Abstract
The NP-complete is a class of complexity including many real-world problems. Although many efforts made to find efficient solutions to NP-complete problems, no such a solution having polynomial complexity of used resources is found yet.
Optical computing, as a branch of unconventional computing, provides new capabilities to solve NP-complete problems, using physical properties of light such as high parallelism nature of it. Some optical approaches to solve NP-complete problems in efficient manner are already provided, such as delaying the light motion, using optical masks, and using continuous space machines. In this paper, a new optical approach, using wide range of wavelengths exist in a light ray, is provided to solve the 3-SAT problem, a well-known NP-complete problem, in polynomial time. Each instance of the 3-SAT problem is a CNF-formula consisting m clauses be composed of n boolean variables. The question is if there is a value-assignment to the boolean variables which satisfies the formula or not. In the method provided in this paper, wavelengths presented in a light ray are considered as possible value-assignments to n variables. Basic optical devices such as prisms and mirrors are used to discriminate proper wavelengths which satisfy the CNF-formal. The method uses exponential size blocks to drop improper wavelengths, which may be constructed in a preprocessing phase and be used in many 3-SAT problem instances. After the preprocessing phase, the method takes O(m) time and exponential number of different wavelengths in light rays to find the answer of each 3-SAT problem instance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM symposium on Theory of computing, Shaker Heights, Ohio, United States, pp. 151–158. ACM, New York (1971)
Rintanen, J., Heljanko, K., Niemel, I.: Planning as satisfiability: parallel plans and algorithms for plan search. Artificial Intelligence 170(12-13), 1031–1080 (2006)
Amla, N., Du, X., Kuehlmann, A., Kurshan, R.P., McMillan, K.L.: An analysis of SAT-Based model checking techniques in an industrial environment. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 254–268. Springer, Heidelberg (2005)
Oltean, M., Muntean, O.: Exact cover with light. 0708.1962 (August 2007). In: New Generation Computing, vol. 26(4), pp. 327–344. Springer, Heidelberg (2008)
Oltean, M.: Solving the hamiltonian path problem with a light-based computer. Natural Computing: an international journal 7(1), 57–70 (2008)
Oltean, M., Muntean, O.: Solving the subset-sum problem with a light-based device. Natural Computing: an international journal 8(2), 321–331 (2009)
Haist, T., Osten, W.: An optical solution for the traveling salesman problem. Optics Express 15(16), 10473–10482 (2007) PMID: 19547400.
Dolev, S., Fitoussi, H.: The traveling beams optical solutions for bounded NP-Complete problems. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 120–134. Springer, Heidelberg (2007)
Shaked, N.T., Tabib, T., Simon, G., Messika, S., Dolev, S., Rosen, J.: Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems. Optical Engineering 46(10), 108–201 (2007)
Shaked, N.T., Messika, S., Dolev, S., Rosen, J.: Optical solution for bounded NP-complete problems. Applied Optics 46(5), 711–724 (2007) PMID: 17279159.
Woods, D., Gibson, J.: Lower bounds on the computational power of an optical model of computation. Natural Computing 7(1), 95–108 (2008)
Woods, D., Naughton, T.J.: An optical model of computation. Theor. Comput. Sci. 334(1-3), 227–258 (2005)
Woods, D., Naughton, T.: Parallel and sequential optical computing. In: Dolev, S., Haist, T., Oltean, M. (eds.) OSC 2008. LNCS, vol. 5172, pp. 70–86. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goliaei, S., Jalili, S. (2009). An Optical Wavelength-Based Solution to the 3-SAT Problem. In: Dolev, S., Oltean, M. (eds) Optical SuperComputing. OSC 2009. Lecture Notes in Computer Science, vol 5882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10442-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-10442-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10441-1
Online ISBN: 978-3-642-10442-8
eBook Packages: Computer ScienceComputer Science (R0)