Content-Length: 311010 | pFad | https://doi.org/10.1007%2Fs12020-023-03456-x

a=86400 Revisiting the cortisol reference ranges in humans: the role of demographics | Endocrine Skip to main content
Log in

Revisiting the cortisol reference ranges in humans: the role of demographics

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The current study explores the effect of demographics on serum cortisol expression in a study group of 52 individuals to improve the current serum reference ranges to produce personalized expression profiles consequently increasing clinical confidence in the diagnosis. The serum cortisol concentration was inspected against demographical data like age, sex, and body mass index and showed an association with age and sex. The serum cortisol values also indicated a positive association with chronic illnesses however this finding requires a more focused study for establishment. Additionally, saliva samples are also collected from the same study group at the same time through drool and an absorbent sponge and correlated with serum values to draw an alternative route of serological testing. Salivary cortisol from drool showed a linear correlation with Pearson’s correlation coefficients of 0.71 and 0.72 with serum cortisol and with saliva samples collected using a porous sponge respectively. Overall, the study shows the role of demographics in shaping the reference ranges for cortisol, suggesting a path for developing personalized diagnostics. The study also highlights the efficacy of saliva as an alternative to serum cortisol to facilitate cortisol measurement for efficient stress management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.H. Hellhammer, S. Wüst, B.M. Kudielka, Psychoneuroendocrinology 34, 163 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. N. A. Nicolson, in Handb. Physiol. Res. Methods Heal. Psychol. (SAGE Publications Inc., 2008) pp. 37–74

  3. U. Teruhisa, H. Ryoji, I. Taisuke, S. Tatsuya, M. Fumihiro, S. Tatsuo, Clin. Chim. Acta 110, 245 (1981)

    Article  Google Scholar 

  4. E. Fries, L. Dettenborn, C. Kirschbaum, Int. J. Psychophysiol. 72, 67 (2009)

    Article  PubMed  Google Scholar 

  5. R. Rosmond, M.F. Dallman, P. Björntorp, J. Clin. Endocrinol. Metab. 83, 1853 (1998)

    CAS  PubMed  Google Scholar 

  6. B.J. Carroll, G.C. Curtis, J. Mendels, Psychol. Med. 6, 235 (1976)

    Article  CAS  PubMed  Google Scholar 

  7. E. Russell, G. Koren, M. Rieder, S.H.M. Van Uum, Ther. Drug Monit. 36, 30 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. U. Turpeinen, E. Hämäläinen, Best. Pract. Res. Clin. Endocrinol. Metab. 27, 795 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. N. El-Farhan, D.A. Rees, C. Evans, Ann. Clin. Biochem. 54, 308 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. P.A. Nepomnaschy, T.C.K. Lee, L. Zeng, C.B. Dean, Am. J. Hum. Biol. 24, 515 (2012)

    Article  PubMed  Google Scholar 

  11. S. Konishi, E. Brindle, A. Guyton, K.A. O’Connor, Am. J. Phys. Anthropol. 149, 231 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  12. S.C. Segerstrom, I.A. Boggero, G.T. Smith, S.E. Sephton, Psychoneuroendocrinology 49, 299 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. E. Aardal, A.C. Holm, Clin. Chem. Lab. Med 33, 927 (1995)

    Article  CAS  Google Scholar 

  14. M.F. Keil, J. Pediatr. Nurs. 27, 287 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  15. E. Aardal-Eriksson, B.E. Karlberg, A.C. Holm, Clin. Chem. Lab. Med 36, 215 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. L. D. Dorn, J. F. Lucke, T. L. Loucks, and S. L. Berga, 44, 281 (2016). https://doi.org/10.1258/000456307780480954

  17. R.F. Vining, R.A. McGinley, J.J. Maksvytis, K.Y. Ho, Ann. Clin. Biochem. 20, 329 (1983)

    Article  CAS  PubMed  Google Scholar 

  18. W.J. Inder, G. Dimeski, A. Russell, Clin. Endocrinol. (Oxf.). 77, 645 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. K.R. Bhattarai, H.R. Kim, H.J. Chae, Int. J. Med. Sci. 15, 823 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. F.G. Bellagambi, T. Lomonaco, P. Salvo, F. Vivaldi, M. Hangouët, S. Ghimenti, D. Biagini, F. Di Francesco, R. Fuoco, A. Errachid, TrAC Trends Anal. Chem. 124, 115781 (2020)

    Article  CAS  Google Scholar 

  21. WMA, WMA Declar. Helsinki – Ethical Princ. Med. Res. Involv. Hum. Subj. (2018).

  22. F. Faul, E. Erdfelder, A.G. Lang, A. Buchner, Behav. Res. Methods 39, 175 (2007)

    Article  PubMed  Google Scholar 

  23. E. Erdfelder, F. FAul, A. Buchner, A.G. Lang, Behav. Res. Methods 41, 1149 (2009)

    Article  PubMed  Google Scholar 

  24. R. L. Sapra, in How to Pract. Acad. Med. Publ. from Dev. Countries? (Springer, Singapore, 2021), pp. 81–93

  25. C. Wilde, D. Out, S. Johnson, and D. A. Granger, in Immunoass. Handb. Theory Appl. Ligand Bind. ELISA Relat. Tech. (Elsevier Ltd, 2013), pp. 427–440

  26. B. Donzella, N.M. Talge, T.L. Smith, M.R. Gunnar, Dev. Psychobiol. 50, 714 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  27. G.N. Konstantinou, C.M. Cherny, A. Nowak-Węgrzyn, J. Oral. Sci. 58, 205 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. L. Strazdins, S. Meyerkort, V. Brent, R.M. D’Souza, D.H. Broom, J.M. Kyd, J. Immunol. Methods 307, 167 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the volunteers for providing saliva and blood samples for the current study is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jayeeta Pai, Revan Kumar Joshi or Munish Shorie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, J., Joshi, R.K., Bhaskar, S. et al. Revisiting the cortisol reference ranges in humans: the role of demographics. Endocrine 82, 414–418 (2023). https://doi.org/10.1007/s12020-023-03456-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03456-x

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007%2Fs12020-023-03456-x

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy