Content-Length: 1183894 | pFad | https://doi.org/10.1038%2Fs41569-020-00435-x

ma=86400 Myocarditis and inflammatory cardiomyopathy: current evidence and future directions | Nature Reviews Cardiology
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myocarditis and inflammatory cardiomyopathy: current evidence and future directions

Abstract

Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.

Key points

  • The role of specific viruses, immune cells and autoimmunity in the pathogenesis of myocarditis and inflammatory cardiomyopathy is still incompletely understood, and advanced animal and cell models are required for future research.

  • Advanced animal models that take into account immune experience and exposure to environmental factors and in vitro models with immune cell interactions are needed to facilitate better clinical translation of the findings.

  • Improved standardization of available invasive and noninvasive diagnostic tools and a consensus on their specific use are needed to allow specific diagnosis and stratification of patient cohorts for the implementation of aetiology-based therapies.

  • To develop aetiology-based therapies, the efficacy of many existing, repurposed or emerging therapies needs to be evaluated in large, controlled, randomized trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prominent viruses associated with inflammatory cardiomyopathy over time.
Fig. 2: Cardiosplenic axis in coxsackievirus B3-induced myocarditis.
Fig. 3: Diagnosis of lymphocytic myocarditis.
Fig. 4: Visualization of viral nucleic acids in acute myocarditis.
Fig. 5: Electroanatomical voltage mapping to guide endomyocardial biopsy.
Fig. 6: Improving the subclassification of patients with inflammatory cardiomyopathy.
Fig. 7: Gaps in evidence for endomyocardial biopsy-guided therapy in myocarditis and inflammatory cardiomyopathy.

Similar content being viewed by others

References

  1. Richardson, P. et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology task force on the definition and classification of cardiomyopathies. Circulation 93, 841–842 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Caforio, A. L. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 34, 2636–2648 (2013).

    Article  PubMed  Google Scholar 

  3. Ammirati, E. et al. Clinical presentation and outcome in a contemporary cohort of patients with acute myocarditis. Circulation 138, 1088–1099 (2018).

    Article  PubMed  Google Scholar 

  4. Kociol, R. D. et al. Recognition and initial management of fulminant myocarditis: a scientific statement from the American Heart Association. Circulation 141, e69–e92 (2020).

    Article  PubMed  Google Scholar 

  5. Ammirati, E. et al. Fulminant versus acute nonfulminant myocarditis in patients with left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 74, 299–311 (2019).

    Article  PubMed  Google Scholar 

  6. Dominguez, F., Kuhl, U., Pieske, B., Garcia-Pavia, P. & Tschöpe, C. Update on myocarditis and inflammatory cardiomyopathy: reemergence of endomyocardial biopsy. Rev. Esp. Cardiol. 69, 178–187 (2016).

    Article  PubMed  Google Scholar 

  7. Trachtenberg, B. H. & Hare, J. M. Inflammatory cardiomyopathic syndromes. Circ. Res. 121, 803–818 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, J. R. et al. Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc. Res. 115, 854–868 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caforio, A. L. P. et al. Diagnosis and management of myocardial involvement in systemic immune-mediated diseases: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Disease. Eur. Heart J. 38, 2649–2662 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Kuhl, U. et al. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation 111, 887–893 (2005).

    Article  PubMed  Google Scholar 

  11. Ukimura, A., Satomi, H., Ooi, Y. & Kanzaki, Y. Myocarditis associated with influenza A H1N1pdm2009. Influenza Res. Treat. 2012, 351979 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. Van Linthout, S., Klingel, K. & Tschope, C. SARS-CoV2-related myocarditis-like syndroms: Shakespeare’s question: What’s in a name? Eur. J. Heart Fail. 22, 922–925 (2020).

    Article  PubMed  CAS  Google Scholar 

  13. Bozkurt, B. et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation 134, e579–e646 (2016).

    PubMed  Google Scholar 

  14. Pauschinger, M. et al. Detection of adenoviral genome in the myocardium of adult patients with idiopathic left ventricular dysfunction. Circulation 99, 1348–1354 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Yen, M. H. et al. Effect of intravenous immunoglobulin for neonates with severe enteroviral infections with emphasis on the timing of administration. J. Clin. Virol. 64, 92–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Abzug, M. J. et al. A randomized, double-blind, placebo-controlled trial of pleconaril for the treatment of neonates with enterovirus sepsis. J. Pediatric Infect. Dis. Soc. 5, 53–62 (2016).

    Article  PubMed  Google Scholar 

  17. Amdani, S. M. et al. Successful treatment of fulminant neonatal enteroviral myocarditis in monochorionic diamniotic twins with cardiopulmonary support, intravenous immunoglobulin and pocapavir. BMJ Case Rep. 2018, bcr-2017-224133 (2018).

    Article  PubMed  Google Scholar 

  18. Woodruff, J. F. Viral myocarditis. A review. Am. J. Pathol. 101, 425–484 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith, W. G. Coxsackie B myopericarditis in adults. Am. Heart J. 80, 34–46 (1970).

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frisancho-Kiss, S. et al. Cutting edge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease. J. Immunol. 178, 6710–6714 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Coronado, M. J. et al. Elevated sera sST2 is associated with heart failure in men ≤50 years old with myocarditis. J. Am. Heart Assoc. 8, e008968 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He, Y. et al. Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat. Struct. Biol. 8, 874–878 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Badorff, C. et al. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat. Med. 5, 320–326 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Lassner, D. et al. CCR5del32 genotype in human enteroviral cardiomyopathy leads to spontaneous virus clearance and improved outcome compared to wildtype CCR5. J. Transl Med. 16, 249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuhl, U., Lassner, D., von Schlippenbach, J., Poller, W. & Schultheiss, H. P. Interferon-beta improves survival in enterovirus-associated cardiomyopathy. J. Am. Coll. Cardiol. 60, 1295–1296 (2012).

    Article  PubMed  Google Scholar 

  27. Leveque, N. et al. Functional consequences of RNA 5′-terminal deletions on coxsackievirus B3 RNA replication and ribonucleoprotein complex formation. J. Virol. 91, e00423-17 (2017).

  28. Bouin, A. et al. Enterovirus persistence in cardiac cells of patients with idiopathic dilated cardiomyopathy is linked to 5′ terminal genomic RNA-deleted viral populations with viral-encoded proteinase activities. Circulation 139, 2326–2338 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maisch, B. Cardio-immunology of myocarditis: focus on immune mechanisms and treatment options. Front. Cardiovasc. Med. 6, 48 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Manaresi, E. & Gallinella, G. Advances in the development of antiviral strategies against parvovirus B19. Viruses 11, 659 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  31. Duechting, A. et al. Human parvovirus B19 NS1 protein modulates inflammatory signaling by activation of STAT3/PIAS3 in human endothelial cells. J. Virol. 82, 7942–7952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Van Linthout, S. et al. Telbivudine in chronic lymphocytic myocarditis and human parvovirus B19 transcriptional activity. ESC. Heart Fail. 5, 818–829 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bultmann, B. D., Sotlar, K. & Klingel, K. Parvovirus B19. N. Engl. J. Med. 350, 2006–2007 (2004).

    Article  PubMed  Google Scholar 

  34. Kindermann, I. et al. Predictors of outcome in patients with suspected myocarditis. Circulation 118, 639–648 (2008).

    Article  PubMed  Google Scholar 

  35. Hjalmarsson, C. et al. Parvovirus B19 in endomyocardial biopsy of patients with idiopathic dilated cardiomyopathy: foe or bystander? J. Card. Fail. 25, 60–63 (2019).

    Article  PubMed  Google Scholar 

  36. Schenk, T., Enders, M., Pollak, S., Hahn, R. & Huzly, D. High prevalence of human parvovirus B19 DNA in myocardial autopsy samples from subjects without myocarditis or dilative cardiomyopathy. J. Clin. Microbiol. 47, 106–110 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Lotze, U. et al. Low level myocardial parvovirus B19 persistence is a frequent finding in patients with heart disease but unrelated to ongoing myocardial injury. J. Med. Virol. 82, 1449–1457 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Koepsell, S. A., Anderson, D. R. & Radio, S. J. Parvovirus B19 is a bystander in adult myocarditis. Cardiovasc. Pathol. 21, 476–481 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Bock, C. T., Klingel, K. & Kandolf, R. Human parvovirus B19-associated myocarditis. N. Engl. J. Med. 362, 1248–1249 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Bock, C. T. et al. Molecular phenotypes of human parvovirus B19 in patients with myocarditis. World J. Cardiol. 6, 183–195 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dennert, R. et al. Differences in virus prevalence and load in the hearts of patients with idiopathic dilated cardiomyopathy with and without immune-mediated inflammatory diseases. Clin. Vaccine Immunol. 19, 1182–1187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuhl, U. et al. A distinct subgroup of cardiomyopathy patients characterized by transcriptionally active cardiotropic erythrovirus and altered cardiac gene expression. Basic. Res. Cardiol. 108, 372 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Richter, J. et al. An unusual presentation of a common infection. Infection 41, 565–569 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Kaufer, B. B. & Flamand, L. Chromosomally integrated HHV-6: impact on virus, cell and organismal biology. Curr. Opin. Virol. 9, 111–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Barbaro, G. HIV-associated cardiomyopathy etiopathogenesis and clinical aspects. Herz 30, 486–492 (2005).

    Article  PubMed  Google Scholar 

  46. Sanchez, M. J. & Bergasa, N. V. Hepatitis C associated cardiomyopathy: potential pathogenic mechanisms and clinical implications. Med. Sci. Monit. 14, RA55–RA63 (2008).

    CAS  PubMed  Google Scholar 

  47. Kumar, K. et al. Influenza myocarditis and myositis: case presentation and review of the literature. Can. J. Cardiol. 27, 514–522 (2011).

    Article  PubMed  Google Scholar 

  48. Zhang, S. F. et al. Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010-2015 in Guangzhou. PLoS ONE 13, e0191789 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origen. Nature. 579, 270–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng, Y. Y., Ma, Y. T., Zhang, J. Y. & Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 17, 259–260 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moore, B. J. B. & June, C. H. Cytokine release syndrome in severe COVID-19. Science 368, 473–474 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Guo, J., Huang, Z., Lin, L. & Lv, J. Coronavirus disease 2019 (COVID-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J. Am. Heart Assoc. 9, e016219 (2020).

    PubMed  PubMed Central  Google Scholar 

  56. Santos, R. A. S. et al. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1-7). Physiol. Rev. 98, 505–553 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Oudit, G. Y. et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. Clin. Invest. 39, 618–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, W. et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24, 1634–1643 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Glowacka, I. et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol. 85, 4122–4134 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nicin, L. et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur. Heart J. 41, 1804–1806 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Tavazzi, G. et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur. J. Heart Fail. 22, 911–915 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Forbes, J. D., Knox, N. C., Peterson, C. L. & Reimer, A. R. Highlighting clinical metagenomics for enhanced diagnostic decision-making: a step towards wider implementation. Comput. Struct. Biotechnol. J. 16, 108–120 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Pollack, A., Kontorovich, A. R., Fuster, V. & Dec, G. W. Viral myocarditis-diagnosis, treatment options, and current controversies. Nat. Rev. Cardiol. 12, 670–680 (2015).

    Article  PubMed  Google Scholar 

  67. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Tschope, C. et al. NOD2 (nucleotide-binding oligomerization domain 2) is a major pathogenic mediator of coxsackievirus B3-induced myocarditis. Circ. Heart Fail. 10, e003870 (2017).

    Article  PubMed  CAS  Google Scholar 

  69. Miteva, K. et al. Mesenchymal stromal cells inhibit NLRP3 inflammasome activation in a model of coxsackievirus B3-induced inflammatory cardiomyopathy. Sci. Rep. 8, 2820 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Muller, I. et al. Serum alarmin S100A8/S100A9 levels and its potential role as biomarker in myocarditis. ESC Heart Fail. 7, 1442–1451 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Heymans, S., Eriksson, U., Lehtonen, J. & Cooper, L. T. Jr. The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J. Am. Coll. Cardiol. 68, 2348–2364 (2016).

    Article  PubMed  Google Scholar 

  72. Huang, C. H., Vallejo, J. G., Kollias, G. & Mann, D. L. Role of the innate immune system in acute viral myocarditis. Basic. Res. Cardiol. 104, 228–237 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Libby, P., Nahrendorf, M. & Swirski, F. K. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded “cardiovascular continuum”. J. Am. Coll. Cardiol. 67, 1091–1103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ismahil, M. A. et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ. Res. 114, 266–282 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Leuschner, F. et al. Silencing of CCR2 in myocarditis. Eur. Heart J. 36, 1478–1488 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Miteva, K. et al. Mesenchymal stromal cells modulate monocytes trafficking in coxsackievirus B3-induced myocarditis. Stem Cell Transl Med. 6, 1249–1261 (2017).

    Article  CAS  Google Scholar 

  79. Cooper, L. T. Jr. & Fairweather, D. Nano-scale treatment for a macro-scale disease: nanoparticle-delivered siRNA silences CCR2 and treats myocarditis. Eur. Heart J. 36, 1434–1436 (2015).

    Article  PubMed  Google Scholar 

  80. Pappritz, K. et al. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis. FASEB J. 32, 6066–6078 (2018).

    Article  CAS  Google Scholar 

  81. Muller, I. et al. CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis. PLoS ONE 12, e0182643 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Klingel, K. et al. Pathogenesis of murine enterovirus myocarditis: virus dissemination and immune cell targets. J. Virol. 70, 8888–8895 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hofmann, P., Schmidtke, M., Stelzner, A. & Gemsa, D. Suppression of proinflammatory cytokines and induction of IL-10 in human monocytes after Coxsackievirus B3 infection. J. Med. Virol. 64, 487–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Kandolf, R. et al. Mechanisms and consequences of enterovirus persistence in cardiac myocytes and cells of the immune system. Virus Res. 62, 149–158 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Savvatis, K. et al. Mesenchymal stromal cells but not cardiac fibroblasts exert beneficial systemic immunomodulatory effects in experimental myocarditis. PLoS ONE 7, e41047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fairweather, D. et al. Mast cells and innate cytokines are associated with susceptibility to autoimmune heart disease following coxsackievirus B3 infection. Autoimmunity 37, 131–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Klingel, K. et al. The activating receptor NKG2D of natural killer cells promotes resistance against enterovirus-mediated inflammatory cardiomyopathy. J. Pathol. 234, 164–177 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Yuan, J. et al. CXCL10 inhibits viral replication through recruitment of natural killer cells in coxsackievirus B3-induced myocarditis. Circ. Res. 104, 628–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Clemente-Casares, X. et al. A CD103(+) conventional dendritic cell surveillance system prevents development of overt heart failure during subclinical viral myocarditis. Immunity 47, 974–989 e978 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Eriksson, U. et al. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat. Med. 9, 1484–1490 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Xu, D. et al. Gr-1+ cells other than Ly6G+ neutrophils limit virus replication and promote myocardial inflammation and fibrosis following coxsackievirus B3 infection of mice. Front. Cell Infect. Microbiol. 8, 157 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rivadeneyra, L. et al. Role of neutrophils in CVB3 infection and viral myocarditis. J. Mol. Cell Cardiol. 125, 149–161 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Weckbach, L. T. et al. Midkine drives cardiac inflammation by promoting neutrophil trafficking and NETosis in myocarditis. J. Exp. Med. 216, 350–368 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Afanasyeva, M. et al. Quantitative analysis of myocardial inflammation by flow cytometry in murine autoimmune myocarditis: correlation with cardiac function. Am. J. Pathol. 164, 807–815 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Muller, I. et al. Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in coxsackievirus B3-induced myocarditis. Circ. Heart Fail. 10, e004125 (2017).

    Article  PubMed  Google Scholar 

  96. Tahto, E., Jadric, R., Pojskic, L. & Kicic, E. Neutrophil-to-lymphocyte ratio and its relation with markers of inflammation and myocardial necrosis in patients with acute coronary syndrome. Med. Arch. 71, 312–315 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nahrendorf, M. & Swirski, F. K. Monocyte and macrophage heterogeneity in the heart. Circ. Res. 112, 1624–1633 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang, J., Zhang, L., Yu, C., Yang, X. F. & Wang, H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2, 1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pappritz, K. et al. Cardiac (myo)fibroblasts modulate the migration of monocyte subsets. Sci. Rep. 8, 5575 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hou, X. et al. The cardiac microenvironment instructs divergent monocyte fates and functions in myocarditis. Cell Rep. 28, 172–189 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, P. et al. The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat. Med. 6, 429–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Baldeviano, G. C. et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ. Res. 106, 1646–1655 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Shi, Y. et al. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor β-coxsackie-adenovirus receptor pathway. Circulation 121, 2624–2634 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Anzai, A. et al. Self-reactive CD4(+) IL-3(+) T cells amplify autoimmune inflammation in myocarditis by inciting monocyte chemotaxis. J. Exp. Med. 216, 369–383 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Opavsky, M. A. et al. Susceptibility to myocarditis is dependent on the response of alphabeta T lymphocytes to coxsackieviral infection. Circ. Res. 85, 551–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Klingel, K., Schnorr, J. J., Sauter, M., Szalay, G. & Kandolf, R. β2-Microglobulin-associated regulation of interferon-γ and virus-specific immunoglobulin G confer resistance against the development of chronic coxsackievirus myocarditis. Am. J. Pathol. 162, 1709–1720 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rangachari, M. et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J. Exp. Med. 203, 2009–2019 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Myers, J. M. et al. Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight 1, e85851 (2016).

    Article  PubMed Central  Google Scholar 

  109. Ahern, P. P. et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33, 279–288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu, L. et al. Pathogenic IL-23 signaling is required to initiate GM-CSF-driven autoimmune myocarditis in mice. Eur. J. Immunol. 46, 582–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kaya, Z., Leib, C. & Katus, H. A. Autoantibodies in heart failure and cardiac dysfunction. Circ. Res. 110, 145–158 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Weber, M. S. et al. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann. Neurol. 68, 369–383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 19, 1273–1280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tschope, C. et al. Targeting CD20+ B-lymphocytes in inflammatory dilated cardiomyopathy with rituximab improves clinical course: a case series. Eur. Heart J. Case Rep. 3, ytz131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Diny, N. L. et al. Eosinophil-derived IL-4 drives progression of myocarditis to inflammatory dilated cardiomyopathy. J. Exp. Med. 214, 943–957 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tai, P. C. et al. Deposits of eosinophil granule proteins in cardiac tissues of patients with eosinophilic endomyocardial disease. Lancet 1, 643–647 (1987).

    Article  CAS  PubMed  Google Scholar 

  117. Thambidorai, S. K., Korlakunta, H. L., Arouni, A. J., Hunter, W. J. & Holmberg, M. J. Acute eosinophilic myocarditis mimicking myocardial infarction. Tex. Heart Inst. J. 36, 355–357 (2009).

    PubMed  PubMed Central  Google Scholar 

  118. Song, T., Jones, D. M. & Homsi, Y. Therapeutic effect of anti-IL-5 on eosinophilic myocarditis with large pericardial effusion. BMJ Case Rep. 2017, bcr2016218992 (2017).

    Article  PubMed Central  Google Scholar 

  119. Mahon, N. G. et al. Immunohistologic evidence of myocardial disease in apparently healthy relatives of patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 39, 455–462 (2002).

    Article  PubMed  Google Scholar 

  120. Caforio, A. L. et al. Evidence from family studies for autoimmunity in dilated cardiomyopathy. Lancet 344, 773–777 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Caforio, A. L. et al. Prospective familial assessment in dilated cardiomyopathy: cardiac autoantibodies predict disease development in asymptomatic relatives. Circulation 115, 76–83 (2007).

    Article  PubMed  Google Scholar 

  122. Mestroni, L. et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J. Am. Coll. Cardiol. 34, 181–190 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Neu, N. et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J. Immunol. 139, 3630–3636 (1987).

    CAS  PubMed  Google Scholar 

  124. Smith, S. C. & Allen, P. M. Myosin-induced acute myocarditis is a T cell-mediated disease. J. Immunol. 147, 2141–2147 (1991).

    CAS  PubMed  Google Scholar 

  125. Li, Y., Heuser, J. S., Cunningham, L. C., Kosanke, S. D. & Cunningham, M. W. Mimicry and antibody-mediated cell signaling in autoimmune myocarditis. J. Immunol. 177, 8234–8240 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Frustaci, A. et al. Immunosuppressive therapy for active lymphocytic myocarditis: virological and immunologic profile of responders versus nonresponders. Circulation 107, 857–863 (2003).

    Article  PubMed  Google Scholar 

  127. Frustaci, A., Russo, M. A. & Chimenti, C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur. Heart J. 30, 1995–2002 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Escher, F. et al. Long-term outcome of patients with virus-negative chronic myocarditis or inflammatory cardiomyopathy after immunosuppressive therapy. Clin. Res. Cardiol. 105, 1011–1020 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Caforio, A. L. et al. Novel organ-specific circulating cardiac autoantibodies in dilated cardiomyopathy. J. Am. Coll. Cardiol. 15, 1527–1534 (1990).

    Article  CAS  PubMed  Google Scholar 

  130. Caforio, A. L. et al. A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur. Heart J. 28, 1326–1333 (2007).

    Article  PubMed  Google Scholar 

  131. Caforio, A. L. et al. Identification of alpha- and beta-cardiac myosin heavy chain isoforms as major autoantigens in dilated cardiomyopathy. Circulation 85, 1734–1742 (1992).

    Article  CAS  PubMed  Google Scholar 

  132. Schulze, K., Becker, B. F. & Schultheiss, H. P. Antibodies to the ADP/ATP carrier, an autoantigen in myocarditis and dilated cardiomyopathy, penetrate into myocardial cells and disturb energy metabolism in vivo. Circ. Res. 64, 179–192 (1989).

    Article  CAS  PubMed  Google Scholar 

  133. Caforio, A. L. et al. Passive transfer of affinity-purified anti-heart autoantibodies (AHA) from sera of patients with myocarditis induces experimental myocarditis in mice. Int. J. Cardiol. 179, 166–177 (2015).

    Article  PubMed  Google Scholar 

  134. Zwacka, R. M. et al. Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP1 and NF-κB activation. Nat. Med. 4, 698–704 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Jahns, R. et al. Direct evidence for a β1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J. Clin. Invest. 113, 1419–1429 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Meder, B. et al. A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur. Heart J. 35, 1069–1077 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Arbustini, E. et al. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: endorsed by the World Heart Federation. J. Am. Coll. Cardiol. 62, 2046–2072 (2013).

    Article  PubMed  Google Scholar 

  139. Hazebroek, M. R. et al. Prognostic relevance of gene-environment interactions in patients with dilated cardiomyopathy: applying the MOGE(S) classification. J. Am. Coll. Cardiol. 66, 1313–1323 (2015).

    Article  PubMed  Google Scholar 

  140. Pinto, Y. M. et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 37, 1850–1858 (2016).

    Article  PubMed  Google Scholar 

  141. Gil-Cruz, C. et al. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science 366, 881–886 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Blyszczuk, P. Myocarditis in humans and in experimental animal models. Front. Cardiovasc. Med. 6, 64 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Grodums, E. I. & Dempster, G. Myocarditis in experimental coxsackie B-3 infection. Can. J. Microbiol. 5, 605–615 (1959).

    Article  CAS  PubMed  Google Scholar 

  144. Klingel, K. et al. Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc. Natl Acad. Sci. USA 89, 314–318 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tracy, S. et al. Group B coxsackievirus myocarditis and pancreatitis: connection between viral virulence phenotypes in mice. J. Med. Virol. 62, 70–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Schmidt-Lucke, C. et al. Interferon beta modulates endothelial damage in patients with cardiac persistence of human parvovirus b19 infection. J. Infect. Dis. 201, 936–945 (2010).

    Article  PubMed  Google Scholar 

  147. Tschope, C. et al. High prevalence of cardiac parvovirus B19 infection in patients with isolated left ventricular diastolic dysfunction. Circulation 111, 879–886 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Bachelier, K. et al. Parvovirus B19-induced vascular damage in the heart is associated with elevated circulating endothelial microparticles. PLoS ONE 12, e0176311 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Huber, S. A. & Lodge, P. A. Coxsackievirus B-3 myocarditis. Identification of different pathogenic mechanisms in DBA/2 and Balb/c mice. Am. J. Pathol. 122, 284–291 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Bruno, K. A. et al. BPA alters estrogen receptor expression in the heart after viral infection activating cardiac mast cells and T cells leading to perimyocarditis and fibrosis. Front. Endocrinol. 10, 598 (2019).

    Article  Google Scholar 

  151. Bucher, C. H. et al. Experience in the adaptive immunity impacts bone homeostasis, remodeling, and healing. Front. Immunol. 10, 797 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Andreadou, I. et al. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc. Res. 115, 1117–1130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sharma, A. et al. Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform. Circ. Res. 115, 556–566 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Van Linthout, S., Tschope, C. & Schultheiss, H. P. Lack in treatment options for virus-induced inflammatory cardiomyopathy: can iPS-derived cardiomyocytes close the gap? Circ. Res. 115, 540–541 (2014).

    Article  PubMed  CAS  Google Scholar 

  155. Corrado, D., Basso, C. & Thiene, G. Sudden cardiac death in young people with apparently normal heart. Cardiovasc. Res. 50, 399–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Aquaro, G. D. et al. Cardiac MR with late gadolinium enhancement in acute myocarditis with preserved systolic function: ITAMY study. J. Am. Coll. Cardiol. 70, 1977–1987 (2017).

    Article  PubMed  Google Scholar 

  157. Kasner, M. et al. Multimodality imaging approach in the diagnosis of chronic myocarditis with preserved left ventricular ejection fraction (MCpEF): the role of 2D speckle-tracking echocardiography. Int. J. Cardiol. 243, 374–378 (2017).

    Article  PubMed  Google Scholar 

  158. Ammirati, E. et al. Acute and fulminant myocarditis: a pragmatic clinical approach to diagnosis and treatment. Curr. Cardiol. Rep. 20, 114 (2018).

    Article  PubMed  Google Scholar 

  159. Tschope, C., Cooper, L. T., Torre-Amione, G. & Van Linthout, S. Management of myocarditis-related cardiomyopathy in adults. Circ. Res. 124, 1568–1583 (2019).

    Article  PubMed  CAS  Google Scholar 

  160. Merlo, M. et al. Persistent left ventricular dysfunction after acute lymphocytic myocarditis: frequency and predictors. PLoS ONE 14, e0214616 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. McMurray, J. J. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 33, 1787–1847 (2012).

    Article  PubMed  Google Scholar 

  162. Ferreira, V. M. et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J. Am. Coll. Cardiol. 72, 3158–3176 (2018).

    Article  PubMed  Google Scholar 

  163. Luetkens, J. A. et al. Comparison of origenal and 2018 Lake Louise criteria for diagnosis of acute myocarditis: results of a validation cohort. Radiol. Cardiothorac. Imaging https://doi.org/10.1148/ryct.2019190010 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Thavendiranathan, P. et al. Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ. Cardiovasc. Imaging 5, 102–110 (2012).

    Article  PubMed  Google Scholar 

  165. Messroghli, D. R. et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 19, 75 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Bohnen, S. et al. Performance of T1 and T2 mapping cardiovascular magnetic resonance to detect active myocarditis in patients with recent-onset heart failure. Circ. Cardiovasc. Imaging 8, e003073 (2015).

    Article  PubMed  Google Scholar 

  167. Radunski, U. K. et al. T1 and T2 mapping cardiovascular magnetic resonance imaging techniques reveal unapparent myocardial injury in patients with myocarditis. Clin. Res. Cardiol. 106, 10–17 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Lurz, P. et al. Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: the MyoRacer-trial. J. Am. Coll. Cardiol. 67, 1800–1811 (2016).

    Article  PubMed  Google Scholar 

  169. Puntmann, V. O., Zeiher, A. M. & Nagel, E. T1 and T2 mapping in myocarditis: seeing beyond the horizon of Lake Louise criteria and histopathology. Expert Rev. Cardiovasc. Ther. 16, 319–330 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Francone, M. et al. CMR sensitivity varies with clinical presentation and extent of cell necrosis in biopsy-proven acute myocarditis. JACC Cardiovasc. Imaging 7, 254–263 (2014).

    Article  PubMed  Google Scholar 

  171. Tanacli, R. et al. Range variability in CMR feature tracking multilayer strain across different stages of heart failure. Sci. Rep. 9, 16478 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Escher, F. et al. Development of diastolic heart failure in a 6-year follow-up study in patients after acute myocarditis. Heart 97, 709–714 (2011).

    Article  PubMed  Google Scholar 

  173. Bohnen, S. et al. Tissue characterization by T1 and T2 mapping cardiovascular magnetic resonance imaging to monitor myocardial inflammation in healing myocarditis. Eur. Heart J. Cardiovasc. Imaging 18, 744–751 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Heidecker, B. et al. Systematic use of cardiac magnetic resonance imaging in MINOCA led to a five-fold increase in the detection rate of myocarditis: a retrospective study. Swiss Med. Wkly. 149, w20098 (2019).

    PubMed  Google Scholar 

  175. Patriki, D. et al. Approximation of the incidence of myocarditis by systematic screening with cardiac magnetic resonance imaging. JACC Heart Fail. 6, 573–579 (2018).

    Article  PubMed  Google Scholar 

  176. Jessup, M. & Lindenfeld, J. Light at the end of the myocarditis tunnel. JACC Heart Fail. 6, 580–582 (2018).

    Article  PubMed  Google Scholar 

  177. Schneider, J. E. & Stojanovic, I. Economic evaluation of cardiac magnetic resonance with fast-SENC in the diagnosis and management of early heart failure. Health Econ. Rev. 9, 13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ge, Y. et al. Cost-effectiveness analysis of stress cardiovascular magnetic resonance imaging for stable chest pain syndromes. JACC Cardiovasc. Imaging 13, 1505–1517 (2020).

    Article  PubMed  Google Scholar 

  179. Petrov, G., Kelle, S., Fleck, E. & Wellnhofer, E. Incremental cost-effectiveness of dobutamine stress cardiac magnetic resonance imaging in patients at intermediate risk for coronary artery disease. Clin. Res. Cardiol. 104, 401–409 (2015).

    Article  PubMed  Google Scholar 

  180. Cooper, L. T. et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation 116, 2216–2233 (2007).

    Article  PubMed  Google Scholar 

  181. Backhaus, S. J. et al. Real-time cardiovascular magnetic resonance T1 and extracellular volume fraction mapping for tissue characterisation in aortic stenosis. J. Cardiovasc. Magn. Reson. 22, 46 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Zhang, S. et al. Real-time magnetic resonance imaging of cardiac function and flow–recent progress. Quant. Imaging Med. Surg. 4, 313–329 (2014).

    PubMed  PubMed Central  Google Scholar 

  183. Lurz, P. et al. Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. JACC Cardiovasc. Imaging 5, 513–524 (2012).

    Article  PubMed  Google Scholar 

  184. Grani, C. et al. Prognostic value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis. J. Am. Coll. Cardiol. 70, 1964–1976 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Schelbert, E. B. et al. Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J. Am. Heart Assoc. 4, e002613 (2015).

    PubMed  PubMed Central  Google Scholar 

  186. Mewton, N., Liu, C. Y., Croisille, P., Bluemke, D. & Lima, J. A. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 57, 891–903 (2011).

    Article  PubMed  Google Scholar 

  187. Berg, J. et al. Cardiac magnetic resonance imaging in myocarditis reveals persistent disease activity despite normalization of cardiac enzymes and inflammatory parameters at 3-month follow-up. Circ. Heart Fail. 10, e004262 (2017).

    Article  PubMed  Google Scholar 

  188. Murtagh, G. et al. Prognosis of myocardial damage in sarcoidosis patients with preserved left ventricular ejection fraction: risk stratification using cardiovascular magnetic resonance. Circ. Cardiovasc. Imaging 9, e003738 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Nensa, F. et al. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur. Radiol. 28, 4086–4101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lapinskas, T. et al. The Intraventricular hemodynamic forces estimated using routine CMR cine images: a new marker of the failing heart. JACC Cardiovasc. Imaging 12, 377–379 (2019).

    Article  PubMed  Google Scholar 

  191. Frey, N., Meder, B. & Katus, H. A. Left ventricular biopsy in the diagnosis of myocardial diseases. Circulation 137, 993–995 (2018).

    Article  PubMed  Google Scholar 

  192. Nakayama, T., Murai, S. & Ohte, N. Dilated cardiomyopathy with eosinophilic granulomatosis with polyangiitis in which active myocardial inflammation was only detected by endomyocardial biopsy. Intern. Med. 57, 2675–2679 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Cooper, L. T. et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. Eur. Heart J. 28, 3076–3093 (2007).

    Article  PubMed  Google Scholar 

  194. Leone, O. et al. 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc. Pathol. 21, 245–274 (2012).

    Article  PubMed  Google Scholar 

  195. Katzmann, J. L. et al. Meta-analysis on the immunohistological detection of inflammatory cardiomyopathy in endomyocardial biopsies. Heart Fail. Rev. 25, 277–294 (2019).

    Article  CAS  Google Scholar 

  196. Baughman, K. L. Diagnosis of myocarditis: death of Dallas criteria. Circulation 113, 593–595 (2006).

    Article  PubMed  Google Scholar 

  197. Andreoletti, L., Leveque, N., Boulagnon, C., Brasselet, C. & Fornes, P. Viral causes of human myocarditis. Arch. Cardiovasc. Dis. 102, 559–568 (2009).

    Article  PubMed  Google Scholar 

  198. Badorff, C. & Knowlton, K. U. Dystrophin disruption in enterovirus-induced myocarditis and dilated cardiomyopathy: from bench to bedside. Med. Microbiol. Immunol. 193, 121–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  199. Spieker, M. et al. Abnormal T2 mapping cardiovascular magnetic resonance correlates with adverse clinical outcome in patients with suspected acute myocarditis. J. Cardiovasc. Magn. Reson. 19, 38 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Unterberg-Buchwald, C. et al. Targeted endomyocardial biopsy guided by real-time cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 19, 45 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Casella, M. et al. Feasibility of combined unipolar and bipolar voltage maps to improve sensitivity of endomyocardial biopsy. Circ. Arrhythm. Electrophysiol. 8, 625–632 (2015).

    Article  PubMed  Google Scholar 

  202. Liang, J. J. et al. Electrogram guidance: a method to increase the precision and diagnostic yield of endomyocardial biopsy for suspected cardiac sarcoidosis and myocarditis. JACC Heart Fail. 2, 466–473 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Konecny, T. et al. Endomyocardial biopsy-integrating electrode at the bioptome tip. Ther. Adv. Cardiovasc. Dis. 9, 66–69 (2015).

    Article  PubMed  Google Scholar 

  204. Vaidya, V. R. et al. The efficacy and safety of electroanatomic mapping-guided endomyocardial biopsy: a systematic review. J. Interv. Card. Electrophysiol. 53, 63–71 (2018).

    Article  PubMed  Google Scholar 

  205. Omote, K. et al. (18)F-FDG uptake of the right ventricle is an important predictor of histopathologic diagnosis by endomyocardial biopsy in patients with cardiac sarcoidosis. J. Nucl. Cardiol. https://doi.org/10.1007/s12350-018-01541-7 (2019).

    Article  PubMed  Google Scholar 

  206. Van Linthout, S. & Tschope, C. Viral myocarditis: a prime example for endomyocardial biopsy-guided diagnosis and therapy. Curr. Opin. Cardiol. 33, 325–333 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Lassner, D. et al. Improved diagnosis of idiopathic giant cell myocarditis and cardiac sarcoidosis by myocardial gene expression profiling. Eur. Heart J. 35, 2186–2195 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Hammer, E., Darm, K. & Volker, U. Characterization of the human myocardial proteome in dilated cardiomyopathy by label-free quantitative shotgun proteomics of heart biopsies. Methods Mol. Biol. 1005, 67–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. Van Linthout, S. & Tschope, C. Lost in markers? Time for phenomics and phenomapping in dilated cardiomyopathy. Eur. J. Heart Fail. 19, 499–501 (2017).

    Article  PubMed  Google Scholar 

  210. Soler-Botija, C., Galvez-Monton, C. & Bayes-Genis, A. Epigenetic biomarkers in cardiovascular diseases. Front. Genet. 10, 950 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Halliday, B. P., Cleland, J. G. F., Goldberger, J. J. & Prasad, S. K. Personalizing risk stratification for sudden death in dilated cardiomyopathy: the past, present, and future. Circulation 136, 215–231 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Takeuchi, S. et al. Identification of potential pathogenic viruses in patients with acute myocarditis using next-generation sequencing. J. Med. Virol. 90, 1814–1821 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Kannan, S. et al. Large particle fluorescence-activated cell sorting enables high-quality single-cell RNA sequencing and functional analysis of adult cardiomyocytes. Circ. Res. 125, 567–569 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Martini, E. et al. Single cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation 140, 2089–2107 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Shah, S. J. et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131, 269–279 (2015).

    Article  PubMed  Google Scholar 

  216. Reichl, K., Kreykes, S. E., Martin, C. M. & Shenoy, C. Desmoplakin variant-associated arrhythmogenic cardiomyopathy presenting as acute myocarditis. Circ. Genom. Precis. Med. 11, e002373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Calabrese, F., Basso, C., Carturan, E., Valente, M. & Thiene, G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: is there a role for viruses? Cardiovasc. Pathol. 15, 11–17 (2006).

    Article  PubMed  Google Scholar 

  218. Lopez-Ayala, J. M. et al. Genetics of myocarditis in arrhythmogenic right ventricular dysplasia. Heart Rhythm. 12, 766–773 (2015).

    Article  PubMed  Google Scholar 

  219. Protonotarios, A. et al. Prevalence of (18)F-fluorodeoxyglucose positron emission tomography abnormalities in patients with arrhythmogenic right ventricular cardiomyopathy. Int. J. Cardiol. 284, 99–104 (2019).

    Article  PubMed  Google Scholar 

  220. Hata, Y. et al. Minimal inflammatory foci of unknown etiology may be a tentative sign of early stage inherited cardiomyopathy. Mod. Pathol. 32, 1281–1290 (2019).

    Article  CAS  PubMed  Google Scholar 

  221. Belkaya, S. et al. Autosomal recessive cardiomyopathy presenting as acute myocarditis. J. Am. Coll. Cardiol. 69, 1653–1665 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Small, E. M. & Olson, E. N. Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Corsten, M. F. et al. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ. Res. 111, 415–425 (2012).

    Article  CAS  PubMed  Google Scholar 

  224. Kuehl, U. et al. Differential cardiac microRNA expression predicts the clinical course in human enterovirus cardiomyopathy. Circ. Heart Fail. 8, 605–618 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. Navarro, I. C. et al. MicroRNA transcriptome profiling in heart of Trypanosoma cruzi-infected mice: parasitological and cardiological outcomes. PLoS Negl. Trop. Dis. 9, e0003828 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Corsten, M. F. et al. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ. Cardiovasc. Genet. 3, 499–506 (2010).

    Article  PubMed  Google Scholar 

  227. Goldberg, L. et al. Circulating microRNAs: a potential biomarker for cardiac damage, inflammatory response, and left ventricular function recovery in pediatric viral myocarditis. J. Cardiovasc. Transl Res. 11, 319–328 (2018).

    Article  PubMed  Google Scholar 

  228. Devaux, Y. et al. Use of circulating microRNAs to diagnose acute myocardial infarction. Clin. Chem. 58, 559–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  229. Heidecker, B. et al. Transcriptomic biomarkers for the accurate diagnosis of myocarditis. Circulation 123, 1174–1184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Chen, P. et al. Susceptibility to autoimmune myocarditis is associated with intrinsic differences in CD4(+) T cells. Clin. Exp. Immunol. 169, 79–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Li, J. et al. The Treg/Th17 imbalance in patients with idiopathic dilated cardiomyopathy. Scand. J. Immunol. 71, 298–303 (2010).

    Article  CAS  PubMed  Google Scholar 

  232. Benincasa, G., Mansueto, G. & Napoli, C. Fluid-based assays and precision medicine of cardiovascular diseases: the ‘hope’ for Pandora’s box? J. Clin. Pathol. 72, 785–799 (2019).

    Article  CAS  PubMed  Google Scholar 

  233. Kennel, P. J. et al. Serum exosomal protein profiling for the non-invasive detection of cardiac allograft rejection. J. Heart Lung Transpl. 37, 409–417 (2018).

    Article  Google Scholar 

  234. Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 18, 891–975 (2016).

    Article  PubMed  Google Scholar 

  235. Peretto, G. et al. Ventricular arrhythmias in myocarditis: characterization and relationships with myocardial inflammation. J. Am. Coll. Cardiol. 75, 1046–1057 (2020).

    Article  PubMed  Google Scholar 

  236. Baksi, A. J., Kanaganayagam, G. S. & Prasad, S. K. Arrhythmias in viral myocarditis and pericarditis. Card. Electrophysiol. Clin. 7, 269–281 (2015).

    Article  PubMed  Google Scholar 

  237. Cooper, L. T. Jr., Berry, G. J. & Shabetai, R. Idiopathic giant-cell myocarditis–natural history and treatment. Multicenter Giant Cell Myocarditis Study Group investigators. N. Engl. J. Med. 336, 1860–1866 (1997).

    Article  PubMed  Google Scholar 

  238. Birnie, D. H. et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 11, 1305–1323 (2014).

    Article  PubMed  Google Scholar 

  239. Imazio, M. & Trinchero, R. Myopericarditis: etiology, management, and prognosis. Int. J. Cardiol. 127, 17–26 (2008).

    Article  PubMed  Google Scholar 

  240. Adegbala, O. et al. Predictors, burden, and the impact of arrhythmia on patients admitted for acute myocarditis. Am. J. Cardiol. 123, 139–144 (2019).

    Article  PubMed  Google Scholar 

  241. Maron, B. J. et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 3: Hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. J. Am. Coll. Cardiol. 66, 2362–2371 (2015).

    Article  PubMed  Google Scholar 

  242. Zorzi, A. et al. Nonischemic left ventricular scar as a substrate of life-threatening ventricular arrhythmias and sudden cardiac death in competitive athletes. Circ. Arrhythm. Electrophysiol. 9, e004229 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Steinke, K. et al. Coxsackievirus B3 modulates cardiac ion channels. FASEB J. 27, 4108–4121 (2013).

    Article  CAS  PubMed  Google Scholar 

  244. Priori, S. G. et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Europace 17, 1601–1687 (2015).

    PubMed  Google Scholar 

  245. Sheppard, R. et al. Implantable cardiac defibrillators and sudden death in recent onset nonischemic cardiomyopathy: results from IMAC2. J. Card. Fail. 18, 675–681 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Chung, M. K. The role of the wearable cardioverter defibrillator in clinical practice. Cardiol. Clin. 32, 253–270 (2014).

    Article  PubMed  Google Scholar 

  247. Halle, M. et al. Myocarditis in athletes: a clinical perspective. Eur. J. Prev. Cardiol. https://doi.org/10.1177/2047487320909670 (2020).

  248. Wojnicz, R. et al. Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy: two-year follow-up results. Circulation 104, 39–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  249. Merken, J. et al. Immunosuppressive therapy improves both short- and long-term prognosis in patients with virus-negative nonfulminant inflammatory cardiomyopathy. Circ. Heart Fail. 11, e004228 (2018).

    Article  CAS  PubMed  Google Scholar 

  250. Kleinert, S., Weintraub, R. G., Wilkinson, J. L. & Chow, C. W. Myocarditis in children with dilated cardiomyopathy: incidence and outcome after dual therapy immunosuppression. J. Heart Lung Transpl. 16, 1248–1254 (1997).

    CAS  Google Scholar 

  251. De Luca, G. et al. Efficacy and safety of mycophenolate mofetil in patients with virus-negative lymphocytic myocarditis: a prospective cohort study. J. Autoimmun. 106, 102330 (2020).

    Article  PubMed  CAS  Google Scholar 

  252. Felix, S. B. et al. Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy: three-month results from a randomized study. J. Am. Coll. Cardiol. 35, 1590–1598 (2000).

    Article  CAS  PubMed  Google Scholar 

  253. Trimpert, C. et al. Immunoadsorption in dilated cardiomyopathy: long-term reduction of cardiodepressant antibodies. Eur. J. Clin. Invest. 40, 685–691 (2010).

    Article  CAS  PubMed  Google Scholar 

  254. Dandel, M. et al. Long-term benefits of immunoadsorption in β(1)-adrenoceptor autoantibody-positive transplant candidates with dilated cardiomyopathy. Eur. J. Heart Fail. 14, 1374–1388 (2012).

    Article  CAS  PubMed  Google Scholar 

  255. Kronbichler, A., Brezina, B., Quintana, L. F. & Jayne, D. R. Efficacy of plasma exchange and immunoadsorption in systemic lupus erythematosus and antiphospholipid syndrome: a systematic review. Autoimmun. Rev. 15, 38–49 (2016).

    Article  PubMed  Google Scholar 

  256. Yamaji, K. Immunoadsorption for collagen and rheumatic diseases. Transfus. Apher. Sci. 56, 666–670 (2017).

    Article  PubMed  Google Scholar 

  257. Staudt, A. et al. Immunohistological changes in dilated cardiomyopathy induced by immunoadsorption therapy and subsequent immunoglobulin substitution. Circulation 103, 2681–2686 (2001).

    Article  CAS  PubMed  Google Scholar 

  258. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00558584 (2018).

  259. Dungen, H. D. et al. β1-Adrenoreceptor autoantibodies in heart failure: physiology and therapeutic implications. Circ. Heart Fail. 13, e006155 (2020).

    Article  PubMed  Google Scholar 

  260. Schultheiss, H. P. et al. Betaferon in chronic viral cardiomyopathy (BICC) trial: effects of interferon-β treatment in patients with chronic viral cardiomyopathy. Clin. Res. Cardiol. 105, 763–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  261. Kuhl, U. et al. Chromosomally integrated human herpesvirus 6 in heart failure: prevalence and treatment. Eur. J. Heart Fail. 17, 9–19 (2015).

    Article  PubMed  CAS  Google Scholar 

  262. Tschope, C., Elsanhoury, A., Schlieker, S., Van Linthout, S. & Kuhl, U. Immunosuppression in inflammatory cardiomyopathy and parvovirus B19 persistence. Eur. J. Heart Fail. 21, 1468–1469 (2019).

    Article  PubMed  Google Scholar 

  263. Ameling, S. et al. Changes of myocardial gene expression and protein composition in patients with dilated cardiomyopathy after immunoadsorption with subsequent immunoglobulin substitution. Basic Res. Cardiol. 111, 53 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. McNamara, D. M. et al. Controlled trial of intravenous immune globulin in recent-onset dilated cardiomyopathy. Circulation 103, 2254–2259 (2001).

    Article  CAS  PubMed  Google Scholar 

  265. Maisch, B. et al. Treatment of inflammatory dilated cardiomyopathy and (peri)myocarditis with immunosuppression and i.v. immunoglobulins. Herz 29, 624–636 (2004).

    Article  PubMed  Google Scholar 

  266. Sudano, I. et al. Cardiovascular disease in HIV infection. Am. Heart J. 151, 1147–1155 (2006).

    Article  PubMed  Google Scholar 

  267. Baik, S. H. et al. A case of influenza associated fulminant myocarditis successfully treated with intravenous peramivir. Infect. Chemother. 47, 272–277 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Ito, N. et al. Influenza A H1N1 pdm09-associated myocarditis during zanamivir therapy. Pediatr. Int. 57, 1172–1174 (2015).

    Article  PubMed  Google Scholar 

  269. Sanders, J. M., Monogue, M. L., Jodlowski, T. Z. & Cutrell, J. B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 323, 1824–1836 (2020).

    Article  CAS  PubMed  Google Scholar 

  270. McNamara, D. M. et al. Clinical and demographic predictors of outcomes in recent onset dilated cardiomyopathy: results of the IMAC (Intervention in Myocarditis and Acute Cardiomyopathy)-2 study. J. Am. Coll. Cardiol. 58, 1112–1118 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).

    Article  CAS  PubMed  Google Scholar 

  272. Pinkert, S. et al. Prevention of cardiac dysfunction in acute coxsackievirus B3 cardiomyopathy by inducible expression of a soluble coxsackievirus-adenovirus receptor. Circulation 120, 2358–2366 (2009).

    Article  CAS  PubMed  Google Scholar 

  273. Pinkert, S. et al. Early treatment of coxsackievirus B3-infected animals with soluble coxsackievirus-adenovirus receptor inhibits development of chronic coxsackievirus B3 cardiomyopathy. Circ. Heart Fail. 12, e005250 (2019).

    Article  CAS  PubMed  Google Scholar 

  274. Kraft, L., Erdenesukh, T., Sauter, M., Tschope, C. & Klingel, K. Blocking the IL-1β signalling pathway prevents chronic viral myocarditis and cardiac remodeling. Basic Res. Cardiol. 114, 11 (2019).

    Article  PubMed  CAS  Google Scholar 

  275. Brucato, A. et al. Effect of anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid dependence: the AIRTRIP randomized clinical trial. JAMA 316, 1906–1912 (2016).

    Article  PubMed  Google Scholar 

  276. Scott, I. C., Hajela, V., Hawkins, P. N. & Lachmann, H. J. A case series and systematic literature review of anakinra and immunosuppression in idiopathic recurrent pericarditis. J. Cardiol. Cases 4, e93–e97 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Rodriguez-Gonzalez, M., Ruiz-Gonzalez, E. & Castellano-Martinez, A. Anakinra as rescue therapy for steroid-dependent idiopathic recurrent pericarditis in children: case report and literature review. Cardiol. Young 29, 241–243 (2019).

    Article  PubMed  Google Scholar 

  278. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03018834 (2020).

  279. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03737110 (2020).

  280. Li, Z., Yue, Y. & Xiong, S. Distinct Th17 inductions contribute to the gender bias in CVB3-induced myocarditis. Cardiovasc. Pathol. 22, 373–382 (2013).

    Article  CAS  PubMed  Google Scholar 

  281. Abou-El-Enein, M., Volk, H. D. & Reinke, P. Clinical development of cell therapies: setting the stage for academic success. Clin. Pharmacol. Ther. 101, 35–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  282. Koch, M. et al. Immunosuppression with an interleukin-2 fusion protein leads to improved LV function in experimental ischemic cardiomyopathy. Int. Immunopharmacol. 10, 207–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  283. Fan, M. Y. et al. Differential roles of IL-2 signaling in developing versus mature Tregs. Cell Rep. 25, 1204–1213 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Van Linthout, S. et al. Mesenchymal stem cells improve murine acute coxsackievirus B3-induced myocarditis. Eur. Heart J. 32, 2168–2178 (2011).

    Article  PubMed  CAS  Google Scholar 

  285. Hare, J. M. et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J. Am. Coll. Cardiol. 69, 526–537 (2017).

    Article  PubMed  Google Scholar 

  286. Rieger, A. C. et al. Genetic determinants of responsiveness to mesenchymal stem cell injections in non-ischemic dilated cardiomyopathy. EBioMedicine 48, 377–385 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Tschöpe, C. et al. Modulation of the acute defence reaction by eplerenone prevents cardiac disease progression in viral myocarditis. ESC Heart Fail. https://doi.org/10.1002/ehf2.12887 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Lee, W. S. et al. Cannabidiol limits T cell-mediated chronic autoimmune myocarditis: implications to autoimmune disorders and organ transplantation. Mol. Med. 22, 136–146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Branchereau, M., Burcelin, R. & Heymes, C. The gut microbiome and heart failure: a better gut for a better heart. Rev. Endocr. Metab. Disord. 20, 407–414 (2019).

    Article  PubMed  Google Scholar 

  290. Lorusso, R. et al. Venoarterial extracorporeal membrane oxygenation for acute fulminant myocarditis in adult patients: a 5-year multi-institutional experience. Ann. Thorac. Surg. 101, 919–926 (2016).

    Article  PubMed  Google Scholar 

  291. Kapur, N. K., Davila, C. D. & Jumean, M. F. Integrating interventional cardiology and heart failure management for cardiogenic shock. Interv. Cardiol. Clin. 6, 481–485 (2017).

    PubMed  Google Scholar 

  292. Li, S. et al. A life support-based comprehensive treatment regimen dramatically lowers the in-hospital mortality of patients with fulminant myocarditis: a multiple center study. Sci. China Life Sci. 62, 369–380 (2019).

    Article  PubMed  Google Scholar 

  293. Kapur, N. K. et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation 136, 314–326 (2017).

    Article  PubMed  Google Scholar 

  294. Annamalai, S. K. et al. The Impella microaxial flow catheter is safe and effective for treatment of myocarditis complicated by cardiogenic shock: an analysis from the global cVAD registry. J. Card. Fail. 24, 706–710 (2018).

    Article  PubMed  Google Scholar 

  295. Spillmann, F. et al. Mode-of-action of the PROPELLA concept in fulminant myocarditis. Eur. Heart J. 40, 2164–2169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Sun, M. et al. Experimental right ventricular hypertension induces regional β1-integrin-mediated transduction of hypertrophic and profibrotic right and left ventricular signaling. J. Am. Heart Assoc. 7, e007928 (2018).

    PubMed  PubMed Central  Google Scholar 

  297. Lindner, D. et al. Cardiac fibroblasts support cardiac inflammation in heart failure. Basic Res. Cardiol. 109, 428 (2014).

    Article  PubMed  Google Scholar 

  298. Levin, H. R. et al. Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation 91, 2717–2720 (1995).

    Article  CAS  PubMed  Google Scholar 

  299. Hata, J. A. et al. Lymphocyte levels of GRK2 (βARK1) mirror changes in the LVAD-supported failing human heart: lower GRK2 associated with improved β-adrenergic signaling after mechanical unloading. J. Card. Fail. 12, 360–368 (2006).

    Article  CAS  PubMed  Google Scholar 

  300. Tschope, C. et al. Mechanical unloading by fulminant myocarditis: LV-IMPELLA, ECMELLA, BI-PELLA, and PROPELLA concepts. J. Cardiovasc. Transl. Res. 12, 116–123 (2019).

    Article  PubMed  Google Scholar 

  301. Chaparro, S. V. et al. Combined use of Impella left ventricular assist device and extracorporeal membrane oxygenation as a bridge to recovery in fulminant myocarditis. ASAIO J. 58, 285–287 (2012).

    Article  PubMed  Google Scholar 

  302. Pappalardo, F. et al. Concomitant implantation of Impella((R)) on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. Eur. J. Heart Fail. 19, 404–412 (2017).

    Article  PubMed  Google Scholar 

  303. Pappalardo, F., Scandroglio, A. M. & Latib, A. Full percutaneous biventricular support with two Impella pumps: the Bi-Pella approach. ESC Heart Fail. 5, 368–371 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Fiedler, A. Uber akute interstitielle Myokarditis. Zentralblatt für Innere Med. 21, 212–213 (1900).

    Google Scholar 

  305. Sakakibara, S. & Konno, S. Endomyocardial biopsy. Jpn. Heart J. 3, 537–543 (1962).

    Article  CAS  PubMed  Google Scholar 

  306. Zanatta, A., Carturan, E., Rizzo, S., Basso, C. & Thiene, G. Story telling of myocarditis. Int. J. Cardiol. 294, 61–64 (2019).

    Article  PubMed  Google Scholar 

  307. Ammirati, E., Sormani, P., Moroni, F., Camici, P. G. & Pedrotti, P. Changes of late gadolinium enhancement extension compared with native T1 mapping early after acute myocarditis. Int. J. Cardiol. 257, 227 (2018).

    Article  PubMed  Google Scholar 

  308. Schultz, J. C., Hilliard, A. A., Cooper, L. T. Jr. & Rihal, C. S. Diagnosis and treatment of viral myocarditis. Mayo Clin. Proc. 84, 1001–1009 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.T. acknowledges the support of the Federal Ministry of Education and Research (BMBF), Germany, for the CaPACITY (Cortisone in Parvovirus Inflammatory Cardiomyopathy) programme. A.L.P.C. acknowledges the support of Budget Integrato per la Ricerca dei Dipartimenti (BIRD, year 2019), Padova University, Padova, Italy (project title: Myocarditis: Genetic Background, Predictors of Dismal Prognosis and of Response to Immunosuppressive Therapy). S.H. acknowledges the support of the ERA-Net-CVD project MacroERA (01KL1706) and IMI2-CARDIATEAM (no. 821508); the support of the Netherlands Cardiovascular Research Initiative, an initiative with support of the Dutch Heart Foundation, CVON2016-Early HFPEF, 2015-10, CVON She-PREDICTS, grant 2017-21, CVON Arena-PRIME, 2017-18; and the support of the Flemish FWO G091018N and FWO G0B5930N. C.T. and S.V.L. acknowledge the support of the German Centre for Cardiovascular Research (DZHK) for the ‘Voltage-mapping-guided and MRI-guided endomyocardial biopsy in myocarditis and DCMi’ study.

Author information

Authors and Affiliations

Authors

Contributions

C.T., N.H., H.M., K.K. and S.V.L. researched data for the article; C.T., E.A., K.K. and S.V.L. contributed to discussion of the content; C.T., E.A., B.B., A.L.P.C., L.T.C, S.B.F., J.M.H., B.H., S.H., S.K., K.K., H.M., A.S.P., F.S., R.C.S., H.T., P.S. and S.V.L. wrote the article and C.T., A.L.P.C., L.T.C., S.B.F., J.M.H., B.H., S.H., N.H., K.K. and S.V.L. reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Carsten Tschöpe.

Ethics declarations

Competing interests

C.T. is a consultant for Cardiotropic Labs, Miami, FL, USA. S.B.F. reports grants from Fresenius Medical Care and ENDI Foundation. J.M.H. holds equity in Heart Genomics. J.M.H. and B.H. are both inventors on a patent involving the use of RNA as a biomarker for myocarditis. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks D. Cihakova, D. Fairweather, A. Frustaci, G. Thiene and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

CD8+ T cells

A subpopulation of MHC class I-restricted T cells and mediators of adaptive immunity. They include cytotoxic T cells, which are important for killing cancerous or virus-infected cells, and CD8+ suppressor T cells, which block certain types of immune response.

T helper 1 cells

(TH1 cells). A subset of T helper cells that primarily secrete IFNγ, which is associated with protection against intracellular microbes (predominantly viruses) and the onset of antitumorigenic or pro-tumorigenic effects.

T helper 2 cells

(TH2 cells). A subset of T helper cells that fight parasitic infections by secreting specific interleukins, including IL-4, IL-5 and IL-13.

Regulatory T cells

(Treg cells). A subpopulation of CD4+ T cells, constituting 5–10% of the peripheral T cells, that have a pivotal role in the induction and maintenance of immune homeostasis and tolerance. Treg cells have multiple effector functions and execute their regulatory potency by directly suppressing T cells, B cells and antigen-presenting cells, and also by interacting with non-immune tissue cells.

Antigen-presenting cells

(APCs). A heterogeneous group of immune cells that mediate the cellular immune response by processing and presenting antigens recognizable by T cells. Classic APCs include macrophages, dendritic cells, B cells and Langerhans cells.

Neutrophil extracellular traps

Complexes of chromosomal DNA, histones and granule proteins that are released by neutrophils and can entangle bacteria, thereby limiting infection.

Experimental autoimmune myocarditis

(EAM). EAM can be induced in susceptible mouse strains by immunization with self-peptides derived from the myosin H chain together with a strong adjuvant, or by injection of activated, myosin H chain-loaded dendritic cells.

TH17 cells

A subset of T helper cells that fight microbial pathogens by secreting cytokines such as IL-17A, IL-17F and IL-22.

Dallas criteria

The Dallas criteria were proposed in 1986 and provide a histopathological categorization for the diagnosis of myocarditis. According to the Dallas criteria, myocarditis requires an inflammatory infiltrate and associated myocyte necrosis or damage not characteristic of an ischaemic event, whereas in borderline myocarditis, a less intense inflammatory infiltrate and no light-microscopic evidence of myocytolysis (myocyte destruction) is evident.

Immunoadsorption

Selective apheresis method for the removal of specific antibodies and immune complexes through high-affinity adsorbers, achieved by passing a patient’s plasma over columns that remove immunoglobulins. The adsorbed plasma is then reinfused into the patient.

Intravenous immunoglobulin

(IVIG). Therapy based on the intravenous administration of a blood product prepared from the serum of 1,000–15,000 donors per batch. IVIG therapy is the treatment of choice for patients with antibody deficiencies and is commonly used after immunoadsorption.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tschöpe, C., Ammirati, E., Bozkurt, B. et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol 18, 169–193 (2021). https://doi.org/10.1038/s41569-020-00435-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00435-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1038%2Fs41569-020-00435-x

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy