Content-Length: 348627 | pFad | https://doi.org/10.1007%2Fs11105-013-0598-8

a=86400 Genetic Diversity and Population Structure Among Oat Cultivars and Landraces | Plant Molecular Biology Reporter Skip to main content
Log in

Genetic Diversity and Population Structure Among Oat Cultivars and Landraces

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

In this study, genetic diversity among 177 oat (Avena sativa L.) accessions including both white and red oat landraces and 36 commercial cultivars was studied for simple sequence repeat (SSR) loci. Thirty-one genomic and expressed sequence tags (EST)-derived primer pairs were selected according to high polymorphism from an initial 66 SSR batch. Markers revealed a high level of polymorphism, detecting a total of 454 alleles. The average gene diversity for the whole sample was 0.29. Genetic similarity, calculated using the Dice coefficient, was used for cluster analysis, and principal component analysis was also applied. In addition, population structure using a Bayesian clustering approach identified discrete subpopulation based on allele frequency and showed similar clustering of oat genotypes in four groups. Accessions could be classified into four main clusters that clearly separated the commercial cultivars, the red oat landraces and two clusters of white oat landraces. Cultivars showed less diversity than the landraces indicating a reduction of genetic diversity during breeding, whereas white oat landraces showed higher diversity than red ones. The average polymorphic information content of 0.80 for the SSR loci indicated the usefulness of many of the SSR for genotype identification. In particular, two markers, MAMA5 and AM04, with a total of 50 alleles and a high discrimination power (>0.90), were sufficient to discriminate among all commercial cultivars studied highlighting their potential use for variety identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achleitner A, Tinker NA, Zechner E, Buerstmayr H (2008) Genetic diversity among oat varieties of worldwide origen and associations of AFLP markers with quantitative traits. Theor Appl Genet 117(7):1041–1053. doi:10.1007/s00122-008-0843-y

    Article  PubMed  CAS  Google Scholar 

  • Baohong G, Zhou X, Murphy JP (2003) Genetic variation within Chinese and western cultivated oat accessions. Cereal Res Commun 31(3–4):339–346

    CAS  Google Scholar 

  • Becher R (2007) EST-derived microsatellites as a rich source of molecular markers for oats. Plant Breeding 126(3):274–278. doi:10.1111/j.1439-0523.2007.01330.x

    Article  CAS  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear-DNA amounts in angiosperms. Philos T Roy Soc B 274(933):227–274

    Article  CAS  Google Scholar 

  • Bonow S, Von Pinho EVR, Vieira MGC, Vosman B (2009) Microsatellite markers in and around rice genes: applications in variety identification and DUS testing. Crop Sci 49(3):880–886

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. Am J Hum Gen 32(3):314–331

    CAS  Google Scholar 

  • Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5(2):107–111. doi:10.1016/s1369-5266(02)00238-8

    Article  PubMed  CAS  Google Scholar 

  • Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bred wheat germplasm during the 20(th) century. Mol Breeding 9(1):1–11. doi:10.1023/a:1019234323372

    Article  Google Scholar 

  • Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100(6):912–917. doi:10.1007/s001220051370

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587

    PubMed  CAS  Google Scholar 

  • Frankel OH, Bennett E (1970) Genetic resources in plants—their exploration and conservation. Blackwell, Oxford

    Google Scholar 

  • Fu YB, Peterson G, Scoles G, Rossnagel B, Schoen D, Richards K (2003) Allelic diversity changes in 96 Canadian oat cultivars released from 1886 to 2001. Crop Sci 43:1989–1995

    Article  Google Scholar 

  • Fu YB, Kibite S, Richards KW (2004) Amplified fragment length polymorphism analysis of 96 Canadian oat cultivars released between 1886 and 2001. Can J Plant Sci 84(1):23–30

    Article  CAS  Google Scholar 

  • Fu YB, Peterson GW, Williams D, Richards KW, Fetch JM (2005) Patterns of AFLP variation in a core subset of cultivated hexaploid oat germplasm. Theor Appl Genet 111(3):530–539. doi:10.1007/s00122-005-2044-2

    Article  PubMed  Google Scholar 

  • Fu YB, Peterson GW, Chong J, Fetch T, Wang ML (2007) Microsatellite variation in Avena sterilis oat germplam. Theor Appl Genet 114:10229–11038

    Article  Google Scholar 

  • Fu YB, Williams DJ (2008) AFLP variation in 25 Avena species. Theor Appl Genet 117(3):333–342

    Article  PubMed  CAS  Google Scholar 

  • Gunjaca J, Buhinicek I, Jukic M, Sarcevic H, Vragolovic A, Kozic Z, Jambrovic A, Pejic I (2008) Discriminating maize inbred lines using molecular and DUS data. Euphytica 161:165–172

    Article  CAS  Google Scholar 

  • Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, London, England

    Google Scholar 

  • He X, Bjornstad A (2012) Diversity of North European oat analyzed by SSR, AFLP and DArT markers. Theor Appl Genet 125(1):57–70. doi:10.1007/s00122-012-1816-8

    Article  PubMed  Google Scholar 

  • Iannucci A, Codianni P, Cattivelli L (2011) Evaluation of genotype diversity in oat germplasm and definition of ideotypes adapted to the mediterranean environment. Int J Agron 2011:8. doi: 10.1155/2011/870925

  • Jannink JL, Gardner SW (2005) Expanding the pool of PCR-based markers for oat. Crop Sci 45(6):2383–2387. doi:10.2135/cropsci2005.0285

    Article  CAS  Google Scholar 

  • Jellen EN, Leggett JM (2006) Cytogenetic manipulation in oat improvement. In: Singh RJ, Jauhar JJ (eds) Genetic resources, chromosome engineering, and crop improvement: cereals, vol 2. CRC, pp 199–231

  • Karp A (2002) The new genetic era: will it help us in managing genetic diversity? In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CAB International and IPGRI, Wallingford and Rome, pp 43–56

    Google Scholar 

  • Koebner RMD, Donini P, Reeves JC, Cooke RJ, Law JR (2003) Temporal flux in the morphological and molecular diversity of UK barley. Theor Appl Genet 106(3):550–558. doi:10.1007/s00122-002-1065-3

    PubMed  CAS  Google Scholar 

  • Li CD, Rossnagel BG, Scoles GJ (2000) The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor Appl Genet 101:1259–1268

    Article  CAS  Google Scholar 

  • Li RZ, Wang SW, Duan LS, Li ZH, Christoffers MJ, Mengistu LW (2007) Genetic diversity of wild oat (Avena fatua) populations from China and the United States. Weed Sci 55(2):95–101. doi:10.1614/ws-06-108.1

    Article  CAS  Google Scholar 

  • Liu ZW, Biyashev RM, Maroof MAS (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93(5–6):869–876. doi:10.1007/bf00224088

    Article  PubMed  CAS  Google Scholar 

  • Magness JR, Markle GM, Compton CC (1971) Food and feed crops of the United States. In. Interregional research project IR-4, IR Bul. 1 (Bul. 828.New Jersey Agric. Expt. Sta.)

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res 8(19):4321–4325. doi:10.1093/nar/8.19.4321

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical-model for studying genetic-variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76(10):5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nersting LG, Andersen SB, von Bothmer R, Gullord M, Jorgensen RB (2006) Morphological and molecular diversity of Nordic oat through one hundred years of breeding. Euphytica 150(3):327–337. doi:10.1007/s10681-006-9116-5

    Article  Google Scholar 

  • Newell MA, Cook D, Tinker NA, Jannink JL (2011) Population structure and linkage disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies. Theor Appl Genet 122(3):623–632. doi:10.1007/s00122-010-1474-7

    Article  PubMed  CAS  Google Scholar 

  • Odonoughue LS, Souza E, Tanksley SD, Sorrells ME (1994) Relationships among North-American oat cultivars based on restriction-fragment-length-polymorphisms. Crop Sci 34(5):1251–1258

    Article  Google Scholar 

  • Paczos-Grzeda E (2004) Pedigree, RAPD and simplified AFLP-based assessment of genetic relationships among Avena sativa L. cultivars. Euphytica 138(1):13–22. doi:10.1023/B:EUPH.0000047055.99322.7a

  • Pal N, Sandhu JS, Domier LL, Kolb FL (2002) Development and characterization of microsatellite and RFLP-derived PCR markers in oat. Crop Sci 42(3):912–918

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Wen W (2003) Documentation for STRUCTURE software: version 2. Available from http://pritchbsduchicagoedu

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110(5):859–864. doi:10.1007/s00122-004-1881-8

    Article  PubMed  CAS  Google Scholar 

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108(5):920–930. doi:10.1007/s00122-003-1502-y

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Martin J, Rubiales D, Prats E (2011a) Resistance to powdery mildew (Blumeria graminis f.sp avenae) in oat seedlings and adult plants. Plant Pathol 60(5):846–856. doi:10.1111/j.1365-3059.2011.02453.x

    Article  Google Scholar 

  • Sanchez-Martin J, Rubiales D, Sillero JC, Prats E (2011b) Identification and characterization of sources of resistance in Avena sativa, A. byzantina and A. strigosa germplasm against a pathotype of Puccinia coronata f.sp. avenae with virulence against the Pc94 resistance gene. Plant Pathol. doi:10.1111/j.1365-3059.2011.02514.x

  • Stevens EJ, Armstrong KW, Bezar HJ, Griffin WB, J.G. H (2004) Fodder oats an overview. In: Suttie JM, Reynolds SG (eds) Fodder oats: a world overview. Food and Agriculture Organization of the United Nations, Rome, pp pp. 1–9

  • Tessier C, David J, This P, Boursiquot JM, Charrier A (1999) Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet 98(1):171–177. doi:10.1007/s001220051054

    Article  CAS  Google Scholar 

  • Warburton ML, Peif JC, Frisch M, Bohn M, Bedoya C, Xia XC, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger AE (2008) Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci 48(2):617–624. doi:10.2135/cropsci2007.02.0103

    Article  Google Scholar 

  • Wight CP, Yan WK, Fetch JM, Deyl J, Tinker NA (2010) A set of new simple sequence repeat and Avenin DNA markers suitable for mapping and fingerprinting studies in oat (Avena spp.). Crop Sci 50(4):1207–1218. doi:10.2135/cropsci2009.09.0474

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness [AGL2010-15936/AGR], the European Social and Regional Development Funds, a JAE PreDoc fellowship from CSIC to [GMB], a JAE Postdoctoral Fellowship from CSIC to [NR], and a FPU fellowship from the Spanish Ministry of Science and Innovation to [JSM]. We thank CRF (INIA, Madrid) for kindly supplying the seeds of the accessions used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Prats.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montilla-Bascón, G., Sánchez-Martín, J., Rispail, N. et al. Genetic Diversity and Population Structure Among Oat Cultivars and Landraces. Plant Mol Biol Rep 31, 1305–1314 (2013). https://doi.org/10.1007/s11105-013-0598-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0598-8

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007%2Fs11105-013-0598-8

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy