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•Modernizing GCD Usage 
•How to stay on core 
• Session 706

System Frameworks
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Efficiency Through Observation 
Going off core during an operation reduces efficiency

10µs 500µs 1ms

Efficiency

Observation Time



faster after combining queue hierarchies

1.3x
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•Parallelism and concurrency
•Using GCD for concurrency
•Unified Queue Identity
•Finding problem spots
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Take Advantage of System Frameworks

Metal 2Accelerate Core ML Core Animation



Parallelism with GCD

Express explicit parallelism with DispatchQueue.concurrentPerform 

Parallel for-loop—calling thread participates in the computation 

More efficient than many asyncs to a concurrent queue

DispatchQueue.concurrentPerform(1000) { i in /* iteration i */ }
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Parallelism with GCD

Express explicit parallelism with DispatchQueue.concurrentPerform 

Parallel for-loop—calling thread participates in the computation 

More efficient than many asyncs to a concurrent queue

DispatchQueue.concurrentPerform(1000) { i in /* iteration i */ }

NEW

dispatch_apply(DISPATCH_APPLY_AUTO, 1000, ^(size_t i){ /* iteration i */ })

DISPATCH_APPLY_AUTO deploys back to macOS 10.9, iOS 7.0



Dynamic Resource Availability 
Choosing an iteration count
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DispatchQueue.concurrentPerform(3) { i in /* iteration i */ } 
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UI Rendering
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Dynamic Resource Availability 
Choosing an iteration count
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Bubble!
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UI Rendering
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Choosing an iteration count
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Dynamic Resource Availability 
Choosing an iteration count
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UI Rendering

DispatchQueue.concurrentPerform(6) { i in /* iteration i */ } 



Dynamic Resource Availability 
Choosing an iteration count

UI Rendering

DispatchQueue.concurrentPerform(11) { i in /* iteration i */ } 



Dynamic Resource Availability 
Choosing an iteration count

UI Rendering

DispatchQueue.concurrentPerform(11) { i in /* iteration i */ } 



Dynamic Resource Availability 
Choosing an iteration count

UI Rendering

DispatchQueue.concurrentPerform(1000) { i in /* iteration i */ } 



Leverage system frameworks 

Use DispatchQueue.concurrentPerform 

Consider dynamic availability

Parallelism
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Concurrency 
Context switching

User Interface Database Networking

System Trace in Depth WWDC 2016
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Context Switching 
The power of concurrency

The OS can choose a new thread at any time
• A higher priority thread needs the CPU
• A thread finishes its current work
• Waiting to acquire a resource
• Waiting for an asynchronous request to complete

User Interface Database Networking



Excessive Context Switching 
Too much of a good thing

Repeatedly bouncing between contexts can become expensive



Excessive Context Switching 
Too much of a good thing

Repeatedly bouncing between contexts can become expensive



Excessive Context Switching 
Too much of a good thing

Repeatedly bouncing between contexts can become expensive
• CPU runs less efficiently



Excessive Context Switching 
Too much of a good thing

Repeatedly bouncing between contexts can become expensive
• CPU runs less efficiently



Excessive Context Switching 
Too much of a good thing

Repeatedly bouncing between contexts can become expensive 
• CPU runs less efficiently 
• There may be others ahead in line for CPU access



Excessive Context Switching 
Too much of a good thing

Repeatedly bouncing between contexts can become expensive 
• CPU runs less efficiently 
• There may be others ahead in line for CPU access



Excessive Context Switching 
Too much of a good thing

Repeatedly bouncing between contexts can become expensive 
• CPU runs less efficiently 
• There may be others ahead in line for CPU access



Excessive Context Switching 
Too much of a good thing

Repeatedly waiting for exclusive access to contended resources  

Repeatedly switching between independent operations 

Repeatedly bouncing an operation between threads 



Excessive Context Switching 
Too much of a good thing

Repeatedly waiting for exclusive access to contended resources  

Repeatedly switching between independent operations 

Repeatedly bouncing an operation between threads 



Too much of a good thing 

Repeatedly waiting for exclusive access to contended resources  

Repeatedly switching between independent operations 

Repeatedly bouncing an operation between threads 
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Lock Contention 
Visualization in Instruments

Frequent context-switching

10µs 10µs
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owned reserved owned

Fair locks
Lock Contention 
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Lock Contention 
Unfair locks

owned ownedwaiters



Lock Contention 
Use the right lock for the job

Unfair Fair

Available types os_unfair_lock
pthread_mutex_t, NSLock 
DispatchQueue.sync

Contended lock re-acquisition Can steal the lock Context switches to next waiter

Subject to waiter starvation Yes No



Lock Ownership

owned ownedwaiters



Lock Ownership

Ownership helps resolve priority inversion 
• High priority waiter 
• Low priority owner

owned ownedwaiters
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Serial queues

DispatchWorkItem.wait
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pthread_mutex, NSLock



Lock Ownership

Single Owner

Serial queues

DispatchWorkItem.wait

os_unfair_lock

pthread_mutex, NSLock

No Owner

dispatch_semaphore

dispatch_group

pthread_cond, NSCondition

Queue suspension



Lock Ownership

Single Owner

Serial queues

DispatchWorkItem.wait

os_unfair_lock

pthread_mutex, NSLock

No Owner

dispatch_semaphore

dispatch_group

pthread_cond, NSCondition

Queue suspension

Multiple Owners

Private concurrent queues

pthread_rwlock



Optimizing Lock Contention

Inefficient behaviors are often emergent properties 

Visualize your app’s behavior with Instruments 

Use the right lock for the job



Too Much of a Good Thing 

Repeatedly waiting for exclusive access to contended resources 

Repeatedly switching between independent operations 

Repeatedly bouncing an operation between threads 



Daniel A. Steffen, Core Darwin 

•Using GCD for Concurrency



Grand Central Dispatch

Simplifying iPhone App Development with Grand Central Dispatch WWDC 2010

Asynchronous Design Patterns with Blocks, GCD, and XPC WWDC 2012

Power, Performance, and Diagnostics: What's new in GCD and XPC WWDC 2014

Building Responsive and Efficient Apps with GCD WWDC 2015

Concurrent Programming with GCD in Swift 3 WWDC 2016
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Serial Dispatch Queue 

Fundamental GCD primitive
• Mutual exclusion
• FIFO ordered
• Concurrent atomic enqueue
• Single dequeuer



let queue = DispatchQueue(label: "com.example.queue") 
queue.async { /*  1  */ } 
queue.async { /*  2  */ } 
queue.sync  { /*  3  */ } 

Serial Dispatch Queue 
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queue

let queue = DispatchQueue(label: "com.example.queue") 
queue.async { /*  1  */ } 
queue.async { /*  2  */ } 
queue.sync  { /*  3  */ } 

queue.async { 2 }

2

queue.async { 1 }

1

Serial Dispatch Queue 



queue

let queue = DispatchQueue(label: "com.example.queue") 
queue.async { /*  1  */ } 
queue.async { /*  2  */ } 
queue.sync  { /*  3  */ } 

2

queue.sync { 3 }

1 3

Serial Dispatch Queue 



queue

let queue = DispatchQueue(label: "com.example.queue") 
queue.async { /*  1  */ } 
queue.async { /*  2  */ } 
queue.sync  { /*  3  */ } 

queue.sync { 3 }

3

Serial Dispatch Queue 



queue

let queue = DispatchQueue(label: "com.example.queue") 
queue.async { /*  1  */ } 
queue.async { /*  2  */ } 
queue.sync  { /*  3  */ } 

queue.sync { 3 }3

Serial Dispatch Queue 
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Event monitoring primitive
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source.setEventHandler  { read(fd) } 
source.setCancelHandler { close(fd) }  
source.activate()
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Dispatch Source

Event monitoring primitive
• Event handler executes on target queue
• Invalidation pattern with explicit cancellation
• Initial setup followed by activate

let source = DispatchSource.makeReadSource(fileDescriptor: fd, queue: queue) 
source.setEventHandler  { read(fd) } 
source.setCancelHandler { close(fd) }  
source.activate()
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Target Queue Hierarchy 

Serial queues and sources can form a tree S1 S2

EQ

Q1 Q2

let Q1 = DispatchQueue(label: "Q1", target: EQ ) 
let Q2 = DispatchQueue(label: "Q2", target: EQ )



Target Queue Hierarchy 

Serial queues and sources can form a tree

Shared single mutual exclusion context

Independent individual queue order

S1 S2

EQ

Q1 Q2

let Q1 = DispatchQueue(label: "Q1", target: EQ ) 
let Q2 = DispatchQueue(label: "Q2", target: EQ )



S1 S2

EQ

Q1 Q2

Target Queue Hierarchy 



S1 S2

EQ

Q1 Q2

Target Queue Hierarchy 

Q1

Q2

1 2 3 4 5 6

A B C D



S1 S2

EQ

Q1 Q2

Target Queue Hierarchy 

Q1

Q2

EQ1 2 3 4 5 6A B C D



S1 S2

EQ

Q1 Q2

Target Queue Hierarchy 
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Quality of Service 

Abstract notion of priority 

Provides explicit classification of your work 

Affects various execution properties

User Interactive

User Initiated

Utility

Background

UI

IN

UT

BG

Power, Performance, and Diagnostics: What's new in GCD and XPC WWDC 2014
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S1
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QoS and Target Queue Hierarchy 

UI
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Priority Inversion Resolved



•Granularity of Concurrency
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Event Monitoring Setup

S

Q

Network Connection

Dispatch Source

Dispatch Queue
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Too Much of a Good Thing 

Repeatedly waiting for exclusive access to contended resources 

Repeatedly switching between independent operations 

Repeatedly bouncing an operation between threads
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Avoid Unbounded Concurrency 
Repeatedly switching between independent operations

Many queues becoming active at once 
• Independent per-client sources 
• Independent per-object queues
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Avoid Unbounded Concurrency 
Repeatedly switching between independent operations

Many workitems submitted to global concurrent queue

Building Responsive and Efficient Apps with GCD WWDC 2015

• If workitems block, more threads will be created 
• May lead to thread explosion



One Queue per Subsystem



One Queue per Subsystem

DatabaseNetworking

User Interface

Main Queue



One Queue per Subsystem

DatabaseNetworking

User Interface

Serial QueueSerial Queue

Main Queue



One Queue Hierarchy per Subsystem

NQ DQSerial QueueSerial Queue

Main Queue

DatabaseNetworking

User Interface



One Queue Hierarchy per Subsystem

NQ DQ

Serial QueueSerial Queue

Main Queue

DatabaseNetworking

User Interface
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Good Granularity of Concurrency

Fixed number of serial queue hierarchies

Coarse workitem granularity between hierarchies

Finer workitem granularity inside a hierarchy

User Interface Database



Using GCD for Concurrency

Organize queues and sources into serial queue hierarchies 

Use a fixed number of serial queue hierarchies 

Size your workitems appropriately



Pierre Habouzit, Core Darwin 

•Introducing Unified Queue Identity
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Deep dive
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Mutual Exclusion Context 
Deep dive

S1

UT



Unified Queue Identity

let EQ = DispatchQueue(label: "com.example.exclusion-context")

EQ

ApplicationKernel
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S1.setEventHandler { … } 
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let S2 = DispatchSource.makeReadSource( 
      fileDescriptor: fd, queue: EQ) 
S2.setEventHandler(qos: .UserInteractive) { … } 
S2.activate()

S2

Kernel

Kernel 
Events UI

UT

EQ

Application

Sync 
Waiters

Owner
UT

NEW
One Identity to Find Them All 
… and in the kernel bind them



Too Much of a Good Thing 

Repeatedly waiting for exclusive access to contended resources 

Repeatedly switching between independent operations 

Repeatedly bouncing an operation between threads
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 to optimize behavior



•Modernizing Existing Code



Modernizing Existing Code

No dispatch object mutation after activation 

Protect your target queue hierarchy
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let mySource = DispatchSource.makeReadSource(fileDescriptor: fd, queue: myQueue) 

mySource.setEventHandler(qos: .userInteractive) { … } 
mySource.setCancelHandler { close(fd) } 

mySource.activate() 

mySource.setTarget(queue: otherQueue)

Set the properties of inactive objects before activation 
• Source handlers 
• Target queues

No Mutation Past Activation
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• Defeats priority inversion avoidance 
• Defeats direct handoff optimization 
• Defeats event delivery optimization



Effects of Queue Graph Mutation 

Priority and ownership snapshots can become stale 
• Defeats priority inversion avoidance 
• Defeats direct handoff optimization 
• Defeats event delivery optimization

System frameworks may create sources on your behalf 
• XPC connections are like sources
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Opt into “static queue hierarchy”
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Build your queue hierarchy bottom to top

Opt into “static queue hierarchy”

Protecting the Target Queue Hierarchy 

S1 S2

EQ

Q1 Q2Q1 = dispatch_queue_create("Q1", 
        DISPATCH_QUEUE_SERIAL) 
dispatch_set_target_queue(Q1, EQ)

Q1 = dispatch_queue_create_with_target("Q1", 
        DISPATCH_QUEUE_SERIAL, EQ)



Daniel A. Steffen, Core Darwin 

•Demo 
•Finding problem spots
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Daniel A. Steffen, Core Darwin 

•Demo 
•Finding problem spots



Summary

Not going off-core is ever more important 

Size your work appropriately 

Choose good granularity of concurrency 

Modernize your GCD usage 

Use tools to find problem spots



More Information
https://developer.apple.com/wwdc17/706

https://developer.apple.com/wwdc17/706


Related Sessions

Introducing Core ML WWDC 2017

Accelerate and Sparse Solvers Grand Ballroom A Thursday 10:00AM

Using Metal 2 for Compute Grand Ballroom A Thursday 4:10PM

Writing Energy Efficient Apps Executive Ballroom Friday 9:00AM

App Startup Time: Past, Present, and Future Hall 2 Friday 10:00AM



Labs

Kernel & Runtime Lab Technology Lab D Wed 1:50PM–4:10PM

Kernel & Runtime Lab Technology Lab J Thu 10:00AM–12:00PM

Performance Profiling and Runtime Analysis Tools Lab Technology Lab K Thu 1:00PM–4:10PM

Optimizing App Startup Time Lab Technology Lab E Fri 11:00AM–12:30PM






