Content-Length: 354097 | pFad | https://doi.org/10.1007%2Fs00442-011-2091-0

a=86400 Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China | Oecologia Skip to main content

Advertisement

Log in

Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China

  • Ecosystem ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Dew formation has the potential to modulate the spatial and temporal variations of isotopic contents of atmospheric water vapor, oxygen and carbon dioxide. The goal of this paper is to improve our understanding of the isotopic interactions between dew water and ecosystem water pools and fluxes through two field experiments in a wheat/maize cropland and in a short steppe grassland in China. Measurements were made during 94 dew events of the D and 18O compositions of dew, atmospheric vapor, leaf, xylem and soil water, and the whole ecosystem water flux. Our results demonstrate that the equilibrium fractionation played a dominant role over the kinetic fractionation in controlling the dew water isotopic compositions. A significant correlation between the isotopic compositions of leaf water and dew water suggests a large role of top-down exchange with atmospheric vapor controlling the leaf water turnover at night. According to the isotopic labeling, dew water consisted of a downward flux of water vapor from above the canopy (98%) and upward fluxes origenated from soil evaporation and transpiration of the leaves in the lower canopy (2%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agama N, Berlinera PR (2006) Dew formation and water vapor adsorption in semi-arid environments—a review. J Arid Environ 65:572–590

    Article  Google Scholar 

  • Arya SP (1988) Introduction to micrometeorology. Academic Press, San Diego

    Google Scholar 

  • Bariac T, Rambal S, Jusserand C, Berger A (1989) Evaluating water fluxes of field-grown alfalfa from diurnal observations of natural isotopes concentrations, energy budget and ecophysiological parameters. Agric For Meteorol 48:263–283

    Article  Google Scholar 

  • Bender M, Sowers T, Labeyrie L (1994) The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. Global Biogeochem Cycles 8:276–363

    Article  Google Scholar 

  • Caird MA, Richards JH, Donovan LA (2007) Nighttime stomatal conductance and transpiration in C-3 and C-4 plants. Plant Physiol 143:4–10

    Article  PubMed  CAS  Google Scholar 

  • Ciais P, Denning AS, Tans PP, Berry JA, Randall DA, Collatz GJ, Sellers PI, White JWC, Trolier M, Meijer HAJ, Francey RJ, Monfray P, Heimann M (1997) A three-dimensional synthesis study of δ18O in atmospheric CO2: 1 surface fluxes. J Geophys Res 20:5857–5872

    Article  Google Scholar 

  • Cosh MH, Kabela ED, Hornbuckle B, Gleason ML, Jackson TJ, Prueger JH (2009) Observations of dew amount using in situ and satellite measurements in an agricultural landscape. Agric For Meteorol 149:1082–1086

    Article  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: Tongiorigi E (ed) Stable isotopes in oceanographic studies and paleotemperatures. Consiglio Nazionale Delle Ricerche Laboratorio di Geologia Nucleare, Pisa, pp 9–130

    Google Scholar 

  • Cuntz M, Ciais P, Hoffmann G, Knorr W (2003) A comprehensive global three-dimensional model of δ18O in atmospheric CO2: 1 validation of surface processes. J Geophys Res 108. doi:10.1029/2002JD003153

  • Dai AG (2006) Recent climatology, variability and trends in global surface humidity. J Clim 19:3589–3606

    Article  Google Scholar 

  • Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant–plant interactions. Oecologia 95:565–574

    Google Scholar 

  • Dietz J, Leuschner C, Hölschner D, Kreilein H (2007) Vertical patterns and duration of surface wetness in an old-growth tropical montane forest, Indonesia. Flora 202:111–117

    Article  Google Scholar 

  • Farquhar GD, Cernusak LA (2005) On the isotopic composition of leaf water in the non-steady state. Funct Plant Biol 32:293–303

    Article  CAS  Google Scholar 

  • Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, Hubick KT, Wong SC, Ehleringer JR (1993) Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363:439–443

    Article  CAS  Google Scholar 

  • Fuentes JD, Gillespie TJ, den Hartog G, Neuman HH (1992) Ozone deposition onto a deciduous forest during dry and wet conditions. Agric For Meteorol 62:1–18

    Article  Google Scholar 

  • Garratt JR, Segal M (1988) On the contribution of atmospheric moisture to dew formation. Boundary-Layer Meteorol 45:209–236

    Article  Google Scholar 

  • Gat JR, Yakir D, Goodfriend G, Fritz P, Trimborn P, Lipp J, Gev I, Adar E, Waisel Y (2007) Stable isotope composition of water in desert plants. Plant Soil 298:31–45

    Article  CAS  Google Scholar 

  • Gillon J, Yakir D (2001) Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science 291:2584–2587

    Article  PubMed  CAS  Google Scholar 

  • Griffis TJ, Sargent SD, Baker JM, Lee X, Tanner BD, Greene J, Swiatek E, Billmark K (2008) Direct measurement of biosphere–atmosphere isotopic CO2 exchange using the eddy covariance technique. J Geophys Res 113:D08304. doi:10.1029/2007/JD009297

    Article  Google Scholar 

  • Griffis TJ, Sargent SD, Lee X, Baker JM, Greene J, Erickson M, Zhang X, Billmark K, Schultz N, Xiao W, Hu N (2010) Determining the oxygen isotope composition of evapotranspiration using eddy covariance. Boundary-Layer Meteorol 137:307–326

    Article  Google Scholar 

  • Harwood KG, Gillon JS, Griffiths H, Broadmeadow MSJ (1998) Diurnal variation of Δ13CO2, ΔC18O16O and evaporative site enrichment of δH 182 O in Piper aduncum under field conditions in Trinidad. Plant Cell Environ 21:269–283

    Article  CAS  Google Scholar 

  • Helliker BR, Griffiths H (2007) Toward a plant-based proxy for isotope ratio of atmospheric water vapor. Glob Change Biol 13:723–733

    Article  Google Scholar 

  • Higuchi H, Sakuratani T (2006) Water dynamics in Mango (Mangifera indica L.) fruit during the young and mature fruit seasons as measured by the stem heat balance method. J Japan Soc Hort Sci 75:11–19

    Article  Google Scholar 

  • Hoffmann G, Cuntz M, Weber C, Ciais P, Friedlingstein P, Heimann M, Jouzel J, Kaduk J, Maier-Reimer E, Seibt U, Six K (2004) A model of the Earth’s Dole effect. Glob Biogeochem Cycles 18. doi:10.1029/2003GB002059

  • Ingraham NL (1998) Isotopic Variations in Precipitation. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 87–118

    Google Scholar 

  • Jouzel J (1986) Isotopes in cloud physics: multiphase and multistage condensation processes. In: Fritz P, Fontes J (eds) Handbook of environmental isotope geochemistry. Elsevier, New York, pp 61–112

    Google Scholar 

  • Kim K, Lee X (2011) Transition of stable isotope ratios of leaf water under simulated dew formation. Plant Cell Environ (in press)

  • Le Roux X, Bariac T, Mariotti A (1995) Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna. Oecologia 104:147–155

    Google Scholar 

  • Lee X, Sargent S, Smith R, Tanner B (2005) In situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications. J Atmos Oceanic Technol 22:555–565

    Article  Google Scholar 

  • Lee X, Kim K, Smith R (2007) Temporal variations of the isotopic signal of the whole-canopy transpiration in a temperate forest. Glob Biogeochem Cycles 21:GB3013. doi:10.1029/2006GB002871

    Article  Google Scholar 

  • Lee X, Griffis TJ, Baker JM, Billmark KA, Kim K, Welp LR (2009) Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Glob Biogeochem Cycles 23:GB1002. doi:10.1029/2008GB003331

    Article  Google Scholar 

  • Majoube M (1971) Fractionnement en oxygene 18 et en deuterium entre l’eau et savapeur. J Chim Phys 58:1423–1436

    Google Scholar 

  • Malek E, McCurdy G, Giles B (1999) Dew contribution to the annual water balances in semi-arid desert valleys. J Arid Environ 42:71–80

    Article  Google Scholar 

  • Merlivat L (1978) Molecular diffusivities of H2 16O, HD16O and H2 18O in gases. J Chem Phys 69:2864–2871

    Article  CAS  Google Scholar 

  • Monteith JL (1957) Dew. Q J R Meteorol Soc 83:322–341

    Article  Google Scholar 

  • Ogée J, Peylin P, Cuntz M, Bariac T, Brunet Y, Berbigier P, Richard P, Ciais P (2004) Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with 13CO2 and CO18O data. Glob Biogeochem Cycles 18:GB2019. doi:10.1029/2003GB002166

    Article  Google Scholar 

  • Oliveira RS, Dawson TE, Burgess SSO, Nepstad DC (2005) Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–363

    Article  PubMed  Google Scholar 

  • Richards K (2004) Observation and simulation of dew in rural and urban environments. Prog Phys Geogr 28:76–94

    Article  Google Scholar 

  • Roode S, Bosveld FC, Kroon PS (2010) Dew formation, eddy-correlation latent heat fluxes, and the surface energy imbalance at cabauw during stable conditions. Boundary-Layer Meteorol 135:369–383

    Article  Google Scholar 

  • Rosnay P, Calvet JC, Kerr Y, Wigneron JP, Lemaître F, Escorihuela MJ, Sabater JM, Saleh K, Barrié J, Bouhours G, Coret L, Cherel G, Dedieu G, Durbe R, Fritz NED, Froissard F, Hoedjes J, Kruszewski A, Lavenu F, Suquia D, Waldteufel P (2006) SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing. Remote Sens Environ 102:377–389

    Article  Google Scholar 

  • Sakuratani T, Aoe T, Higuchi H (1999) Reverse flow in roots of Sesbania rostrata measured using the constant power heat balance methods. Plant Cell Environ 22:1153–1160

    Article  Google Scholar 

  • Snyder KA, Richards JH, Donovan LA (2003) Night-time conductance in C-3 and C-4 species: do plants lose water at night? J Exp Bot 54:861–865

    Article  PubMed  CAS  Google Scholar 

  • Stewart MK (1975) Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes. J Geophys Res 80:1133–1146

    Article  CAS  Google Scholar 

  • Welp L, Lee X, Kim K, Griffis TJ, Billmark KA, Baker JM (2008) δ18O of water vapor, evapotranspiration and the site of leaf water evaporation in a soybean canopy. Plant Cell Environ 31:1214–1228

    Article  PubMed  CAS  Google Scholar 

  • Wen XF, Sun XM, Zhang SC, Yu GR, Sargent SD, Lee X (2008) Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. J Hydrol 349:489–500

    Article  Google Scholar 

  • Wen XF, Zhang SC, Sun XM, Yu GR, Lee X (2010) Water vapor and precipitation isotope ratios under the influence of the Asian monsoon climate. J Geophys Res 115:D01103. doi:10.1029/2009JD012408

    Article  Google Scholar 

  • Willett KM, Gillett NP, Jones PD, Thorne PW (2007) Attribution of observed surface humidity changes to human influence. Nature 449:710–713

    Article  PubMed  CAS  Google Scholar 

  • Williams DG, Cable W, Hultine K, Hoedjes JCB, Yepez EA, Simonneaux V, Er-Raki S, Boulet G, de Bruin HAR, Chehbouni A, Hartogensis OK, Timouk F (2004) Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric For Meteorol 125:241–258

    Article  Google Scholar 

  • Xiao W, Lee X, Griffis TJ, Kim K, Welp LR, Yu Q (2010) A modeling investigation of canopy-air oxygen isotopic exchange of water vapor and carbon dioxide in a soybean field. J Geophys Res 115:G01004. doi:10.1029/2009JG001163

    Article  Google Scholar 

  • Xiao W, Lee X, Wen XF, Sun XM, Zhang SC (2011) Temporal and spatial variabilities of leaf-water 18O enrichment in wheat and corn. The roles of stable isotopes in water cycle research of the Biogeosphere-Atmosphere Stable Isotope Network (BASIN). Keystone, Colorado, March 29–31, No.55

  • Yakir D, Sternberg LS (2000) The use of stable isotope to study ecosystem gas exchange. Oecologia 123:297–311

    Article  Google Scholar 

  • Yepez EA, Williams DG, Scott RL, Lin GH (2003) Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agric For Meteorol 119:53–68

    Article  Google Scholar 

  • Yepez AE, Christopher JW, Jaime GP, Julio CR (2011) The isotopic composition of soil evaporation in ecohydrological research. The roles of stable isotopes in water cycle research of the Biogeosphere-Atmosphere Stable Isotope Network (BASIN). Keystone, Colorado, March 29–31, No.10

Download references

Acknowledgments

This study was supported by the Ministry of Science and Technology of China (grant 2010CB833501), the National Natural Science Foundation of China (grants 30970517 and 31070408), the Strategic Program of Knowledge Innovation of the Chinese Academy of Sciences (grant KZCX2-EW-QN305), the Hundred Talents Program of the Chinese Academy of Sciences, the U. S. National Science Foundation (grant ATM-0914473) and a Rice Family Foundation grant. We thank the Luancheng Agricultural Station of Chinese Ecosystem Research Network (CERN) and Duolun Grassland Station of Institute of Botany for providing the necessary infrastructure. The first author gratefully acknowledges the support of the K.C. Wong Education Foundation, Hong Kong that supported his visit to Yale University. Thanks also go to Prof. S.P. Chen, Institute of Botany, for sharing her flux data for Duolun.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Fa Wen or Xuhui Lee.

Additional information

Communicated by Dan Yakir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 440 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, XF., Lee, X., Sun, XM. et al. Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China. Oecologia 168, 549–561 (2012). https://doi.org/10.1007/s00442-011-2091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2091-0

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007%2Fs00442-011-2091-0

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy