Abstract
Atopic dermatitis (AD) is a commonly occurring chronic skin disease with high heritability. Apart from filaggrin (FLG), the genes influencing atopic dermatitis are largely unknown. We conducted a genome-wide association meta-analysis of 5,606 affected individuals and 20,565 controls from 16 population-based cohorts and then examined the ten most strongly associated new susceptibility loci in an additional 5,419 affected individuals and 19,833 controls from 14 studies. Three SNPs reached genome-wide significance in the discovery and replication cohorts combined, including rs479844 upstream of OVOL1 (odds ratio (OR) = 0.88, P = 1.1 × 10−13) and rs2164983 near ACTL9 (OR = 1.16, P = 7.1 × 10−9), both of which are near genes that have been implicated in epidermal proliferation and differentiation, as well as rs2897442 in KIF3A within the cytokine cluster at 5q31.1 (OR = 1.11, P = 3.8 × 10−8). We also replicated association with the FLG locus and with two recently identified association signals at 11q13.5 (rs7927894; P = 0.008) and 20q13.33 (rs6010620; P = 0.002). Our results underline the importance of both epidermal barrier function and immune dysregulation in atopic dermatitis pathogenesis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Bieber, T. Atopic dermatitis. N. Engl. J. Med. 358, 1483–1494 (2008).
Brown, S.J. & McLean, W.H.I. Eczema genetics: current state of knowledge and future goals. J. Invest. Dermatol. 129, 543–552 (2009).
Morar, N., Willis-Owen, S.A.G., Moffatt, M.F. & Cookson, W.O. The genetics of atopic dermatitis. J. Allergy Clin. Immunol. 118, 24–34 (2006).
Palmer, C.N.A. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38, 441–446 (2006).
Rodríguez, E. et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J. Allergy Clin. Immunol. 123, 1361–1370 e7 (2009).
Esparza-Gordillo, J. et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat. Genet. 41, 596–601 (2009).
Sun, L.D. et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat. Genet. 43, 690–694 (2011).
Moffatt, M.F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).
Li, B. et al. Ovol1 regulates meiotic pachytene progression during spermatogenesis by repressing Id2 expression. Development 132, 1463–1473 (2005).
Nair, M. et al. Ovol1 regulates the growth arrest of embryonic epidermal progenitor cells and represses c-myc transcription. J. Cell Biol. 173, 253–264 (2006).
Dai, X. et al. The ovo gene required for cuticle formation and oogenesis in flies is involved in hair formation and spermatogenesis in mice. Genes Dev. 12, 3452–3463 (1998).
Kowanetz, M., Valcourt, U., Bergström, R., Heldin, C.H. & Moustakas, A. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein. Mol. Cell. Biol. 24, 4241–4254 (2004).
Li, B. et al. The LEF1/β-catenin complex activates movo1, a mouse homolog of Drosophila ovo required for epidermal appendage differentiation. Proc. Natl. Acad. Sci. USA 99, 6064–6069 (2002).
Owens, P., Han, G., Li, A.G. & Wang, X.J. The role of Smads in skin development. J. Invest. Dermatol. 128, 783–790 (2008).
Widelitz, R.B. Wnt signaling in skin organogenesis. Organogenesis 4, 123–133 (2008).
Buschke, S. et al. A decisive function of transforming growth factor-β/Smad signaling in tissue morphogenesis and differentiation of human HaCaT keratinocytes. Mol. Biol. Cell 22, 782–794 (2011).
Maganga, R. et al. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis. Biochem. Biophys. Res. Commun. 377, 606–611 (2008).
Romanowska, M. et al. Wnt5a exhibits layer-specific expression in adult skin, is upregulated in psoriasis, and synergizes with type 1 interferon. PLoS ONE 4, e5354 (2009).
Nica, A.C. et al. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet. 7, e1002003 (2011).
Apte, S.S. A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J. Biol. Chem. 284, 31493–31497 (2009).
Porter, S., Clark, I.M., Kevorkian, L. & Edwards, D.R. The ADAMTS metalloproteinases. Biochem. J. 386, 15–27 (2005).
Pollard, T.D. The cytoskeleton, cellular motility and the reductionist agenda. Nature 422, 741–745 (2003).
Pollard, T.D. & Borisy, G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).
Winder, S.J. Structural insights into actin-binding, branching and bundling proteins. Curr. Opin. Cell Biol. 15, 14–22 (2003).
Goetz, S.C. & Anderson, K.V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).
Mosimann, C., Hausmann, G. & Basler, K. β-catenin hits chromatin: regulation of Wnt target gene activation. Nat. Rev. Mol. Cell Biol. 10, 276–286 (2009).
Chang, M. et al. Variants in the 5q31 cytokine gene cluster are associated with psoriasis. Genes Immun. 9, 176–181 (2008).
Nair, R.P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 41, 199–204 (2009).
Li, Y. et al. The 5q31 variants associated with psoriasis and Crohn's disease are distinct. Hum. Mol. Genet. 17, 2978–2985 (2008).
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).
Weidinger, S. et al. Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet. 4, e1000166 (2008).
Vercelli, D. Discovering susceptibility genes for asthma and allergy. Nat. Rev. Immunol. 8, 169–182 (2008).
Kleinjan, D.A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32 (2005).
Sproul, D., Gilbert, N. & Bickmore, W.A. The role of chromatin structure in regulating the expression of clustered genes. Nat. Rev. Genet. 6, 775–781 (2005).
Holle, R., Happich, M., Löwel, H. & Wichmann, H.E. & MONICA/KORA Study Group. KORA—a research platform for population based health research. Gesundheitswesen 67 (suppl. 1), S19–S25 (2005).
Krawczak, M. et al. PopGen: population-based recruitment of patients and controls for the analysis of complex genotype-phenotype relationships. Community Genet. 9, 55–61 (2006).
Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Acknowledgements
The full list of acknowledgments for each study is provided in the Supplementary Note.
Author information
Authors and Affiliations
Consortia
Contributions
Study-level data analysis: L.P., M.S., A.R., K.B., L.D., M.A.F., A.C.A., J.P.T., E.A., H. Baurecht, B.F., P.H., N.M.W., I.C., R.M., J.A.C., M.M.G.-B., M. Kerkhof, A. Sääf, A.F., D.E., S.B.M., B.S.P., J.P.K., N.J.T., M.M.-N., F.G., M. March, M. Mangino, T.D.S., V.B., C.M.T.T., E.T., M.I., A. Simpson, J.-J.H., H.A.S., B.C., E.K.-M., E.M., A.C., B.J., N.M.P.-H., D.G., D.L.J., H.P., K.H. and D.P.S. Study design: L.P., M.S., C.-M.C., L.D., J.P.T., B.F., P.M.A.S., M. Kerkhof, E.D., A.-L.H., A.P., J.P., M. Kaakinen, G.D.S., J. Henderson, H.-E.W., N.N., A.L., T.M., E.A.N., A.H., A.G.U., C.M.v.D., F.R., J.C.d.J., R.J.P.v.d.V., H.A.B., J.C.M., T.D.S., P.S., W.N., A. Simpson, D.P., G.H.K., H.A.S., H. Bisgaard, D.I.B., A.C., N.M.P.-H., H.H., M. Melbye, D.L.J., V.W.V.J., C.G., M.-R.J., J. Heinrich, D.M.E. and S.W. Manuscript writing: L.P., M.S., A.R., K.B., J. Heinrich, D.M.E. and S.W. Data collection: K.B., L.D., J.P.T., B.F., R.M., M. Kerkhof, R.F.-H., E.D., S.B.M., A.-L.H., A.P., J.P., M. Kaakinen, D.L.D., P.A.M., A.C.H., G.W.M., P.J.T., M.C.M., P.L.S., J. Henderson, S.M.R., W.M., A.L., T.M., E.A.N., J.C.d.J., R.J.P.v.d.V., M.W., R.J., F.G., H.A.B., J.C.M., F.M., T.D.S., V.B., C.E.P., P.G.H., P.S., M.I., W.N., A. Simpson, D.P., G.H.K., H.A.S., B.C., E.K.-M., H. Bisgaard, E.M., D.I.B., A.C., B.J., N.M.P.-H., L.J.P., M. Melbye, D.L.J., V.W.V.J., N.G.M., M.-R.J., J. Heinrich and S.W. Genotyping: R.M., A.F., A.I.F.B., J.L.B., P.D., S.M.R., N.K., E.R., W.M., A.L., A.G.U., F.R., M.W., C.K., C.E.P., T.I., C.S., B.J., L.J.P. and M.-R.J. Revising and reviewing paper: L.P., M.S., C.-M.C., A.R., K.B., L.D., M.A.F., A.C.A., J.P.T., E.A., H. Baurecht, B.F., P.M.A.S., P.H., N.M.W., I.C., R.M., J.A.C., M.M.G.-B., M. Kerkhof, A. Sääf, A.F., D.E., R.F. -H., E.D., S.B.M., A.-L.H., A.P., J.P., A.I.F.B., J.L.B., M. Kaakinen, D.L.D., P.A.M., A.C.H., G.W.M., P.J.T., M.C.M., P.L.S., B.S.P., G.D.S., J. Henderson, J.P.K., N.J.T., P.D., S.M.R., H.-E.W., M.M.-N., N.N., N.K., E.R., W.M., A.L., T.M., E.A.N., A.H., A.G.U., C.M.v.D., F.R., J.C.d.J., R.J.P.v.d.V., M.W., R.J., F.G., H.A.B., J.C.M., C.K., F.M., M. March, M. Mangino, T.D.S., V.B., C.E.P., P.G.H., P.S., C.M.T.T., E.T., T.I., M.I., W.N., A. Simpson, J.-J.H., D.P., G.H.K., H.A.S., C.S., B.C., E.K.-M., H. Bisgaard, E.M., D.I.B., A.C., B.J., N.M.P.-H., L.J.P., D.G., H.H., M. Melbye, D.L.J., V.W.V.J., C.G., D.P.S., N.G.M., M.-R.J., J. Heinrich, D.M.E., H.P., K.H. and S.W.
AAGC provided results for the replication analysis, and GOYA provided results for the discovery analysis.
Corresponding author
Ethics declarations
Competing interests
D.P. received funding for research from AstraZeneca, GlaxoSmithKline (GSK) and Nycomed. Travel to the European Respiratory Society (ERS) or American Thoracic Society (ATS) conferences was partially funded by AstraZeneca, GSK, Chiesi and Nycomed. She has been a consultant for AstraZeneca, Boehringer Ingelheim, Chiesi, GSK, Nycomed and Teva Pharmaceutical Industries.
Supplementary information
Supplementary Text and Figures
Supplementary Note, Supplementary Tables 1–7 and Supplementary Figures 1–9. (PDF 3385 kb)
Rights and permissions
About this article
Cite this article
Paternoster, L., Standl, M., Chen, CM. et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet 44, 187–192 (2012). https://doi.org/10.1038/ng.1017
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.1017
This article is cited by
-
Atopy in Kashmir-validation from a case control study with respect to IgE and Interleukin genes
Allergy, Asthma & Clinical Immunology (2021)
-
Association of Gasdermin B Gene GSDMB Polymorphisms with Risk of Allergic Diseases
Biochemical Genetics (2021)
-
Rare variant analysis in eczema identifies exonic variants in DUSP1, NOTCH4 and SLC9A4
Nature Communications (2021)
-
Correlation of age-of-onset of Atopic Dermatitis with Filaggrin loss-of-function variant status
Scientific Reports (2020)
-
Disease-associated KIF3A variants alter gene methylation and expression impacting skin barrier and atopic dermatitis risk
Nature Communications (2020)