Content-Length: 645408 | pFad | https://doi.org/10.1007%2Fs10741-012-9357-4

a=86400 Viral myocarditis: from experimental models to molecular diagnosis in patients | Heart Failure Reviews Skip to main content

Advertisement

Log in

Viral myocarditis: from experimental models to molecular diagnosis in patients

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiotropic viruses have been implicated as major pathogenetic agents in acute and chronic forms of myocarditis. By the introduction of molecular tools, such as (RT-) polymerase chain reaction ((RT-) PCR) and in situ hybridization in the diagnosis of inflammatory heart disease, genomes of various RNA and DNA viruses comprising enteroviruses, adenoviruses, parvovirus B19 (B19V) and herpesviruses (EBV, HHV6, HCMV) were detected in endomyocardial biopsies of patients with myocarditis and dilated cardiomyopathy. Meanwhile, it is known that the outcome of a virus infection in the heart resulting in myocarditis is determined by genetic host factors as well as by the viral pathogenicity which considerably varies in the different virus infections. A considerable portion of our knowledge about the etiopathogenetic mechanisms in viral heart disease is derived from animal studies. Whereas the evolvement of cardiac inflammation in enterovirus infections is guided by viral cytotoxicity and virus persistence, in herpesvirus infections, the pathophysiology is rather determined by primary immune-mediated pathogenicity. By investigation of immunocompetent and gene-targeted mice, valuable new insights into host and virus factors relevant for the control of cardiac viral infection and inflammation were gained which are reviewed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kühl U, Pauschinger M, Seeberg B, Lassner D, Noutsias M, Poller W, Schultheiss HP (2005) Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 112:1965–1970

    PubMed  Google Scholar 

  2. Kindermann I, Kindermann M, Kandolf R, Klingel K, Bültmann B, Müller T et al (2008) Predictors of outcome in patients with suspected myocarditis. Circulation 118:639–648

    PubMed  Google Scholar 

  3. Schultz JC, Hilliard AA, Cooper LT Jr, Rihal CS (2009) Diagnosis and treatment of viral myocarditis. Mayo Clin Proc 84:1001–1009

    PubMed  Google Scholar 

  4. Bock CT, Klingel K, Kandolf R (2010) Human parvovirus B19-associated myocarditis. N Engl J Med 362:1248–1249

    PubMed  CAS  Google Scholar 

  5. Ruppert V, Meyer T, Balbach A, Richter A, Müller HH, Maisch B, Pankuweit S (2011) German heart failure network. Genotype-specific effects on left ventricular function in parvovirus B19-positive patients with dilated cardiomyopathy. J Med Virol 83:1818–1825

    PubMed  Google Scholar 

  6. Gdynia G, Schnitzler P, Brunner E, Kandolf R, Bläker H, Daum E, Schnabel P, Schirmacher P, Roth W (2011) Sudden death of an immunocompetent young adult caused by novel (swine origen) influenza A/H1N1-associated myocarditis. Virchows Arch 458:371–376

    PubMed  Google Scholar 

  7. Barbaro G (2005) HIV-associated myocarditis. Heart Fail Clin 1:439–448 (Review)

    PubMed  Google Scholar 

  8. Esfandiarei M, McManus BM (2008) Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol Mech Dis 3:127–155 (Review)

    CAS  Google Scholar 

  9. Kandolf R, Klingel K, Mertsching H, Canu A, Hohenadl C, Zell R, Reimann BY, Heim A, McManus BM, Foulis AK et al (1991) Molecular studies on enteroviral heart disease: patterns of acute and persistent infections. Eur Heart J 12(Suppl D):49–55 (Review)

    PubMed  Google Scholar 

  10. Klingel K, Rieger P, Mall G, Selinka HC, Huber M, Kandolf R (1998) Visualization of enteroviral replication in myocardial tissue by ultrastructural in situ hybridization: identification of target cells and cytopathic effects. Lab Invest 78:1227–1237

    PubMed  CAS  Google Scholar 

  11. McManus BM, Chow LH, Wilson JE, Anderson DR, Gulizia JM, Gauntt CJ, Klingel KE, Beisel KW, Kandolf R (1993) Direct myocardial injury by enterovirus: a central role in the evolution of murine myocarditis. Clin Immunol Immunopathol 68:159–169

    PubMed  CAS  Google Scholar 

  12. Jahns R, Boivin V, Hein L, Triebel S, Angermann CE, Ertl G, Lohse MJ (2004) Direct evidence for a beta1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated Cardiomyopathy. J Clin Invest 113:1419–1429

    PubMed  CAS  Google Scholar 

  13. Caforio AL, Tona F, Bottaro S, Vinci A, Dequal G, Daliento L, Thiene G, Iliceto S (2008) Clinical implications of anti-heart autoantibodies in myocarditis and dilated cardiomyopathy. Autoimmunity 41(1):35–45 (Review)

    PubMed  CAS  Google Scholar 

  14. Ogata M, Satou T, Kawano R, Takakura S, Goto K, Ikewaki J, Kohno K, Ikebe T, Ando T, Miyazaki Y, Ohtsuka E, Saburi Y, Saikawa T, Kadota J (2010) Correlations of HHV-6 viral load and plasma IL-6 concentration with HHV-6 encephalitis in allogeneic stem cell transplant recipients. Bone Marrow Transpl 45:129–136

    CAS  Google Scholar 

  15. Klingel K, Hohenadl C, Canu A, Albrecht M, Seemann M, Mall G, Kandolf R (1992) Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci USA 89:314–318

    PubMed  CAS  Google Scholar 

  16. Shi Y, Chen C, Lisewski U, Wrackmeyer U, Radke M, Westermann D, Sauter M, Tschöpe C, Poller W, Klingel K, Gotthardt M (2009) Cardiac deletion of the Coxsackievirus-adenovirus receptor abolishes Coxsackievirus B3 infection and prevents myocarditis in vivo. J Am Coll Cardiol 53:1219–1226

    PubMed  CAS  Google Scholar 

  17. Herzum M, Ruppert V, Küytz B, Jomaa H, Nakamura I, Maisch B (1994) Coxsackievirus B3 infection leads to cell death of cardiac myocytes. J Mol Cell Cardiol 26:907–913

    PubMed  CAS  Google Scholar 

  18. Chow LH, Beisel KW, McManus BM (1992) Enteroviral infection of mice with severe combined immunodeficiency. Evidence for direct viral pathogenesis of myocardial injury. Lab Invest 66:24–31

    PubMed  CAS  Google Scholar 

  19. Wessely R, Klingel K, Santana LF, Dalton N, Hongo M, Jonathan Lederer W, Kandolf R, Knowlton KU (1998) Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective excitation-contraction coupling and dilated cardiomyopathy. J Clin Invest 102:1444–1453

    PubMed  CAS  Google Scholar 

  20. Badorff C, Lee GH, Lamphear BJ et al (1999) Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5:320–326

    PubMed  CAS  Google Scholar 

  21. Luo H, Zhang J, Cheung C, Suarez A, McManus BM, Yang D (2003) Proteasome inhibition reduces coxsackievirus B3 replication in murine cardiomyocytes. Am J Pathol 163:381–385

    PubMed  CAS  Google Scholar 

  22. Esfandiarei M, Suarez A, Amaral A, Si X, Rahmani M, Dedhar S, McManus BM (2006) Novel role for integrin-linked kinase in modulation of coxsackievirus B3 replication and virus-induced cardiomyocyte injury. Circ Res 99:354–361

    PubMed  CAS  Google Scholar 

  23. Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM, Luo H (2008) Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 82:9143–9153

    PubMed  CAS  Google Scholar 

  24. Wessely R, Klingel K, Knowlton KU, Kandolf R (2001) Cardioselective infection with coxsackievirus B3 requires intact type I interferon signaling: implications for mortality and early viral replication. Circulation 103:756–761

    PubMed  CAS  Google Scholar 

  25. Deonarain R, Cerullo D, Fuse K, Liu PP, Fish EN (2004) Protective role for interferon-beta in coxsackievirus B3 infection. Circulation 110:3540–3543

    PubMed  CAS  Google Scholar 

  26. Weinzierl AO, Szalay G, Wolburg H, Sauter M, Rammensee HG, Kandolf R, Stevanović S, Klingel K (2008) Effective chemokine secretion by dendritic cells and expansion of cross-presenting CD4-/CD8+ dendritic cells define a protective phenotype in the mouse model of coxsackievirus myocarditis. J Virol 82:8149–8160

    PubMed  CAS  Google Scholar 

  27. Riad A, Westermann D, Escher F, Becher PM, Savvatis K, Lettau O, Heimesaat MM, Bereswill S, Volk HD, Schultheiss HP, Tschöpe C (2010) Myeloid differentiation factor-88 contributes to TLR9-mediated modulation of acute coxsackievirus B3-induced myocarditis in vivo. Am J Physiol Heart Circ Physiol 298(6):H2024–H2031

    PubMed  CAS  Google Scholar 

  28. Klingel K, Schnorr JJ, Sauter M, Szalay G, Kandolf R (2003) beta2-microglobulin-associated regulation of interferon-gamma and virus-specific immunoglobulin G confer resistance against the development of chronic coxsackievirus myocarditis. Am J Pathol 162:1709–1720

    PubMed  CAS  Google Scholar 

  29. Opavsky MA, Penninger J, Aitken K, Wen WH, Dawood F, Mak T, Liu P (1999) Susceptibility to myocarditis is dependent on the response of alphabeta T lymphocytes to coxsackieviral infection. Circ Res 85:551–558

    PubMed  CAS  Google Scholar 

  30. Mena I, Perry CM, Harkins S, Rodriguez F, Gebhard J, Whitton JL (1999) The role of B lymphocytes in coxsackievirus B3 infection. Am J Pathol 155:1205–1215

    PubMed  CAS  Google Scholar 

  31. Frisancho-Kiss S, Coronado MJ, Frisancho JA, Lau VM, Rose NR, Klein SL, Fairweather D (2009) Gonadectomy of male BALB/c mice increases Tim-3(+) alternatively activated M2 macrophages, Tim-3(+) T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain Behav Immun 23:649–657

    PubMed  CAS  Google Scholar 

  32. Szalay G, Sauter M, Hald J, Weinzierl A, Kandolf R, Klingel K (2006) Sustained nitric oxide synthesis contributes to immunopathology in ongoing myocarditis attributable to interleukin-10 disorders. Am J Pathol 169:2085–2093

    PubMed  CAS  Google Scholar 

  33. Li K, Xu W, Guo Q, Jiang Z, Wang P, Yue Y, Xiong S (2009) Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res 105:353–364

    PubMed  CAS  Google Scholar 

  34. Cheung C, Luo H, Yanagawa B, Leong HS, Samarasekera D, Lai JC, Suarez A, Zhang J, McManus BM (2006) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in coxsackievirus-induced myocarditis. Cardiovasc Pathol 15:63–74

    PubMed  CAS  Google Scholar 

  35. Cheung C, Marchant D, Walker EK, Luo Z, Zhang J, Yanagawa B, Rahmani M, Cox J, Overall C, Senior RM, Luo H, McManus BM (2008) Ablation of matrix metalloproteinase-9 increases severity of viral myocarditis in mice. Circulation 117:1574–1582

    PubMed  CAS  Google Scholar 

  36. Heymans S, Pauschinger M, De Palma A, Kallwellis-Opara A, Rutschow S, Swinnen M, Vanhoutte D, Gao F, Torpai R, Baker AH, Padalko E, Neyts J, Schultheiss HP, Van de Werf F, Carmeliet P, Pinto YM (2006) Inhibition of urokinase-type plasminogen activator or matrix metalloproteinases prevents cardiac injury and dysfunction during viral myocarditis. Circulation 114:565–573

    PubMed  CAS  Google Scholar 

  37. Szalay G, Sauter M, Haberland M, Zuegel U, Steinmeyer A, Kandolf R, Klingel K (2009) Osteopontin: a fibrosis-related marker molecule in cardiac remodeling of enterovirus myocarditis in the susceptible host. Circ Res 104:851–859

    PubMed  CAS  Google Scholar 

  38. Lang C, Sauter M, Szalay G, Racchi G, Grassi G, Rainaldi G, Mercatanti A, Lang F, Kandolf R, Klingel K (2008) Connective tissue growth factor: a crucial cytokine-mediating cardiac fibrosis in ongoing enterovirus myocarditis. J Mol Med (Berl) 86:49–60

    CAS  Google Scholar 

  39. Rother M, Krohn S, Kania G, Vanhoutte D, Eisenreich A, Wang X, Westermann D, Savvatis K, Dannemann N, Skurk C, Hilfiker-Kleiner D, Cathomen T, Fechner H, Rauch U, Schultheiss HP, Heymans S, Eriksson U, Scheibenbogen C, Poller W (2010) Matricellular signaling molecule CCN1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulator. Circulation 122:2688–2698

    PubMed  CAS  Google Scholar 

  40. Cunningham MW (2004) T cell mimicry in inflammatory heart disease. Mol Immunol 40:1121–1127

    PubMed  CAS  Google Scholar 

  41. Li Y, Heuser JS, Cunningham LC et al (2006) Mimicry and antibody-mediated cell signaling in autoimmune myocarditis. J Immunol 177:8234–8240

    PubMed  CAS  Google Scholar 

  42. Fousteri G, Dave A, Morin B, Omid S, Croft M, von Herrath MG (2011) Nasal cardiac myosin peptide treatment and OX40 blockade protect mice from acute and chronic virally-induced myocarditis. J Autoimmun 36:210–220

    PubMed  CAS  Google Scholar 

  43. Masek-Hammerman K, Miller AD, Lin KC, Mackey J, Weissenböck H, Gierbolini L, Burgos A, Perez H, Mansfield KG. (2011) Epizootic myocarditis associated with encephalomyocarditis virus in a group of rhesus macaques (Macacamulatta). Vet Pathol 28 [Epub ahead of print]

  44. Oberste MS, Gotuzzo E, Blair P, Nix WA, Ksiazek TG, Comer JA, Rollin P, Goldsmith CS, Olson J, Kochel TJ (2009) Human febrile illness caused by encephalomyocarditis virus infection, Peru. Emerg Infect Dis 15:640–646

    PubMed  CAS  Google Scholar 

  45. Hardarson HS, Baker JS, Yang Z, Purevjav E, Huang CH, Alexopoulou L, Li N, Flavell RA, Bowles NE, Vallejo JG (2007) Toll-like receptor 3 is an essential component of the innate stress response in virus-induced cardiac injury. Am J Physiol Heart Circ Physiol 292:H251–H258

    PubMed  CAS  Google Scholar 

  46. Yamada T, Matsumori A, Sasayama S (1994) Therapeutic effect of anti-tumor necrosis factor-alpha antibody on the murine model of viral myocarditis induced by encephalomyocarditis virus. Circulation 89:846–851

    PubMed  CAS  Google Scholar 

  47. Tanaka T, Kanda T, McManus BM, Kanai H, Akiyama H, Sekiguchi K, Yokoyama T, Kurabayashi M (2001) Overexpression of interleukin-6 aggravates viral myocarditis: impaired increase in tumor necrosis factor-alpha. J Mol Cell Cardiol 33:1627–1635

    PubMed  CAS  Google Scholar 

  48. Higuchi H, Hara M, Yamamoto K, Miyamoto T, Kinoshita M, Yamada T, Uchiyama K, Matsumori A (2008) Mast cells play a critical role in the pathogenesis of viral myocarditis. Circulation 118:363–372

    PubMed  Google Scholar 

  49. Huang CH, Vallejo JG, Kollias G, Mann DL (2009) Role of the innate immune system in acute viral myocarditis. Basic Res Cardiol 104:228–237

    PubMed  CAS  Google Scholar 

  50. Takahashi T, Zhu SJ, Sumino H, Saegusa S, Nakahashi T, Iwai K, Morimoto S, Kanda T (2005) Inhibition of cyclooxygenase-2 enhances myocardial damage in a mouse model of viral myocarditis. Life Sci 78:195–204

    PubMed  CAS  Google Scholar 

  51. Matsumori A (2007) Treatment options in myocarditis: what we know from experimental data and how it translates to clinical trials. Herz 32:452–456 (Review)

    PubMed  Google Scholar 

  52. Sherry B, Li XY, Tyler KL, Cullen JM, Virgin HW 4th (1993) Lymphocytes protect against and are not required for reovirus-induced myocarditis. J Virol 67:6119–6124

    PubMed  CAS  Google Scholar 

  53. Sherry B, Baty CJ, Blum MA (1996) Reovirus-induced acute myocarditis in mice correlates with viral RNA synthesis rather than generation of infectious virus in cardiac myocytes. J Virol 70:6709–6715

    PubMed  CAS  Google Scholar 

  54. Sherry B, Torres J, Blum MA (1998) Reovirus induction of and sensitivity to beta interferon in cardiac myocyte cultures correlate with induction of myocarditis and are determined by viral core proteins. J Virol 72:1314–1323

    PubMed  CAS  Google Scholar 

  55. Virgin HW, Dermody TS, Tyler KL (1998) Cellular and humoral immunity to reovirus infection. Curr Top Microbiol Immunol 233:147–161 (Review)

    PubMed  CAS  Google Scholar 

  56. Edelmann KH, Richardson-Burns S, Alexopoulou L, Tyler KL, Flavell RA, Oldstone MB (2004) Does Toll-like receptor 3 play a biological role in virus infections? Virology 322:231–238

    PubMed  CAS  Google Scholar 

  57. Holm GH, Zurney J, Tumilasci V, Leveille S, Danthi P, Hiscott J, Sherry B, Dermody TS (2007) Retinoic acid-inducible gene-I and interferon-beta promoter stimulator-1 augment proapoptotic responses following mammalian reovirus infection via interferon regulatory factor-3. J Biol Chem 282:21953–21961

    PubMed  CAS  Google Scholar 

  58. O’Donnell SM, Holm GH, Pierce JM, Tian B, Watson MJ, Chari RS, Ballard DW, Brasier AR, Dermody TS (2006) Identification of an NF-kappaB-dependent gene network in cells infected by mammalian reovirus. J Virol 80:1077–1086

    PubMed  Google Scholar 

  59. Holm GH, Pruijssers AJ, Li L, Danthi P, Sherry B, Dermody TS (2010) Interferon regulatory factor 3 attenuates reovirus myocarditis and contributes to viral clearance. J Virol 84:6900–6908

    PubMed  CAS  Google Scholar 

  60. Li L, Sevinsky JR, Rowland MD, Bundy JL, Stephenson JL, Sherry B (2010) Proteomic analysis reveals virus-specific Hsp25 modulation in cardiac myocytes. J Proteome Res 9:2460–2471

    PubMed  CAS  Google Scholar 

  61. Miyamoto SD, Brown RD, Robinson BA, Tyler KL, Long CS, Debiasi RL (2009) Cardiac cell-specific apoptotic and cytokine responses to reovirus infection: determinants of myocarditic phenotype. J Card Fail 15:529–539

    PubMed  CAS  Google Scholar 

  62. DeBiasi RL, Robinson BA, Leser JS, Brown RD, Long CS, Clarke P (2010) Critical role for death-receptor mediated apoptotic signaling in viral myocarditis. J Card Fail 16:901–910

    PubMed  CAS  Google Scholar 

  63. Bowles NE, Ni J, Kearney DL, Pauschinger M, Schultheiss HP, McCarthy R, Hare J, Bricker JT, Bowles KR, Towbin JA (2003) Detection of viruses in myocardial tissues by polymerase chain reaction. Evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol 42:466–472

    PubMed  Google Scholar 

  64. Blailock ZR, Rabin ER, Melnick JL (1968) Adenovirus myocarditis in mice. An electron microscopic study. Exp Mol Pathol 9:84–96

    PubMed  CAS  Google Scholar 

  65. Kajon AE, Brown CC, Spindler KR (1998) Distribution of mouse adenovirus type 1 in intraperitoneally and intranasally infected adult outbred mice. J Virol 72:1219–1223

    PubMed  CAS  Google Scholar 

  66. Guida JD, Fejer G, Pirofski LA, Brosnan CF, Horwitz MS (1995) Mouse adenovirus type 1 causes a fatal hemorrhagic encephalomyelitis in adult C57BL/6 but not BALB/c mice. J Virol 69:7674–7681

    PubMed  CAS  Google Scholar 

  67. Ashley SL, Welton AR, Harwood KM, Van Rooijen N, Spindler KR (2009) Mouse adenovirus type 1 infection of macrophages. Virology 390:307–314

    PubMed  CAS  Google Scholar 

  68. Nie X, Zhang G, Xu D, Sun X, Li Z, Li X, Zhang X, He F, Li Y (2010) The VP1-unique region of parvovirus B19 induces myocardial injury in mice. Scand J Infect Dis 42:121–128

    PubMed  CAS  Google Scholar 

  69. Tzang BS, Lin TM, Tsai CC, Hsu JD, Yang LC, Hsu TC (2011) Increased cardiac injury in NZB/W F1 mice received antibody against human parvovirus B19 VP1 unique region protein. Mol Immunol 48:1518–1524

    PubMed  CAS  Google Scholar 

  70. Hoelzer K, Parrish CR (2010) The emergence of parvoviruses of carnivores. Vet Res 41:39

    PubMed  Google Scholar 

  71. Meurs KM, Fox PR, Magnon AL, Liu S, Towbin JA (2000) Molecular screening by polymerase chain reaction detects panleukopenia virus DNA in formalin-fixed hearts from cats with idiopathic cardiomyopathy and myocarditis. Cardiovasc Pathol 9:119–126

    PubMed  CAS  Google Scholar 

  72. Agungpriyono DR, Uchida K, Tabaru H, Yamaguchi R, Tateyama S (1999) Subacute massive necrotizing myocarditis by canine parvovirus type 2 infection with diffuse leukoencephalomalacia in a puppy. Vet Pathol 36:77–80

    PubMed  CAS  Google Scholar 

  73. Kawai C (1999) From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation 99:1091–1100 (Review)

    PubMed  CAS  Google Scholar 

  74. Häusler M, Sellhaus B, Scheithauer S, Gaida B, Kuropka S, Siepmann K, Panek A, Berg W, Teubner A, Ritter K, Kleines M (2007) Myocarditis in newborn wild-type BALB/c mice infected with the murine gamma herpesvirus MHV-68. Cardiovasc Res 76:323–330

    PubMed  Google Scholar 

  75. Lenzo JC, Fairweather D, Cull V, Shellam GR, James Lawson CM (2002) Characterisation of murine cytomegalovirus myocarditis: cellular infiltration of the heart and virus persistence. J Mol Cell Cardiol 34:629–640

    PubMed  CAS  Google Scholar 

  76. Ritter JT, Tang-Feldman YJ, Lochhead GR, Estrada M, Lochhead S, Yu C, Ashton-Sager A, Tuteja D, Leutenegger C, Pomeroy C (2010) In vivo characterization of cytokine profiles and viral load during murine cytomegalovirus-induced acute myocarditis. Cardiovasc Pathol 19:83–93

    PubMed  CAS  Google Scholar 

  77. Cull VS, Bartlett EJ, James CM (2002) Type I interferon gene therapy protects against cytomegalovirus-induced myocarditis. Immunology 106:428–437

    PubMed  CAS  Google Scholar 

  78. Mamas MA, Fraser D, Neyses L (2008) Cardiovascular manifestations associated with influenza virus infection. Int J Cardiol 130:304–309

    PubMed  Google Scholar 

  79. Bratincsák A, El-Said HG, Bradley JS, Shayan K, Grossfeld PD, Cannavino CR (2010) Fulminant myocarditis associated with pandemic H1N1 influenza A virus in children. J Am Coll Cardiol 55:928–929

    PubMed  Google Scholar 

  80. Pan HY, Yamada H, Chida J, Wang S, Yano M, Yao M, Zhu J, Kido H (2011) Up-regulation of ectopic trypsins in the myocardium by influenza A virus infection triggers acute myocarditis. Cardiovasc Res 89:595–603

    PubMed  CAS  Google Scholar 

  81. Woo GH, Kim HY, Bae YC, Jean YH, Bak EJ, Kim MJ, Hwang EK, Joo YS (2011) Comparative histopathological characteristics of highly pathogenic avian influenza (HPAI) in chickens and domestic ducks in 2008 Korea. Histol Histopathol 26:167–175

    PubMed  CAS  Google Scholar 

  82. Gabriel G, Klingel K, Planz O, Bier K, Herwig A, Sauter M, Klenk HD (2009) Spread of infection and lymphocyte depletion in mice depends on polymerase of influenza virus. Am J Pathol 175:1178–1186

    PubMed  CAS  Google Scholar 

  83. Gabriel G, Klingel K, Otte A, Thiele S, Hudjetz B, Arman-Kalcek G, Sauter M, Shmidt T, Rother F, Baumgarte S, Keiner B, Hartmann E, Bader M, Brownlee GG, Fodor E, Klenk HD (2011) Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus. Nat Commun 2:156

    PubMed  Google Scholar 

  84. Durando MM, Birks EK, Hussey SB, Lunn DP (2011) Cardiac troponin I concentrations in ponies challenged with equine influenza virus. J Vet Intern Med 25:339–344

    PubMed  CAS  Google Scholar 

  85. Haugland O, Mikalsen AB, Nilsen P, Lindmo K, Thu BJ, Eliassen TM, Roos N, Rode M, Evensen O (2011) Cardiomyopathy syndrome of atlantic salmon (Salmo salar L.) is caused by a double-stranded RNA virus of the Totiviridae family. J Virol 85:5275–5286

    PubMed  CAS  Google Scholar 

  86. Fiedler A (1900) Über akute interstitielle Myokarditis. Zentralbl f Med 21:212–213 (Cited by Scott RW, Saphir O (1929–30) Acute isolated myocarditis. Am Heart J 5:129–141.)

    Google Scholar 

  87. Woodruff JF (1980) Viral Myocarditis. Am J Pathol 101:428–479

    Google Scholar 

  88. Sainani GS, Dekate MP, Rao CP (1975) Heart disease caused by Coxsackie virus B infection. Br Heart J 37:819–823

    PubMed  CAS  Google Scholar 

  89. Gordon RB, Lennette EH, Sandrock RS (1959) The varied clinical manifestations of Coxsackie virus infections. Arch Int Med 103:63–75

    CAS  Google Scholar 

  90. Null FC, Castle CH (1959) Adult pericarditis and myocarditis due to coxsackie virus, group B, type 5. N Engl J Med 26i:937–942

    Google Scholar 

  91. Smith WG (1970) Coxsackie B myocarditis in adults. Am Heart J 80:34–46

    PubMed  CAS  Google Scholar 

  92. Bell EJ, Grist NR (1970) Further studies of enterovirus infections in cardiac disease and pleurodynia. Scan J Infect Dis 2:1–6

    CAS  Google Scholar 

  93. Lerner AM, Wilson FM (1973) Virus myocardiomyopathy. Prog Med Virol 15:63–91

    PubMed  CAS  Google Scholar 

  94. Medearis DN Jr (1957) Cytomegalic inclusion disease: an analysis of the clinical features based on the literature and 6 additional cases. Pediatrics 19:467–480

    PubMed  Google Scholar 

  95. Lenette DA, Specter S, Thompson KD (eds) (1979) Diagnosis of viral infections: The role of clinical laboratory. University Park Press, Baltimore

    Google Scholar 

  96. Grist NR, Reid D (1993) Epidemiology of viral infections of the heart. In: Banatvala JE (ed) Viral infections of the heart. Hodder and Stoughton, London, pp 23–31

  97. Mahfoud F, Gärtner B, Kindermann M, Ukena C, Gadomski K, Klingel K, Kandolf R, Böhm M, Kindermann I (2011) Virus serology in patients with suspected myocarditis: utility or futility? Eur Heart J 32:897–903

    PubMed  CAS  Google Scholar 

  98. Sakakibara S, Konno S (1962) Endomyocardial biopsy. Jpn Heart J 3:537–543

    PubMed  CAS  Google Scholar 

  99. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Ehrlich HA, Arnheim N (1985) Enzymatic amplification of β3-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    PubMed  CAS  Google Scholar 

  100. Pankuweit S, Portig I, Eckhardt H, Crombach M, Hufnagel G, Maisch B (2000) Prevalence of viral genome in endomyocardial biopsies from patients with inflammatory heart muscle disease. Herz 25(3):221–226

    PubMed  CAS  Google Scholar 

  101. Jackson DP, Lewis FA, Taylor GR, Boylston AW, Quirke P (1990) Tissue extraction of DNA and RNA and analysis by polymerase chain reaction. J Clin Pathol 43:499–504

    PubMed  CAS  Google Scholar 

  102. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    PubMed  CAS  Google Scholar 

  103. Maniatis T, Fritsch EF, Sambrook J (1992) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  104. Rotbart HA (1990) Enzymatic RNA amplification of enteroviruses. J Clin Microbiol 28:438–442

    PubMed  CAS  Google Scholar 

  105. Martin AB, Webber S, Fricker J, Jaffe R et al (1994) Acute myocarditis: rapid diagnosis in children. Circulation 90:330–339

    PubMed  CAS  Google Scholar 

  106. Kandolf R, Ameis D, Kirschner P, Canu A, Hofschneider PH (1987) In situ detection of enteroviral genomes in myocardial cells by nucleic acid hybridization: an approach to the diagnosis of viral heart disease. Proc Natl Acad Sci USA 84:6272–6276

    PubMed  CAS  Google Scholar 

  107. Klingel K, Stephan S, Sauter M, Zell R et al (1996) Pathogenesis of murine enterovirus myocarditis: virus dissemination and immune target cells. J Virol 70:8888–8895

    PubMed  CAS  Google Scholar 

  108. Klump WM, Bergmann I, Müller BC, Ameis D, Kandolf R (1990) Complete nucleotide sequence of infectious coxsackievirus B3 cDNA: two initial 5′ uridine residues are regained during plus-strand RNA synthesis. J Virol 64:1573–1583

    PubMed  CAS  Google Scholar 

  109. Archard L, Khan M, Soteriou BA et al (1997) Characterisation of coxsackie B virus RNA in myocardium from patients with dilated cardiomyopathy by nucleotide sequencing of reverse transcription-nested polymerase chain reaction products. Hum Pathol 29:578–584

    Google Scholar 

  110. Chapman NM, Tracy S, Gauntt CJ, Fortmüller U (1990) Molecular detection and identification of enteroviruses using enzymatic amplification and nucleic acid hybridisation. J Clin Microbiol 28:843–850

    PubMed  CAS  Google Scholar 

  111. Grasso M, Arbustini E, Silini E et al (1992) Search for Coxsackievirus B3 RNA in idiopathic dilated cardiomyopathy using gene amplification by polymerase chain reaction. Am J Cardiol 69:658–664

    PubMed  CAS  Google Scholar 

  112. Tracy S, Chapman NM, McManus BM et al (1990) A molecular and serologic evaluation of enteroviral involvement in human myocarditis. J Mol Cell Cardiol 22:403–414

    PubMed  CAS  Google Scholar 

  113. Schowengerdt K, Ni J, Denfield S et al (1997) Association of parvovirus B19 genome in children with myocarditis and cardiac allograft rejection. Diagnosis using the polymerase chain reaction. Circulation 96:3549–3554

    PubMed  CAS  Google Scholar 

  114. Piiparinen H, Vaheri A (1991) Genotyping of herpes simplex viruses by polymerase chain reaction. Arch Virol 119:541–548

    Google Scholar 

  115. Weiss SM, Roblin PM, Gaydos CA et al (1996) Failure to detect chlamydia pneumoniae in coronary atheromas of patients undergoing atherectomy. J Infect Dis 173:957–962

    PubMed  CAS  Google Scholar 

  116. Goodman JL, Jurkovic P, Kramber JM, Johnson RC (1991) Molecular detection of persistent borrelia burgdorferi in the urine of patients with active Lyme disease. Infect Immunol 59:269–278

    CAS  Google Scholar 

  117. Stanek G, Klein J, Bitnner R, Glogar D (1990) Isolation of borrelia burgdorferi from the myocardium of a patient with longstanding cardiomyopathy. N Engl J Med 322:249–252

    PubMed  CAS  Google Scholar 

  118. Nakhleh RE, Copenhaver CM, Werdin K (1991) Lack of evidence for involvment of Epstein-Barr virus in the development of ‘Quilty’ lesion of transplanted hearts: an in situ hybridization study. J Heart Lung Transpl 10:504–507

    CAS  Google Scholar 

  119. Klingel K, Sauter M, Bock CT, Szalay G, Schnorr JJ, Kandolf R (2004) Molecular pathology of inflammatory cardiomyopathy. Med Microbiol Immunol (Berl) 193(2–3):101–107

    CAS  Google Scholar 

  120. Kandolf R, Hofschneider PH (1985) Molecular cloning of the genome of a cardiotropic coxsackie B3 virus: full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells. Proc Natl Acad Sci USA 82:4818–4822

    PubMed  CAS  Google Scholar 

  121. Manaresi E, Gallinella G, Zuffi E, Bonvicini F, Zerbini M, Musiani M (2002) Diagnosis and quantitative evaluation of parvovirus B19 infections by real-time PCR in the clinical laboratory. J Med Virol 67:275–281

    PubMed  CAS  Google Scholar 

  122. Harder TC, Hufnagel M, Zahn K, Beutel K, Schmitt H-J, Ullmann U et al (2001) New LightCycler PCR for rapid and sensitive quantification of parvovirus B19 DNA guides therapeutic decision-making in relapsing infections. J Clin Microbiol 39:4413–4419

    PubMed  CAS  Google Scholar 

  123. Aberham C, Pendl C, Gross P, Zerlauth G, Gessner M (2001) A quantitative, internally controlled real-time PCR Assay for the detection of parvovirus B19 DNA. J Virol Methods 92:183–191

    PubMed  CAS  Google Scholar 

  124. Gruber F, Falkner FG, Dorner F, Hammerle T (2001) Quantitation of viral DNA by real-time PCR applying duplex amplification, internal standardization, and two-color fluorescence detection. Appl Environ Microbiol 67:2837–2839

    PubMed  CAS  Google Scholar 

  125. Servant A, Laperche S, Lallemand F, Marinho V, De Maur G, Meritet JF, Garbarg-Chenon A (2002) Genetic diversity within human erythroviruses: identification of three genotypes. J Virol 76:9124–9134

    PubMed  CAS  Google Scholar 

  126. Hokynar K, Soderlund-Venermo M, Pesonen M, Ranki A, Kiviluoto O, Partio EK, Hedman K (2002) A new parvovirus genotype persistent in human skin. Virology 302:224–228

    PubMed  CAS  Google Scholar 

  127. Nguyen QT, WongS HeegaardED, Brown KE (2002) Identification and characterization of a second novel human erythrovirus variant A6. Virology 301:374–380

    PubMed  CAS  Google Scholar 

  128. Heegaard ED, Brown KE (2002) Human parvovirus B 19. Clin Microbiol Rev 15:485–505

    PubMed  Google Scholar 

  129. Liefeldt L, Plentz A, Klempa B, Kershaw O, Endres AS, Raab U, Neumayer HH, Meisel H, Modrow S (2005) Recurrent high level parvovirus B19/genotype 2 viremia in a renal transplant recipient analyzed by real-time PCR for simultaneous detection of genotypes 1 to 3. J Med Virol 75(1):161–169

    PubMed  CAS  Google Scholar 

  130. Yajima T, Knowlton KU (2009) Viral myocarditis: from the perspective of the virus. Circulation 119:2615–2624

    PubMed  Google Scholar 

  131. Bowles NE, Rose ML, Taylor P et al (1989) End-stage dilated cardiomyopathy persistence of enterovirus RNA in myocardium at cardiac transplantation and lack of immune response. Circulation 80:1128–1136

    PubMed  CAS  Google Scholar 

  132. Tracy S, Wiegand V, McManus B et al (1990) Molecular approaches to enteroviral diagnosis in idiopathic cardiomyopathy and myocarditis. JACC 15:1688–1694

    PubMed  CAS  Google Scholar 

  133. Jin O, Sole M, Butany JW et al (1990) Detection of enterovirus RNA in myocardial biopsies from patients with myocarditis and cardiomyopathy using gene amplification by polymerase chain reaction. Circulation 82:8–16

    PubMed  CAS  Google Scholar 

  134. Weiss L, Mohaved L, Billingham ME, Cleary ML (1991) Detection of coxsackie B3 RNA in myocardial tissues by polymerase chain reaction. Am J Pathol 138:497–503

    PubMed  CAS  Google Scholar 

  135. Kandolf R, Klingel K, Zell R et al (1993) Molecular pathogenesis of enterovirus-induced myocarditis: virus persistence and chronic inflammation. Intervirology 35:140–150

    PubMed  CAS  Google Scholar 

  136. Petitjan J, Kopecka H, Freymuth F et al (1992) Detection of enteroviruses in endomyocardial biopsy by molecular approach. J Med Virol 37:76–82

    Google Scholar 

  137. Pauschinger M, Dörner G, Meissner G et al (1994) Enteroviral RNA detection by polymerase chain reaction (PCR) in cardiac muscle biopsies of patients with myocarditis or dilated cardiomyopathy. J Am Coll Cardiol 2:880–884

    Google Scholar 

  138. Bowles N, Towbin J (1996) Viral heart muscle disease in children. Newslett Sci Counc Cardiomyopathies 11:4–5

    Google Scholar 

  139. Talwar KK, Thatai D, Kannath P et al (1996) Enteroviral detection by polymerase chain reaction technique in endomyocardial biopsy specimen: an initial study. Indian Heart J 48:479–480

    Google Scholar 

  140. Maisch B, Schönian U, Hufnagel G, Pankuweit S (1997) Enteroviral persistence in myocarditis and dilated cardiomyopathy. Eur Heart J 18:593

    Google Scholar 

  141. Pauschinger M, Phan MD, Dörner A et al (1997) Detection of enteroviral RNA replicative intermediates in endomyocardial biopsies: indication of viral replication in the human heart. Eur Heart J 18:594A

    Google Scholar 

  142. Kuhl U, Pauschinger M, Noutsias M, Seeberg B, Bock T, Lassner D, Poller W, Kandolf R, Schultheiss HP (2005) High prevalence of viral genomes and multiple viral infections in the myocardium of adults with idiopathic left ventricular dysfunction. Circulation 111:887–893

    PubMed  Google Scholar 

  143. Pankuweit S, Ruppert V, Eckhardt H, Strache D, Maisch B (2005) Pathophysiology and etiological diagnosis of inflammatory myocardial diseases with a special focus on parvovirus B 19. J Vet Med B Infect Dis Vet Public Health 52(7–8):344–347

    PubMed  CAS  Google Scholar 

  144. Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, Vogelsberg H, Fritz P, Dippon J, Bock CT, Klingel K, Kandolf R, Sechtem U (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114(15):1581–1590

    PubMed  Google Scholar 

  145. Kandolf R, Bültmann B, Klingel K, Bock CT (2008) Molecular mechanisms and consequences of cardiac viral infections. Pathologe 29(Suppl 2):112–117

    PubMed  Google Scholar 

  146. Pauschinger M, Dörner A, Kühl U et al (1999) Enteroviral replication in the myocardium of patients with left ventricular dysfunction and clinically suspected myocarditis. Circulation 99:889–895

    PubMed  CAS  Google Scholar 

  147. Chapman M, Kim KS (2008) Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr Top Microbiol Immunol 323:275–292

    PubMed  CAS  Google Scholar 

  148. Kytö V, Vuorinen T, Saukko P, Lautenschlager I, Lignitz E, Saraste A, Voipio-Pulkki LM (2005) Cytomegalovirus infection of the heart is common in patients with fatal myocarditis. Clin Infect Dis 40(5):683–688

    PubMed  Google Scholar 

  149. Maisch B, Schönian U, Crombach M et al (1993) Cytomegalovirus associated inflammatory heart muscle disease. Scan J Infect Dis suppl 88:135–148

    CAS  Google Scholar 

  150. Schönian U, Crombach M, Maisch B (1993) Assessment of cytomegalovirus DNA and protein expression in patients with myocarditis. Clin Immun Immunpathol 68:229–233

    Google Scholar 

  151. Towbin JA (1996) Diagnosis and management of myocarditis in children. Newsletter of the Scientific Council on Cardiomyopathies 11:8

    Google Scholar 

  152. Maisch B, Pausch R, Hufnagel G, Schönian U (1997) The neglected role of DNA viruses in chronic myocarditis and dilated cardiomyopathy. Eur Heart J 18:515

    Google Scholar 

  153. Bergelson JM, Cunningham JA, Droguett G et al (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

    PubMed  CAS  Google Scholar 

  154. Tomko RP, Xu R, Philipson L (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 94:3352–3356

    PubMed  CAS  Google Scholar 

  155. Hufnagel G, Busse C, Ische B, Maisch B (1997) Detection of adenoviral DNA in endomyocardial biopsies of adult patients with myocarditis and dilated cardiomyopathy. Eur Heart J 18:515

    Google Scholar 

  156. Pauschinger M, Bowles NE, Fuentes-Garcia FJ et al (1999) Detection of adenoviral genome in the myocardium of adult patients with idiopathic left ventricular dysfunction. Circulation 99:1348–1354

    PubMed  CAS  Google Scholar 

  157. Rohayem J, Dinger J, Fischer R et al (2001) Fatal myocarditis associated with acute parvovirus B19 and human herpesvirus 6 coinfection. J Clin Microbiol 39:4585–4587

    PubMed  CAS  Google Scholar 

  158. Heegaard ED, Eiskjaer H, Baandrup U et al (1998) Case report: parvovirus B19 infection associated with myocarditis following adult cardiac transplantation. Scand J Infect Dis 30:607–610

    PubMed  CAS  Google Scholar 

  159. Chia JKS (1996) Myopericarditis due to parvovirus B19 in an adult. Clin Infect Dis 23:200–201

    PubMed  CAS  Google Scholar 

  160. Schwarz TF, Wiersbitzky S, Pambor M (1994) Case report: detection of parvovirus B19 in a skin biopsy of a patient with erythema infectiosum. J Med Virol 43:171–174

    PubMed  CAS  Google Scholar 

  161. Gabriel SE, Espy M, Erdman DD et al (1999) The role of parvovirus B19 in the pathogenesis of giant cell arteritis. Arthritis Rheum 42:1255–1258

    PubMed  CAS  Google Scholar 

  162. Nigro G, Bastianon V, Colloridi V et al (2000) Human parvovirus B19 infection in infancy associated with acute and chronic lymphocytic myocarditis and high cytokine levels: report of 3 cases and review. Clin Infect Dis 31:65–69

    PubMed  CAS  Google Scholar 

  163. Sokal EM, Melchior M, Cornu C et al (1998) Acute parvovirus B19 infection associated with fulminant hepatitis of favourable prognosis in young children. Lancet 352:1739–1741

    PubMed  CAS  Google Scholar 

  164. Enders M, Klingel K, Weidner A, Baisch C, Kandolf R, Schalasta G, Enders G (2010) Risk of fetal hydrops and non-hydropic late intrauterine fetal death after gestational parvovirus B19 infection. J Clin Virol 49:163–168

    PubMed  Google Scholar 

  165. Brown KE, Anderson SM, Young NS (1993) Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 262:114–117

    PubMed  CAS  Google Scholar 

  166. Porter HJ, Quantrill AM, Fleming KA (1998) B19 parvovirus infection of myocardial cells. Lancet 1:535–536

    Google Scholar 

  167. Pankuweit S, Moll R, Baantrup U, Portig I, Hufnagel G, Maisch B (2003) Prevalence of the parvovirus B19 genome in endomyocardial biopsy specimens. Hum Pathol 34:497–500

    PubMed  Google Scholar 

  168. Klein RM, Jiang H, Niederacher D, Adams O, Du M, Horlitz M, Schley P, Marx R, Lankisch MR, Brehm MU, Strauer BE, Gabbert HE, Scheffold T, Gülker H (2004) Frequency and quantity of the parvovirus B19 genome in endomyocardial biopsies from patients with suspected myocarditis or idiopathic left ventricular dysfunction. Z Kardiol 93(4):300–309

    PubMed  CAS  Google Scholar 

  169. Kühl U, Pauschinger M, Bock T, Klingel K, Schwimmbeck CP, Seeberg B, Krautwurm L, Poller W, Schultheiss HP, Kandolf R (2003) Parvovirus B19 infection mimicking acute myocardial infarction. Circulation 108(8):945–950

    PubMed  Google Scholar 

  170. Bültmann BD, Klingel K, Sotlar K, Bock CT, Baba HA, Sauter M, Kandolf R (2003) Fatal parvovirus B19-associated myocarditis clinically mimicking ischemic heart disease: an endothelial cell-mediated disease. Hum Pathol 34:92–95

    PubMed  Google Scholar 

  171. Kuethe F, Lindner J, Matschke K, Wenzel JJ, Norja P, Ploetze K, Schaal S, Kamvissi V, Bornstein SR, Schwanebeck U, Modrow S (2009) Prevalence of parvovirus B19 and human bocavirus DNA in the heart of patients with no evidence of dilated cardiomyopathy or myocarditis. Clin Infect Dis 49:1660–1666

    PubMed  Google Scholar 

  172. Lotze U, Egerer R, Glück B, Zell R, Sigusch H, Erhardt C, Heim A, Kandolf R, Bock T, Wutzler P, Figulla HR (2010) Low level myocardial parvovirus B19 persistence is a frequent finding in patients with heart disease but unrelated to ongoing myocardial injury. J Med Virol 82:1449–1457

    PubMed  CAS  Google Scholar 

  173. Corcioli F, Zakrzewska K, Rinieri A, Fanci R, Innocenti M, Civinini R, De Giorgi V, Di Lollo S, Azzi A (2008) Tissue persistence of parvovirus B19 genotypes in asymptomatic persons. J Med Virol 80:2005–2011

    PubMed  CAS  Google Scholar 

  174. Schenk T, Enders M, Pollak S, Hahn R, Huzly D (2009) High prevalence of human parvovirus B19 DNA in myocardial autopsy samples from subjects without myocarditis or dilative cardiomyopathy. J Clin Microbiol 47:106–110

    PubMed  CAS  Google Scholar 

  175. Stewart GC, Lopez-Molina J, Gottumukkala RV, Rosner GF, Anello MS, Hecht JL, Winters GL, Padera RF, Baughman KL, Lipes MA (2011) Myocardial parvovirus B19 persistence: lack of association with clinicopathologic phenotype in adults with heart failure. Circ Heart Fail 4(1):71–78

    PubMed  Google Scholar 

  176. Schmidt-Lucke C, Spillmann F, Bock T, Kühl U, Van Linthout S, Schultheiss HP, Tschöpe C (2010) Interferon beta modulates endothelial damage in patients with cardiac persistence of human parvovirus b19 infection. J Infect Dis 201:936–945

    PubMed  Google Scholar 

  177. Zafrir B, Aviv A, Reichman N, Flatau E (2005) Epstein-Barr virus associated pericarditis and pericardial effusion: case report and diagnostic aspects. Eur J Intern Med 16:528–530

    PubMed  Google Scholar 

  178. Roubille F, Gahide G, Moore-Morris T, Granier M, Davy JM, Vernhet H, Piot C (2008) Epstein Barr virus (EBV) and acute myopericarditis in an immunocompetent patient: first demonstrated case and discussion. Intern Med 47(7):627–629

    PubMed  Google Scholar 

  179. Chang YL, Parker ME, Nuovo G, Miller JB (2009) Human herpesvirus 6–related fulminant myocarditis and hepatitis in an immunocompetent adult with fatal outcome. Hum Pathol 40(5):740–745

    PubMed  CAS  Google Scholar 

  180. Leveque N, Boulagnon C, Brasselet C, Lesaffre F, Boutolleau D, Metz D, Fornes P, Andreoletti L (2011) A fatal case of Human Herpesvirus 6 chronic myocarditis in an immunocompetent adult. J Clin Virol 52(2):142–145

    PubMed  Google Scholar 

  181. Liao YC, Hsieh YC, Chang WC, Huang JL, Ting CT, Wu TJ (2011) Fulminant myocarditis in an adult with 2009 pandemic influenza A (H1N1 influenza) infection. J Chin Med Assoc 74(3):130–133

    PubMed  Google Scholar 

  182. Moulik M, Breinholt JP, Dreyer WJ, Kearney DL, Price JF, Clunie SK, Moffett BS, Kim JJ, Rossano JW, Jefferies JL, Bowles KR, O’Brian Smith E, Bowles NE, Denfield SW, Towbin JA (2010) Viral endomyocardial infection is an independent predictor and potentially treatable risk factor for graft loss and coronary vasculopathy in pediatric cardiac transplant recipients. J Am Coll Cardiol 56(7):582–592

    PubMed  Google Scholar 

  183. Shaw T, Elliot P, McKenna WJ (2002) Dilated cardiomyopathy: a genetical heterogeneous disease. Lancet 360:654–655

    PubMed  Google Scholar 

  184. Mason JW (2003) Myocarditis and dilated cardiomyopathy: an inflammatory link. Cardiovasc Res 60:5–10

    PubMed  CAS  Google Scholar 

  185. Maekawa Y, Ouzounian M, Opavsky MA, Liu PP (2007) Connecting the missing link between dilated cardiomyopathy and viral myocarditis: virus, cytoskeleton, and innate immunity. Circulation 115(1):5–8

    PubMed  Google Scholar 

  186. Linde A, Mosier D, Blecha F, Melgarejo T (2007) Innate immunity and inflammation–new frontiers in comparative cardiovascular pathology. Cardiovasc Res 73(1):26–36

    PubMed  CAS  Google Scholar 

  187. Gorbea C, Makar KA, Pauschinger M, Pratt G, Bersola JL, Varela J, David RM, Banks L, Huang CH, Li H, Schultheiss HP, Towbin JA, Vallejo JG, Bowles NE (2010) A role for Toll-like receptor 3 variants in host susceptibility to enteroviral myocarditis and dilated cardiomyopathy. J Biol Chem 285:23208–23223

    PubMed  CAS  Google Scholar 

  188. Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108(9):1133–1145

    PubMed  CAS  Google Scholar 

  189. Fuse K, Chan G, Liu Y, Gudgeon P, Husain M, Chen M, Yeh WC, Akira S, Liu PP (2005) Myeloid differentiation factor-88 plays a crucial role in the pathogenesis of coxsackievirus B3 induced myocarditis, and influences type I interferon production. Circulation 112:2276–2285

    PubMed  CAS  Google Scholar 

  190. Mann DL, Topkara VK, Evans S, Barger PM (2010) Innate immunity in the adult mammalian heart: for whom the cell tolls. Trans Am Clin Climatol Assoc 121:34–50

    PubMed  Google Scholar 

  191. Schultheiss HP, Kühl U, Cooper LT (2011) The management of myocarditis. Eur Heart J 32:2616–2625

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Federal Ministry of Education and Research 01GI 0205—TP9a to SP and 01EZ0817 to KK and the Deutsche Forschungsgemeinschaft (SFB-TR19) to KK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Klingel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankuweit, S., Klingel, K. Viral myocarditis: from experimental models to molecular diagnosis in patients. Heart Fail Rev 18, 683–702 (2013). https://doi.org/10.1007/s10741-012-9357-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-012-9357-4

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007%2Fs10741-012-9357-4

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy