Abstract
A mathematical model for the perturbation of a biological oscillator by single and periodic impulses is analyzed. In response to a single stimulus the phase of the oscillator is changed. If the new phase following a stimulus is plotted against the old phase the resulting curve is called the phase transition curve or PTC (Pavlidis, 1973). There are two qualitatively different types of phase resetting. Using the terminology of Winfree (1977, 1980), large perturbations give a type 0 PTC (average slope of the PTC equals zero), whereas small perturbations give a type 1 PTC. The effects of periodic inputs can be analyzed by using the PTC to construct the Poincaré or phase advance map. Over a limited range of stimulation frequency and amplitude, the Poincaré map can be reduced to an interval map possessing a single maximum. Over this range there are period doubling bifurcations as well as chaotic dynamics. Numerical and analytical studies of the Poincaré map show that both phase locked and non-phase locked dynamics occur. We propose that cardiac dysrhythmias may arise from desynchronization of two or more spontaneously oscillating regions of the heart. This hypothesis serves to account for the various forms of atrioventricular (AV) block clinically observed. In particular 2∶2 and 4∶2 AV block can arise by period doubling bifurcations, and intermittent or variable AV block may be due to the complex irregular behavior associated with chaotic dynamics.
Similar content being viewed by others
References
Arnold, V. I.: Small denominators. I. Mappings of the circumference onto itself. Trans. of the A.M.S. Series 2.46, 213–284 (1965)
Arnold, V. I.: Ordinary differential equations. Cambridge, Mass.: MIT Press, 1973
Ayers, J. L., Selverston, A. I.: Synaptic control of an endogenous pacemaker network. J. Physiol. (Paris)73, 454–561 (1977)
Bellet, S.: Clinical disorders of the heart beat (3rd edition). Philadelphia: Lea and Febiger, 1971
Cartwright, M. L., Littlewood, J. E.: On nonlinear differential equations of the second order: I. The equation\(\ddot y - k(1 - y^2 )\dot y + y = b\lambda k cos(\lambda t + \alpha )\),k large. J. London Math. Soc.20, 180–189 (1945)
Chung, E. K.: Principles of cardiac arrhythmias. Baltimore: Williams and Wilkins, 1971
Crutchfield, J. P., Huberman, B. A.: Fluctuations and the onset of chaos. Phys. Lett.A77, 407–409 (1980)
Flaherty, J. E., Hoppensteadt, F. C.: Frequency entrainment of a forced van der Pol oscillator. Studies in Appl. Math.58, 5–15 (1978)
Glass, L., Mackey, M. C.: A simple model for phase locking of biological oscillators. J. Math. Biol.7, 339–352 (1979)
Glass, L., Graves, C., Petrillo, G. A., Mackey, M. C.: Unstable dynamics of a periodically driven oscillator in the presence of noise. J. theor. Biol.86, 455–475 (1980)
Gollub, J. P., Romer, E. J., Socolar, J. E.: Trajectory divergence for coupled relaxation oscillators: Measurements and models. J. Stat. Phys.23, 321–333 (1980)
Grant, R. P.: The mechanism of A-V arrhythmias with an electronic analogue of the human A-V node. Am. J. Med.20, 334–344 (1956)
Guckenheimer, J.: On the bifurcation of maps of the interval. Inventiones Math.39, 165–178 (1977)
Guckenheimer, J.: Symbolic dynamics and relaxation oscillations. Physica1D, 227–235 (1980)
Guevara, M. R., Glass, L., Shrier, A.: Phase locking, period doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science214, 1350–1353 (1981)
Guttman, R., Feldman, L., Jakobsson, E.: Frequency entrainment of squid axon membrane. J. Memb. Biol.56, 9–18 (1980)
Herman, M. R.: Mesure de Lebesgue et nombre de rotation. In: Lecture notes in mathematics, no. 597, Geometry and topology, pp. 271–293. Berlin-Heidelberg-New York: Springer 1977
Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952)
Holden, A. V.: The response of excitable membrane models to a cyclic input. Biological Cybernetics21, 1–7 (1976)
Hoppensteadt, F. C.: Electrical models of neurons. Lectures in Appl. Math.19, 327–344 (1981)
Huberman, B. A., Crutchfield, J. P.: Chaotic states of anharmonic systems in periodic fields. Phys. Rev. Lett.43, 1743–1747 (1979)
James, T. N., Isobe, J. H., Urthaler, F.: Correlative electrophysiological and anatomical studies concerning the site of origen of escape rhythm during complete atrioventricular block in the dog. Circ. Res.45, 108–119 (1979)
Jalife, J., Moe, G. K.: A biologic model of parasystole. Am. J. Cardiol.43, 761–772 (1979)
Katholi, C. R., Urthaler, F., Macy, J. Jr., James, T. N.: A mathematical model of automaticity in the sinus node and AV junction based on weakly coupled relaxation oscillators. Comp. Biomed. Research10, 529–543 (1977)
Keener, J. P.: Chaotic behaviour in piecewise continuous difference equations. Trans. Am. Math. Soc.261, 589–604 (1980)
Keener, J. P.: Chaotic cardiac dynamics. Lectures in Appl. Math.19, 299–325 (1981a)
Keener, J. P.: On cardiac arrhythmias: AV conduction block. J. Math. Biol.12, 215–225 (1981b)
Keener, J. P., Hoppensteadt, F. C., Rinzel, J.: Integrate and fire models of nerve membrane response to oscillatory inputs. SIAM J. Appl. Math.41, 503–517 (1981)
Knight, B. W.: Dynamics of encoding in a population of neurons. J. General Physiol.59, 734–766 (1972)
Landahl, H. D., Griffeath, D.: A mathematical model for first degree block and the Wenckebach phenomenon. Bull. Math. Biophys.33, 27–38 (1971)
Levi, M.: Qualitative analysis of the periodically forced relaxation oscillations. Memoirs Amer. Math. Soc.32, Number 244 (1981)
Levinson, N.: A second order differential equation with singular solutions. Ann. Mathem.50, 127–153 (1949)
Lewis, T., Mathison, G. C.: Auriculo-ventricular heart block as a result of asphyxia. Heart2, 47–53 (1910)
Li, T.-Y., Yorke, J. A.: Period three implies chaos. Am. Math. Monthly82, 985–992 (1975)
Mandel, W. J. (ed.): Cardiac arrhythmias: Their mechanisms, diagnosis, and management. Philadelphia: J. B. Lippincott, 1980
May, R. M.: Simple mathematical models with very complicated dynamics. Nature261, 459–467 (1976)
McAllister, R. E., Noble, D., Tsien, R. W.: Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. (London)251, 1–59 (1975)
Metropolis, N., Stein, M. L., Stein, P. R.: On finite limit sets for transformation on the unit interval. J. Combinat. Theor.15, 25–44 (1973)
Moe, G. K., Jalife, J., Mueller, W. J., Moe, B.: A mathematical model of parasystole and its application to clinical arrhythmias. Circulation56, 968–979 (1977)
Moulopoulos, S. D., Kardaras, N., Sideris, D. A.: Stimulus-response relationship in dog ventricle in vivo. Am. J. Physiol.208, 154–157 (1965)
Nadeau, R. A., James, T. N.: The behaviour of atrio-ventricular nodal rhythm following direct perfusion of the sinus node. Can. J. Physiol. Pharmacol.44, 317–324 (1966)
Pavlidis, T.: Biological oscillators: Their mathematical analysis. New York: Academic Press 1973
Perkel, D. H., Schulman, J. H., Bullock, T. H., Moore, G. P., Segundo, J. P.: Pacemaker neurons: Effects of regularly spaced synaptic input. Science145, 61–63 (1964)
Petrillo, G. A.: Phase locking: A dynamic approach to the study of respiration. Ph.D. Thesis. McGill University (Montreal) 1981
Pinsker, H. M.:Aplysia bursting neurons as endogenous oscillators. II. Synchronization and entrainment by pulsed inhibitory synaptic input. J. Neurophysiol.40, 544–556 (1977)
Reid, J. V. O.: The cardiac pacemaker: Effects of regularly spaced nervous input. Am. Heart J.78, 58–64 (1969)
Roberge, F. A., Nadeau, R. A., James, T. N.: The nature of the PR interval. Cardiovasc. Res.2, 19–30 (1968)
Roberge, F. A., Nadeau, R. A.: The nature of Wenckebach cycles. Can. J. Physiol. Pharmacol.42, 695–704 (1969)
Šarkovskii, A. N.: Coexistence of cycles of a continuous map of a line into itself. Ukr. Mat. Z.16, 61–71 (1964)
Schamroth, L.: The disorders of cardiac rhythm. Oxford: Blackwell 1971
Scott, S. W.: Stimulation simulations of young yet cultured beating hearts. Ph.D. Thesis. S. U. N. Y. (Buffalo) 1979
Segers, M.: L'alternance du temps de conduction auriculo-ventriculaire. Arch. Mal. Coeur44, 525–527 (1951)
Sideris, D. A., Moulopoulos, S.D.: Mechanism of atrioventricular conduction: Study on an analogue. J. Electrocardiol.10, 51–58 (1977)
Štefan, P.: A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line. Commun. math. Phys.54, 237–248 (1977)
Tomita, K., Kai, T.: Chaotic behavior of deterministic orbits: The problem of turbulent phase. Prog. Theor. Physics (Suppl. No.64), 280–294 (1978)
Tsien, R. W., Siegelbaum, S.: Excitable tissue: The heart, chapter 20. In: Andreotti, T. E., Hoffman, J. F., Fanestil, D. D. (eds.), Physiology of membrane disorders. New York: Plenum 1978
Urthaler, F., Katholi, C. R., Macy, J. Jr., James, T. N.: Mathematical relationship between automaticity of the sinus node and the AV junction. Am. Heart J.86, 189–196 (1973)
Urthaler, F., Katholi, C. R., Macy, J. Jr., James, T. N.: Electrophysiological and mathematical characteristics of the escape rhythm during complete AV block. Cardiovasc. Res.8, 173–186 (1974)
Ushiyama, J., Brooks, C. McC.: Interaction of oscillators: Effect of sinusoidal stretching of the sinoatrial node on nodal rhythm. J. Electrocardiol.10, 39–44 (1977)
van der Pol, B., van der Mark, J.: The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil. Mag.6, 763–775 (1928)
van der Tweel, L. H., Meijler, F. L., van Capelle, F. J. L.: Synchronization of the heart. J. Appl. Physiol.34, 283–287 (1973)
Watanabe, T., Dreifus, L. S.: Atrioventricular block: Basic concepts. Chapter 16. In: Mandel, W. J. (ed.), Cardiac arrhythmias: Their mechanisms, diagnosis, and management. Philadelphia: J. B. Lippincott 1980
Winfree, A. T.: Resetting biological clocks. Physics Today28, 34–39 (1975)
Winfree, A. T.: Phase control of neural pacemakers. Science197, 761–763 (1977)
Winfree, A. T.: The geometry of biological time. New York: Springer 1980
Ypey, D. L., Von Meerwijk, W. P. M., Ince, E., Groos, G.: Mutual entrainment of two pacemaker cells. A study with an electronic parallel conductance model. J. Theor. Biol.86, 731–755 (1980)
Zaslavsky, G. M.: The simplest case of a strange attractor. Physics69A, 145–147 (1978)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Guevara, M.R., Glass, L. Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J. Math. Biology 14, 1–23 (1982). https://doi.org/10.1007/BF02154750
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02154750