts can become expensive
• CPU runs less efficiently
• There may be others ahead in line for CPU access

Excessive Context Switching
Too much of a good thing

Repeatedly bouncing between contexts can become expensive
• CPU runs less efficiently
• There may be others ahead in line for CPU access

Excessive Context Switching
Too much of a good thing

Repeatedly bouncing between contexts can become expensive
• CPU runs less efficiently
• There may be others ahead in line for CPU access

Excessive Context Switching
Too much of a good thing

Repeatedly waiting for exclusive access to contended resources

Repeatedly switching between independent operations

Repeatedly bouncing an operation between threads

Excessive Context Switching
Too much of a good thing

Repeatedly waiting for exclusive access to contended resources

Repeatedly switching between independent operations

Repeatedly bouncing an operation between threads

Too much of a good thing

Repeatedly waiting for exclusive access to contended resources

Repeatedly switching between independent operations

Repeatedly bouncing an operation between threads

Lock Contention

Lock Contention
Visualization in Instruments

Lock Contention
Visualization in Instruments

Lock Contention
Visualization in Instruments

10µs 10µs

Lock Contention
Visualization in Instruments

Frequent context-switching

10µs 10µs

Lock Contention

Lock Contention

Lock Contention
Fair locks

owned

Lock Contention
Fair locks

Lock Contention
Fair locks

owned reserved

Lock Contention
Fair locks

Lock Contention
Fair locks

owned reserved

Lock Contention
Fair locks

Lock Contention
Fair locks

owned reserved owned

Lock Contention
Fair locks

owned reserved owned

Fair locks
Lock Contention

Lock Contention
Unfair locks

owned

Lock Contention
Unfair locks

owned waiters

Lock Contention
Unfair locks

owned ownedwaiters

Lock Contention
Use the right lock for the job

Unfair Fair

Available types os_unfair_lock
pthread_mutex_t, NSLock
DispatchQueue.sync

Contended lock re-acquisition Can steal the lock Context switches to next waiter

Subject to waiter starvation Yes No

Lock Ownership

owned ownedwaiters

Lock Ownership

Ownership helps resolve priority inversion
• High priority waiter
• Low priority owner

owned ownedwaiters

Lock Ownership

Single Owner

Serial queues

DispatchWorkItem.wait

os_unfair_lock

pthread_mutex, NSLock

Lock Ownership

Single Owner

Serial queues

DispatchWorkItem.wait

os_unfair_lock

pthread_mutex, NSLock

No Owner

dispatch_semaphore

dispatch_group

pthread_cond, NSCondition

Queue suspension

Lock Ownership

Single Owner

Serial queues

DispatchWorkItem.wait

os_unfair_lock

pthread_mutex, NSLock

No Owner

dispatch_semaphore

dispatch_group

pthread_cond, NSCondition

Queue suspension

Multiple Owners

Private concurrent queues

pthread_rwlock

Optimizing Lock Contention

Inefficient behaviors are often emergent properties

Visualize your app’s behavior with Instruments

Use the right lock for the job

Too Much of a Good Thing

Repeatedly waiting for exclusive access to contended resources

Repeatedly switching between independent operations

Repeatedly bouncing an operation between threads

Daniel A. Steffen, Core Darwin

•Using GCD for Concurrency

Grand Central Dispatch

Simplifying iPhone App Development with Grand Central Dispatch WWDC 2010

Asynchronous Design Patterns with Blocks, GCD, and XPC WWDC 2012

Power, Performance, and Diagnostics: What's new in GCD and XPC WWDC 2014

Building Responsive and Efficient Apps with GCD WWDC 2015

Concurrent Programming with GCD in Swift 3 WWDC 2016

Serial Dispatch Queue

Fundamental GCD primitive

Serial Dispatch Queue

Fundamental GCD primitive
• Mutual exclusion
• FIFO ordered

Serial Dispatch Queue

Fundamental GCD primitive
• Mutual exclusion
• FIFO ordered
• Concurrent atomic enqueue
• Single dequeuer

let queue = DispatchQueue(label: "com.example.queue")
queue.async { /* 1 */ }
queue.async { /* 2 */ }
queue.sync { /* 3 */ }

Serial Dispatch Queue

queue

let queue = DispatchQueue(label: "com.example.queue")
queue.async { /* 1 */ }
queue.async { /* 2 */ }
queue.sync { /* 3 */ }

Serial Dispatch Queue

queue

let queue = DispatchQueue(label: "com.example.queue")
queue.async { /* 1 */ }
queue.async { /* 2 */ }
queue.sync { /* 3 */ }

queue.async { 2 }

2

queue.async { 1 }

1

Serial Dispatch Queue

queue

let queue = DispatchQueue(label: "com.example.queue")
queue.async { /* 1 */ }
queue.async { /* 2 */ }
queue.sync { /* 3 */ }

2

queue.sync { 3 }

1 3

Serial Dispatch Queue

queue

let queue = DispatchQueue(label: "com.example.queue")
queue.async { /* 1 */ }
queue.async { /* 2 */ }
queue.sync { /* 3 */ }

queue.sync { 3 }

3

Serial Dispatch Queue

queue

let queue = DispatchQueue(label: "com.example.queue")
queue.async { /* 1 */ }
queue.async { /* 2 */ }
queue.sync { /* 3 */ }

queue.sync { 3 }3

Serial Dispatch Queue

Dispatch Source

Event monitoring primitive

let source = DispatchSource.makeReadSource(fileDescriptor: fd, queue: queue)
source.setEventHandler { read(fd) }
source.setCancelHandler { close(fd) }
source.activate()

Dispatch Source

Event monitoring primitive

let source = DispatchSource.makeReadSource(fileDescriptor: fd, queue: queue)
source.setEventHandler { read(fd) }
source.setCancelHandler { close(fd) }
source.activate()

Dispatch Source

Event monitoring primitive
• Event handler executes on target queue

let source = DispatchSource.makeReadSource(fileDescriptor: fd, queue: queue)
source.setEventHandler { read(fd) }
source.setCancelHandler { close(fd) }
source.activate()

Dispatch Source

Event monitoring primitive
• Event handler executes on target queue
• Invalidation pattern with explicit cancellation

let source = DispatchSource.makeReadSource(fileDescriptor: fd, queue: queue)
source.setEventHandler { read(fd) }
source.setCancelHandler { close(fd) }
source.activate()

Dispatch Source

Event monitoring primitive
• Event handler executes on target queue
• Invalidation pattern with explicit cancellation
• Initial setup followed by activate

let source = DispatchSource.makeReadSource(fileDescriptor: fd, queue: queue)
source.setEventHandler { read(fd) }
source.setCancelHandler { close(fd) }
source.activate()

Target Queue Hierarchy

Serial queues and sources can form a tree

Target Queue Hierarchy

Serial queues and sources can form a tree S1 S2

Q1 Q2

Target Queue Hierarchy

Serial queues and sources can form a tree S1 S2

EQ

Q1 Q2

let Q1 = DispatchQueue(label: "Q1", target: EQ)
let Q2 = DispatchQueue(label: "Q2", target: EQ)

Target Queue Hierarchy

Serial queues and sources can form a tree

Shared single mutual exclusion context

Independent individual queue order

S1 S2

EQ

Q1 Q2

let Q1 = DispatchQueue(label: "Q1", target: EQ)
let Q2 = DispatchQueue(label: "Q2", target: EQ)

S1 S2

EQ

Q1 Q2

Target Queue Hierarchy

S1 S2

EQ

Q1 Q2

Target Queue Hierarchy

Q1

Q2

1 2 3 4 5 6

A B C D

S1 S2

EQ

Q1 Q2

Target Queue Hierarchy

Q1

Q2

EQ1 2 3 4 5 6A B C D

S1 S2

EQ

Q1 Q2

Target Queue Hierarchy

Q1

Q2

EQ1 2 3 4 5 6A B C D

Quality of Service

Abstract notion of priority

Provides explicit classification of your work

Affects various execution properties

User Interactive

User Initiated

Utility

Background

Power, Performance, and Diagnostics: What's new in GCD and XPC WWDC 2014

Quality of Service

Abstract notion of priority

Provides explicit classification of your work

Affects various execution properties

User Interactive

User Initiated

Utility

Background

UI

Power, Performance, and Diagnostics: What's new in GCD and XPC WWDC 2014

Quality of Service

Abstract notion of priority

Provides explicit classification of your work

Affects various execution properties

User Interactive

User Initiated

Utility

Background

UI

IN

Power, Performance, and Diagnostics: What's new in GCD and XPC WWDC 2014

Quality of Service

Abstract notion of priority

Provides explicit classification of your work

Affects various execution properties

User Interactive

User Initiated

Utility

Background

UI

IN

UT

Power, Performance, and Diagnostics: What's new in GCD and XPC WWDC 2014

Quality of Service

Abstract notion of priority

Provides explicit classification of your work

Affects various execution properties

User Interactive

User Initiated

Utility

Background

UI

IN

UT

BG

Power, Performance, and Diagnostics: What's new in GCD and XPC WWDC 2014

EQ

UI

IN

UT

BG

S1 S2

EQ

Q1 Q2

S1

QoS and Target Queue Hierarchy

EQ

UI

IN

UT

BG

S1 S2

EQ

Q1 Q2

S1

QoS and Target Queue Hierarchy

UI

EQ

UI

IN

UT

BG

S1 S2

EQ

Q1 Q2

S1

QoS and Target Queue Hierarchy

UI

UT

EQ

UI

IN

UT

BG

S1 S2

EQ

Q1 Q2

S1S1

QoS and Target Queue Hierarchy

UI

UT

S1 S2

EQ

Q1 Q2

S1S1

EQ

QoS and Target Queue Hierarchy

UI

UT

S1 S2

EQ

Q1 Q2

S1

EQ

QoS and Target Queue Hierarchy

UI

UT

S1 S2

EQ

Q1 Q2

S1

EQ

QoS and Target Queue Hierarchy

IN

queue.async { … }

UI

UT

S1 S2

EQ

Q1 Q2

S1

EQ

QoS and Target Queue Hierarchy

IN

queue.async { … }

UI

UT

S1 S2

EQ

Q1 Q2

S1

EQ

QoS and Target Queue Hierarchy

IN

queue.async { … }

UI

UT

S1 S2

EQ

Q1 Q2

S1

EQ

QoS and Target Queue Hierarchy

UI

UT

Priority Inversion

S1 S2

EQ

Q1 Q2

S1

EQ

QoS and Target Queue Hierarchy

UI

UI

UT

Priority Inversion Resolved

•Granularity of Concurrency

Database

User Interface

Networking

Database

User Interface

Networking

Event Monitoring Setup

Event Monitoring Setup

Network Connection

Event Monitoring Setup

S

Q

Network Connection

Dispatch Source

Dispatch Queue

Event Monitoring Setup

S

Q

Event Monitoring Setup

S

Q

S

Q

S

Q

S

Q

S

Q

S

Q

S

Q

Event Handling on Many Independent Queues

S

Q

S

Q

S

Q

Event Handling on Many Independent Queues

Q

S

Q

S

Q

S

Q

Event Handling on Many Independent Queues

Q

Q

Q

S

Q

S

Q

S

Q

Event Handling on Many Independent Queues

Q

Q

Q

S

Q

S

Q

S

Q

Event Handling on Many Independent Queues

Q

Q

Q

S

Q

S

Q

S

Q

Single Mutual Exclusion Context

S

Q

S

Q

S

Q

Single Mutual Exclusion Context

EQ

S

Q

S

Q

S

Q

Single Mutual Exclusion Context

Q

Q

Q

EQ

S

Q

S

Q

S

Q

Single Mutual Exclusion Context

Q

Q

Q

EQ

S

Q

S

Q

S

Q

EQ

Too Much of a Good Thing

Repeatedly waiting for exclusive access to contended resources

Repeatedly switching between independent operations

Repeatedly bouncing an operation between threads

Avoid Unbounded Concurrency
Repeatedly switching between independent operations

Avoid Unbounded Concurrency
Repeatedly switching between independent operations

Avoid Unbounded Concurrency
Repeatedly switching between independent operations

Many queues becoming active at once
• Independent per-client sources
• Independent per-object queues

Avoid Unbounded Concurrency
Repeatedly switching between independent operations

Many workitems submitted to global concurrent queue

Avoid Unbounded Concurrency
Repeatedly switching between independent operations

Many workitems submitted to global concurrent queue
• If workitems block, more threads will be created
• May lead to thread explosion

Avoid Unbounded Concurrency
Repeatedly switching between independent operations

Many workitems submitted to global concurrent queue

Building Responsive and Efficient Apps with GCD WWDC 2015

• If workitems block, more threads will be created
• May lead to thread explosion

One Queue per Subsystem

One Queue per Subsystem

DatabaseNetworking

User Interface

Main Queue

One Queue per Subsystem

DatabaseNetworking

User Interface

Serial QueueSerial Queue

Main Queue

One Queue Hierarchy per Subsystem

NQ DQSerial QueueSerial Queue

Main Queue

DatabaseNetworking

User Interface

One Queue Hierarchy per Subsystem

NQ DQ

Serial QueueSerial Queue

Main Queue

DatabaseNetworking

User Interface

Good Granularity of Concurrency

Fixed number of serial queue hierarchies

Good Granularity of Concurrency

Fixed number of serial queue hierarchies

Good Granularity of Concurrency

Fixed number of serial queue hierarchies

Coarse workitem granularity between hierarchies

Good Granularity of Concurrency

Fixed number of serial queue hierarchies

Coarse workitem granularity between hierarchies

User Interface Database Networking

Good Granularity of Concurrency

Fixed number of serial queue hierarchies

Coarse workitem granularity between hierarchies

Finer workitem granularity inside a hierarchy

User Interface Database

Using GCD for Concurrency

Organize queues and sources into serial queue hierarchies

Use a fixed number of serial queue hierarchies

Size your workitems appropriately

Pierre Habouzit, Core Darwin

•Introducing Unified Queue Identity

Mutual Exclusion Context
Deep dive

S1 S2

EQ

Q1 Q2

S1

UI

UT

EQ

S2

UI

Mutual Exclusion Context
Deep dive

S1

UT

Unified Queue Identity

let EQ = DispatchQueue(label: "com.example.exclusion-context")

EQ

ApplicationKernel

EQ

EQ.async { … }

Kernel

Unified Queue Identity
Asynchronous workitems

Application

EQ

EQ.async { … }

Kernel

Unified Queue Identity
Asynchronous workitems

Application

EQ

EQ.async { … }

EQ

Kernel

Unified Queue Identity
Asynchronous workitems

Application

NEW

EQOwner BG

EQ.async { … }

EQ

Kernel

Unified Queue Identity
Asynchronous workitems

Application

NEW

EQOwner BG

Unified Queue Identity
Asynchronous workitems

Kernel Application

EQ

NEW

EQOwner

EQ.async { … }

BG

Unified Queue Identity
Asynchronous workitems

Kernel Application

EQ

NEW

EQOwner

EQ.async { … }

UT

Unified Queue Identity
Asynchronous workitems

Kernel Application

EQ

NEW

EQOwner UT

Unified Queue Identity
Asynchronous workitems

Kernel Application

EQ

NEW

Owner

Unified Queue Identity
Synchronous workitems

EQ

EQ.sync { … }

Kernel

UT

ININ

EQ

Application

NEW

Owner

Unified Queue Identity
Synchronous workitems

EQ

EQ.sync { … }

Kernel

UT

ININ

EQ

Application

NEW

Sync
Waiters

Owner

Unified Queue Identity
Synchronous workitems

EQ

EQ.sync { … }

Kernel

IN

IN

EQ

Application

NEW

Sync
Waiters

Owner

Unified Queue Identity
Synchronous workitems

EQ

EQ.sync { … }

Kernel

IN

IN

EQ

Application

NEW

EQ

S2

UI

UT

S1

One Identity to Find Them All
… and in the kernel bind them

NEW

EQ
UT

S1

let S1 = DispatchSource.makeReadSource(
 fileDescriptor: fd, queue: EQ)
S1.setEventHandler { … }
S1.activate()

Kernel Application

NEW
One Identity to Find Them All
… and in the kernel bind them

EQ
UT

S1

let S1 = DispatchSource.makeReadSource(
 fileDescriptor: fd, queue: EQ)
S1.setEventHandler { … }
S1.activate()

Kernel Application

NEW
One Identity to Find Them All
… and in the kernel bind them

EQ
UT

S1

let S1 = DispatchSource.makeReadSource(
 fileDescriptor: fd, queue: EQ)
S1.setEventHandler { … }
S1.activate()

Kernel

UT

Application

NEW
One Identity to Find Them All
… and in the kernel bind them

EQ
UT

S1

let S1 = DispatchSource.makeReadSource(
 fileDescriptor: fd, queue: EQ)
S1.setEventHandler { … }
S1.activate()

Kernel

Kernel
Events

UT

EQ

Application

Sync
Waiters

Owner

NEW
One Identity to Find Them All
… and in the kernel bind them

EQ

let S2 = DispatchSource.makeReadSource(
 fileDescriptor: fd, queue: EQ)
S2.setEventHandler(qos: .UserInteractive) { … }
S2.activate()

S2

Kernel

Kernel
Events

UI

UT

EQ

Application

Sync
Waiters

Owner
UT

NEW
One Identity to Find Them All
… and in the kernel bind them

EQ

let S2 = DispatchSource.makeReadSource(
 fileDescriptor: fd, queue: EQ)
S2.setEventHandler(qos: .UserInteractive) { … }
S2.activate()

S2

Kernel

Kernel
Events

UI

UT

EQ

Application

Sync
Waiters

Owner
UT

NEW
One Identity to Find Them All
… and in the kernel bind them

EQ

let S2 = DispatchSource.makeReadSource(
 fileDescriptor: fd, queue: EQ)
S2.setEventHandler(qos: .UserInteractive) { … }
S2.activate()

S2

Kernel

Kernel
Events UI

UT

EQ

Application

Sync
Waiters

Owner
UT

NEW
One Identity to Find Them All
… and in the kernel bind them

Too Much of a Good Thing

Repeatedly waiting for exclusive access to contended resources

Repeatedly switching between independent operations

Repeatedly bouncing an operation between threads

S2

UI

EQ

UT

S1

Without Unified Identity
In macOS Sierra and iOS 10

UT

S2

S1
UT

UI

Without Unified Identity
In macOS Sierra and iOS 10

EQ

E1S1

S2

S1
UT

UI

Without Unified Identity
In macOS Sierra and iOS 10

EQ

EQ

E1

S2

S1S1
UT

UI

Without Unified Identity
In macOS Sierra and iOS 10

EQ

EQ

E1

S2

S1
UT

UI

Without Unified Identity
In macOS Sierra and iOS 10

EQ

EQ

E1

S2

S1
UT

UI

S1 Handler

E1

Without Unified Identity
In macOS Sierra and iOS 10

EQ

EQ

E2S2

S1
UT

UI

S1 HandlerE1

E1

Without Unified Identity
In macOS Sierra and iOS 10

EQ

EQ

E2S2S2

S1
UT

UI

EQ

S1 HandlerE1

E1

Without Unified Identity
In macOS Sierra and iOS 10

EQ

EQ

E2S2S2

S1
UT

UI

S1 Handler

EQ

E1

E1

Without Unified Identity
In macOS Sierra and iOS 10

EQ

EQ

E2S2

S1
UT

UI

S1 Handler

EQ

E1

E1

Without Unified Identity
In macOS Sierra and iOS 10

EQ

EQ

E2S2

S1
UT

UI

S1 Handler

EQ

S2 Handler

E2

E1

E1

Without Unified Identity
In macOS Sierra and iOS 10

EQ

EQ

E2S2

S1
UT

UI

S1 Handler

EQ

S2 Handler

EQE2

E1

E1

Without Unified Identity
In macOS Sierra and iOS 10

EQ

EQ

E2S2

S1
UT

UI

S1 Handler

EQ EQ

S2 Handler

E2

E1

E1 E2

EQ

Leveraging Ownership and Unified Identity

EQ

E2S2

S1
UT

UI

S1 Handler

EQ EQ

S2 Handler

E2

E1

E1 E2

EQ

Leveraging Ownership and Unified Identity

EQ

E2S2

S1
UT

UI

S1 Handler

EQ EQ

S2 Handler

E2

E1

E1

EQ

Leveraging Ownership and Unified Identity

EQS1 Handler S2 HandlerE1 E2

S2

S1
UT

UI

Leveraging Ownership and Unified Identity

EQ

NEW

EQS1 Handler S2 HandlerE1 E2

S2

S1
UT

UI

Leveraging Ownership and Unified Identity

EQ

NEW

EQS1 Handler S2 HandlerE1 E2

S2S2

S1
UT

UI

Leveraging Ownership and Unified Identity

EQ

NEW

EQS1 Handler S2 HandlerE1 E2

S2S2

S1
UT

UI

Leveraging Ownership and Unified Identity

EQ

NEW

EQS1 Handler S2 HandlerE1 E2

S2S2

S1
UT

UI

Leveraging Ownership and Unified Identity

EQ

NEW

The runtime uses every possible hint
 to optimize behavior

•Modernizing Existing Code

Modernizing Existing Code

No dispatch object mutation after activation

Protect your target queue hierarchy

Set the properties of inactive objects before activation
• Source handlers
• Target queues

No Mutation Past Activation

let mySource = DispatchSource.makeReadSource(fileDescriptor: fd, queue: myQueue) 

Set the properties of inactive objects before activation
• Source handlers
• Target queues

No Mutation Past Activation

let mySource = DispatchSource.makeReadSource(fileDescriptor: fd, queue: myQueue) 

mySource.setEventHandler(qos: .userInteractive) { … } 
mySource.setCancelHandler { close(fd) } 

Set the properties of inactive objects before activation
• Source handlers
• Target queues

No Mutation Past Activation

let mySource = DispatchSource.makeReadSource(fileDescriptor: fd, queue: myQueue) 

mySource.setEventHandler(qos: .userInteractive) { … } 
mySource.setCancelHandler { close(fd) } 

mySource.activate() 

Set the properties of inactive objects before activation
• Source handlers
• Target queues

No Mutation Past Activation

let mySource = DispatchSource.makeReadSource(fileDescriptor: fd, queue: myQueue) 

mySource.setEventHandler(qos: .userInteractive) { … } 
mySource.setCancelHandler { close(fd) } 

mySource.activate() 

mySource.setTarget(queue: otherQueue)

Set the properties of inactive objects before activation
• Source handlers
• Target queues

No Mutation Past Activation

Effects of Queue Graph Mutation

Priority and ownership snapshots can become stale
• Defeats priority inversion avoidance
• Defeats direct handoff optimization
• Defeats event delivery optimization

Effects of Queue Graph Mutation

Priority and ownership snapshots can become stale
• Defeats priority inversion avoidance
• Defeats direct handoff optimization
• Defeats event delivery optimization

System frameworks may create sources on your behalf
• XPC connections are like sources

Protecting the Target Queue Hierarchy

Build your queue hierarchy bottom to top

Protecting the Target Queue Hierarchy

S1 S2

EQ

Q1 Q2

Build your queue hierarchy bottom to top

Protecting the Target Queue Hierarchy

S1 S2

EQ

Q1 Q2

Build your queue hierarchy bottom to top

Opt into “static queue hierarchy”

Protecting the Target Queue Hierarchy

S1 S2

EQ

Q1 Q2

Build your queue hierarchy bottom to top

Opt into “static queue hierarchy”

Protecting the Target Queue Hierarchy

S1 S2

EQ

Q1 Q2

Build your queue hierarchy bottom to top

Opt into “static queue hierarchy”

Protecting the Target Queue Hierarchy

S1 S2

EQ

Q1 Q2Q1 = dispatch_queue_create("Q1",
 DISPATCH_QUEUE_SERIAL)
dispatch_set_target_queue(Q1, EQ)

Build your queue hierarchy bottom to top

Opt into “static queue hierarchy”

Protecting the Target Queue Hierarchy

S1 S2

EQ

Q1 Q2Q1 = dispatch_queue_create("Q1",
 DISPATCH_QUEUE_SERIAL)
dispatch_set_target_queue(Q1, EQ)

Q1 = dispatch_queue_create_with_target("Q1",
 DISPATCH_QUEUE_SERIAL, EQ)

Daniel A. Steffen, Core Darwin

•Demo
•Finding problem spots

98

98

99

99

100

100

101

101

102

102

103

103

104

104

105

105

106

106

107

107

108

108

Daniel A. Steffen, Core Darwin

•Demo
•Finding problem spots

Summary

Not going off-core is ever more important

Size your work appropriately

Choose good granularity of concurrency

Modernize your GCD usage

Use tools to find problem spots

More Information
https://developer.apple.com/wwdc17/706

https://developer.apple.com/wwdc17/706

Related Sessions

Introducing Core ML WWDC 2017

Accelerate and Sparse Solvers Grand Ballroom A Thursday 10:00AM

Using Metal 2 for Compute Grand Ballroom A Thursday 4:10PM

Writing Energy Efficient Apps Executive Ballroom Friday 9:00AM

App Startup Time: Past, Present, and Future Hall 2 Friday 10:00AM

Labs

Kernel & Runtime Lab Technology Lab D Wed 1:50PM–4:10PM

Kernel & Runtime Lab Technology Lab J Thu 10:00AM–12:00PM

Performance Profiling and Runtime Analysis Tools Lab Technology Lab K Thu 1:00PM–4:10PM

Optimizing App Startup Time Lab Technology Lab E Fri 11:00AM–12:30PM

