Content-Length: 322226 | pFad | https://doi.org/10.1515%2Frevic-2023-0003

w== Trivalent europium – a scarce case in intermetallics Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 7, 2023

Trivalent europium – a scarce case in intermetallics

  • Stefan Engel ORCID logo , Elias C. J. Gießelmann , Rainer Pöttgen and Oliver Janka ORCID logo EMAIL logo

Abstract

In most intermetallic europium compounds, the Eu atoms exhibit a divalent oxidation state with a high effective magnetic moment since Eu2+ is isoelectronic with Gd3+. Trivalent intermetallic Eu compounds, in contrast, are extremely scarce and under 20 examples are known to literature. This mini-review summarizes the known binary and ternary examples along with their crystal-chemical peculiarities as well as their magnetic and 151Eu Mössbauer spectroscopic behavior. Additionally, compounds that exhibit valence phase transitions are summarized.


Corresponding author: Oliver Janka, Anorganische Festkörperchemie, Universität des Saarlandes, Campus C4 1, 66123 Saarbrücken, Germany, E-mail:
Stefan Engel and Elias C. J. Gießelmann both authors contributed equally.
  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  2. Research funding: Funding has been provided by the German Research Foundation DFG (JA 1891-10-1).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alekseev, P. A.; Chernikov, R. V.; Klementiev, K. V.; Lazukov, V. N.; Menushenkov, A. P. XAFS-spectroscopy of EuCu2Si2. Nucl. Instrum. Methods Phys. Res. 2005, 543, 202–204; https://doi.org/10.1016/j.nima.2005.01.181.Search in Google Scholar

Bärnighausen, H.; Brauer, G. Ein neues Europiumoxid Eu3O4 und die isotype Verbindung Eu2SrO4. Acta Crystallogr. 1962, 15, 1059; https://doi.org/10.1107/s0365110x62002807.Search in Google Scholar

Bärnighausen, H.; Pätow, H.; Beck, H. P. Kristallchemische Studien an Seltenerd-Dihalogeniden. Die Kristallstruktur von Ytterbium(II)-chlorid, YbCl2. Z. Anorg. Allg. Chem. 1974, 403, 45–55; https://doi.org/10.1002/zaac.19744030106.Search in Google Scholar

Batlogg, B.; Kaldis, E.; Schlegel, A.; von Schulthess, G.; Wachter, P. Optical and electrical properties of the mixed valence compound Sm3S4. Solid State Commun. 1976a, 19, 673–676; https://doi.org/10.1016/0038-1098(76)91102-9.Search in Google Scholar

Batlogg, B.; Kaldis, E.; Wachter, P. Mixed valence compounds with hopping conductivity. J. Magn. Magn. Mater. 1976b, 3, 96–98; https://doi.org/10.1016/0304-8853(76)90018-4.Search in Google Scholar

Bauminger, E. R.; Felner, I.; Froindlich, D.; Levron, D.; Nowik, I.; Ofer, S.; Yanovsky, R. Mössbauer effect studies of interconfiguration fluctuations in metallic rare earth compounds. J. Phys. Colloq. 1974, 35, C6-61–C6-70; https://doi.org/10.1051/jphyscol:1974606.10.1051/jphyscol:1974606Search in Google Scholar

Bauminger, E. R.; Felner, I.; Ofer, S. Mixed valencies of Eu in intermetallic compounds with the CaCu5 structure. J. Magn. Magn. Mater. 1978, 7, 317–325; https://doi.org/10.1016/0304-8853(78)90211-1.Search in Google Scholar

Beck, H. P. Hochdruckmodifikationen der Diiodide von Sr, Sm und Eu. Eine neue PbCl2-Variante? Z. Anorg. Allg. Chem. 1979, 459, 81–86; https://doi.org/10.1002/zaac.19794590108.Search in Google Scholar

Berkooz, O.; Malamud, M.; Shtrikman, S. Observation of electron hopping in 151Eu3S4 by Mössbauer spectroscopy. Solid State Commun. 1968, 6, 185–188; https://doi.org/10.1016/0038-1098(68)90029-x.Search in Google Scholar

Buschow, K. H. J.; Cohen, R. L.; West, K. W. What is the mechanism of hydrogen absorption in rare-earth intermetallics? J. Appl. Phys. 1977a, 48, 5289–5295; https://doi.org/10.1063/1.323551.Search in Google Scholar

Buschow, K. H. J.; Campagna, M.; Wertheim, G. K. Intermediate valence in YbAl3 and EuCu2Si2 by X-ray photoemission (XPS). Solid State Commun. 1977b, 24, 253–256; https://doi.org/10.1016/0038-1098(77)91208-x.Search in Google Scholar

Chevalier, B.; Coey, J. M. D.; Lloret, B.; Etourneau, J. EuIr2Si2: a new intermediate valence compound. J. Phys. C: Solid State Phys. 1986, 19, 4521–4528; https://doi.org/10.1088/0022-3719/19/23/015.Search in Google Scholar

Croft, M.; Hodges, J. A.; Kemly, E.; Krishnan, A.; Murgai, V.; Gupta, L. C. Cooperative configuration change in EuPd2Si2. Phys. Rev. Lett. 1982, 48, 826–829; https://doi.org/10.1103/physrevlett.48.826.Search in Google Scholar

Davey, W. P. Crystal structures and densities of oxides of the 4th group. Phys. Rev. 1924, 23, 763–764.Search in Google Scholar

De Vries, J. W. C.; Thiel, R. C.; Buschow, K. H. J. The 151Eu Mössbauer isomer shift in intermetallic compounds containing trivalent europium. Phys. B+C 1984, 124, 291–298; https://doi.org/10.1016/0378-4363(84)90088-3.Search in Google Scholar

De Vries, J. W. C.; Thiel, R. C.; Buschow, K. H. J. Magnetic properties and 151Eu Mössbauer effect studied in Eu–Ga and Eu–Sn intermetallic compounds. Phys. B+C 1985, 128, 265–272; https://doi.org/10.1016/0378-4363(85)90001-4.Search in Google Scholar

Dorn, K. V.; Blaschkowski, B.; Förg, K.; Netzsch, P.; Höppe, H. A.; Hartenbach, I. Prism inside: spectroscopic and magnetic properties of the lanthanide(III) chloride oxidotungstates(VI) Ln3Cl3[WO6] (Ln = La–Nd, Sm–Tb). Z. Anorg. Allg. Chem. 2017, 643, 1642–1648; https://doi.org/10.1002/zaac.201700247.Search in Google Scholar

Eick, H. A.; Baenziger, N. C.; Eyring, L. Lower oxides of samarium and europium. The preparation and crystal structure of SmO0.4−0.6, SmO and EuO. J. Am. Chem. Soc. 1956, 78, 5147–5149; https://doi.org/10.1021/ja01601a003.Search in Google Scholar

Felner, I.; Nowik, I. Magnetism and hyperfine interactions in EuM2Ge2 and GdM2Ge2 (M = Mn, Fe, Co, Ni, Cu). J. Phys. Chem. Solids 1978, 39, 767–773; https://doi.org/10.1016/0022-3697(78)90012-4.Search in Google Scholar

Felner, I.; Nowik, I. Itinerant and local magnetism, superconductivity and mixed valency phenomena in RM2Si2, (R = rare earth, M = Rh, Ru). J. Phys. Chem. Solids 1984, 45, 419–426; https://doi.org/10.1016/0022-3697(84)90149-5.Search in Google Scholar

Felner, I.; Nowik, I. Local and itinerant Magnetism and Crystal structure of RRh2Ge2 and RRu2Ge2 (R = rare earth). J. Phys. Chem. Solids 1985, 46, 681–687; https://doi.org/10.1016/0022-3697(85)90156-8.Search in Google Scholar

Fournès, L.; Chevalier, B.; Lloret, B.; Etourneau, J. Valence change of europium in the Eu(Ir1-xPdx)2Si2 silicides. Z. Phys. B: Condens. Matter 1989, 75, 501–505; https://doi.org/10.1007/bf01312529.Search in Google Scholar

Gardner, W. E.; Penfold, J.; Smith, T. F.; Harris, I. R. The magnetic properties of rare earth-Pd3 phases. J. Phys. F: Met. Phys. 1972, 2, 133–150; https://doi.org/10.1088/0305-4608/2/1/019.Search in Google Scholar

Gérard, A.; Grandjean, F.; Hodges, J. A.; Braun, D. J.; Jeitschko, W. Giant hyperfine field on 151Eu in EuFe4P12 (Mössbauer study). J. Phys. C: Solid State Phys. 1983, 16, 2797–2801; https://doi.org/10.1088/0022-3719/16/14/019.Search in Google Scholar

Gerke, B.; Pöttgen, R. Alkaline earth-gold-aluminides: synthesis and structure of SrAu3Al2, SrAu2.83Al2.17, BaAu2.89Al2.11 and BaAu7.09Al5.91. Z. Naturforsch. 2015, 70b, 903–909; https://doi.org/10.1515/znb-2015-0119.Search in Google Scholar

Gerth, G.; Kienle, P.; Luchner, K. Chemical effects on the isomer shift in 151Eu. Phys. Lett. A 1968, 27, 557–558; https://doi.org/10.1016/0375-9601(68)90919-5.Search in Google Scholar

Grandjean, F.; Long, G. J. Mössbauer spectroscopy of europium-containing compounds. In Mössbauer Spectroscopy Applied to Inorganic Chemistry. Modern Inorganic Chemistry, Volume 3; Long, G. J.; Grandjean, F.; Eds. Springer US: Boston, MA, 1989, Chapter 11.10.1007/978-1-4899-2289-2_11Search in Google Scholar

Gupta, S.; Suresh, K. G. Review on magnetic and related properties of RTX compounds. J. Alloys Compd. 2015, 618, 562–606; https://doi.org/10.1016/j.jallcom.2014.08.079.Search in Google Scholar

Gütlich, P. Fifty years of Mössbauer spectroscopy in solid state research – remarkable achievements, future perspectives. Z. Anorg. Allg. Chem. 2012, 638, 15–43; https://doi.org/10.1002/zaac.201100416.Search in Google Scholar

Harmening, T.; Pöttgen, R. 151Eu Mössbauer spectroscopic characterization of EuRu4B4 and the new boride EuRuB4. Z. Naturforsch. 2009, 65b, 90–94; https://doi.org/10.1515/znb-2010-0116.Search in Google Scholar

Harmening, T.; Hermes, W.; Eul, M.; Schappacher, F. M.; Pöttgen, R. Structure and properties of Eu2Pt3Sn5. Z. Kristallogr. 2009, 224, 351–357; https://doi.org/10.1524/zkri.2009.1160.Search in Google Scholar

Hermann, R. P.; Grandjean, F.; Kauzlarich, S. M.; Jiang, J.; Brown, S.; Long, G. J. A europium-151 Mössbauer spectral study of Eu14MnP11, Eu14MnAs11, and Eu14MnSb11. Inorg. Chem. 2004, 43, 7005–7013; https://doi.org/10.1021/ic0491682.Search in Google Scholar PubMed

Hesse, H. J.; Wortmann, G. 151Eu-Mössbauer study of pressure-induced valence transitions in EuM2Ge2 (M = Ni, Pd, Pt). Hyperfine Interact. 1994, 93, 1499–1504; https://doi.org/10.1007/bf02072899.Search in Google Scholar

Hesse, H. J.; Lübbers, R.; Winzenick, M.; Neuling, H. W.; Wortmann, G. Pressure and temperature dependence of the Eu valence in EuNi2Ge2 and related systems studied by Mössbauer effect, X-ray absorption and X-ray diffraction. J. Alloys Compd. 1997, 246, 220–231; https://doi.org/10.1016/s0925-8388(96)02467-x.Search in Google Scholar

Heumann, T.; Kniepmeyer, M. A5B-Phasen vom Typ Cu5Ca und Lavesphasen in den Systemen des Strontiums mit Palladium, Platin, Rhodium und Iridium. Z. Anorg. Allg. Chem. 1957, 290, 191–204; https://doi.org/10.1002/zaac.19572900309.Search in Google Scholar

Hlukhyy, V.; Hoffmann, A.; Fässler, T. F. New phases in the 122 family: synthesis, structure and bonding. Z. Anorg. Allg. Chem. 2012, 638, 1619; https://doi.org/10.1002/zaac.201204106.Search in Google Scholar

Hoffmann, R.-D.; Pöttgen, R.; Zaremba, V. I.; Kalychak, Y. M. New indides EuAuIn2, EuPdIn4, GdRhIn2, YbRhIn4, and YbPdIn4. Z. Naturforsch. 2000, 55b, 834–840; https://doi.org/10.1515/znb-2000-0907.Search in Google Scholar

Hoffmann, R.-D.; Pöttgen, R.; Kußmann, D.; Niepmann, D.; Trill, H.; Mosel, B. D. Transition metal–tin ordering in SrPtSn, SrAuSn and BaAuSn and 119Sn Mössbauer spectroscopy of CaPdSn, CaPtSn and SrAuSn. Solid State Sci. 2002, 4, 481–487; https://doi.org/10.1016/s1293-2558(02)01284-0.Search in Google Scholar

Hofmann, M.; Campbell, S. J.; Edge, A. V. J. EuMn2Ge2 and EuMn2Si2: magnetic structures and valence transitions. Phys. Rev. B 2004, 69, 174432.Search in Google Scholar

Honda, F.; Okauchi, K.; Nakamura, A.; Aoki, D.; Akamine, H.; Ashitomi, Y.; Hedo, M.; Nakama, T.; Ōnuki, Y. Pressure evolution of characteristic electronic states in EuRh2Si2 and EuNi2Ge2. J. Phys.: Conf. Ser. 2017, 807, 022004; https://doi.org/10.1088/1742-6596/807/2/022004.Search in Google Scholar

Hoppe, R. New fluorides with Ce(IV), Pr(IV), Nd(IV), Tb(IV), Dy(IV). Rare Earths Mod. Sci. Technol. 1982, 3, 315–316.Search in Google Scholar

Hulliger, F. Eu4As3, a new trigonal anti-Th3P4-type compound. Mater. Res. Bull. 1979, 14, 33–36; https://doi.org/10.1016/0025-5408(79)90228-9.Search in Google Scholar

Huppertz, H.; Kotzyba, G.; Hoffmann, R.-D.; Pöttgen, R. Decomposition of EuPdIn and EuPtIn at high temperature and high pressure—formation of the hexagonal Laves phases EuPd0.72In1.28 and EuPt0.56In1.44. J. Solid State Chem. 2002, 169, 155–159; https://doi.org/10.1016/s0022-4596(02)00051-8.Search in Google Scholar

Iandelli, A. Über einige Verbindungen des Samariums vom NaCl-Typ. Z. Anorg. Allg. Chem. 1956, 288, 81–86; https://doi.org/10.1002/zaac.19562880111.Search in Google Scholar

Janka, O.; Niehaus, O.; Pöttgen, R.; Chevalier, B. Cerium intermetallics with TiNiSi-type structure. Z. Naturforsch. 2016, 71b, 737–764; https://doi.org/10.1515/znb-2016-0101.Search in Google Scholar

Jhans, H.; Croft, M.; Kemly, E.; Murgai, V.; Grier, B.; Segre, C. U. First order valence transition in Eu(Pd0.9Au0.1)2Si2: an X-ray diffraction study. Solid State Commun. 1988, 66, 1027–1030; https://doi.org/10.1016/0038-1098(88)90315-8.Search in Google Scholar

Josse, M.; Dubois, M.; El-Ghozzi, M.; Cellier, J.; Avignant, D. Anti-KSbF6 structure of CaTbF6 and CdTbF6: a confirmation of the singular crystal chemistry of Tb4+ in fluorides. Acta Crystallogr. 2005, B61, 1–10; https://doi.org/10.1107/s0108768104026928.Search in Google Scholar PubMed

Kagan, H. B. Twenty-five years of organic chemistry with diiodosamarium: an overview. Tetrahedron 2003, 59, 10351–10372; https://doi.org/10.1016/j.tet.2003.09.101.Search in Google Scholar

Kemly, E.; Croft, M.; Murgai, V.; Gupta, L. C.; Godart, C.; Parks, R. D.; Segre, C. U. Mössbauer effect and LIII absorption measurements of EuPd2Si2. J. Magn. Magn. Mater. 1985, 47, 403–406; https://doi.org/10.1016/0304-8853(85)90451-2.Search in Google Scholar

Kersting, M.; Matar, S. F.; Schwickert, C.; Pöttgen, R. Segregation of calcium and magnesium into different substructures. Ca4Ag0.948Mg and other compounds with Gd4RhIn-type structure. Z. Naturforsch. 2012, 67b, 61–69; https://doi.org/10.1515/znb-2012-0111.Search in Google Scholar

Koyama, T.; Ueyama, F.; Maruyama, T.; Ueda, K.; Mito, T.; Mitsuda, A.; Wada, H. NMR studies on EuNi2Si2 with trivalent Eu ion. J. Phys.: Conf. Ser. 2017, 868, 012023; https://doi.org/10.1088/1742-6596/868/1/012023.Search in Google Scholar

Ksenofontov, V.; Kandpal, H. C.; Ensling, J.; Waldeck, M.; Johrendt, D.; Mewis, A.; Gütlich, P.; Felser, C. Verwey-type transition in EuNiP. Europhys. Lett. 2006, 74, 672–678; https://doi.org/10.1209/epl/i2005-10563-6.Search in Google Scholar

Kußmann, D.; Pöttgen, R.; Rodewald, U. C.; Rosenhahn, C.; Mosel, B. D.; Kotzyba, G.; Künnen, B. Structure and properties of the stannide Eu2Au2Sn5, and its relationship with the family of BaAl4-related structures. Z. Naturforsch. 1999, 54b, 1155–1164; https://doi.org/10.1515/znb-1999-0911.Search in Google Scholar

Lai, Y.; Chan, J. Y.; Baumbach, R. E. Electronic landscape of the f-electron intermetallics with the ThCr2Si2 structure. Sci. Adv. 2022, 8, eabp8264; https://doi.org/10.1126/sciadv.abp8264.Search in Google Scholar PubMed PubMed Central

Li, L.; Niehaus, O.; Kersting, M.; Pöttgen, R. Reversible table-like magnetocaloric effect in Eu4PdMg over a very large temperature span. Appl. Phys. Lett. 2014, 104, 092416; https://doi.org/10.1063/1.4867882.Search in Google Scholar

Lueken, H. Magnetochemie; B. G. Teubner: Stuttgart, Leipzig, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

Mårtensson, N.; Hillebrecht, F. U.; Sarma, D. D. Adsorption-induced surface valence changes in europium intermetallics. Surf. Sci. 1985, 152/153, 733–742; https://doi.org/10.1016/0039-6028(85)90482-0.Search in Google Scholar

Maślankiewicz, P.; Szade, J. Valence instability of europium in EuCo2Si2. J. Alloys Compd. 2006, 423, 69–73; https://doi.org/10.1016/j.jallcom.2005.12.045.Search in Google Scholar

Mayer, I.; Felner, I. Europium silicides and germanides of the EuM2X2 type: crystal structure and the valence states of europium. J. Phys. Chem. Solids 1977, 38, 1031–1034; https://doi.org/10.1016/0022-3697(77)90206-2.Search in Google Scholar

Mayer, I.; Cohen, J.; Felner, I. X-ray and Mössbauer effect data of EuM2Si2. Acta Crystallogr. 1972, A28, S102b.Search in Google Scholar

Menushenkov, A. P.; Yaroslavtsev, A. A.; Geondzhian, A. Y.; Chernikov, R. V.; Nataf, L.; Tan, X.; Shatruk, M. Driving the europium valence state in EuCo2As2 by external and internal impact. J. Supercond. Nov. Magnetism 2017, 30, 75–78; https://doi.org/10.1007/s10948-016-3771-0.Search in Google Scholar

Michels, G.; Huhnt, C.; Scharbrodt, W.; Schlabitz, W.; Holland-Moritz, E.; Abd-Elmeguid, M. M.; Micklitz, H.; Johrendt, D.; Keimes, V.; Mewis, A. Temperature induced valence instabilities in ternary Eu-pnictides: a comprehensive view. Z. Phys. B: Condens. Matter 1995, 98, 75–88; https://doi.org/10.1007/bf01318282.Search in Google Scholar

Mitsuda, A.; Hamano, S.; Araoka, N.; Yayama, H.; Wada, H. Pressure-induced valence transition in antiferromagnet EuRh2Si2. J. Phys. Soc. Jpn. 2012, 81, 023709; https://doi.org/10.1143/jpsj.81.023709.Search in Google Scholar

Mitsuda, A.; Kishaba, E.; Fujimoto, T.; Oyama, K.; Wada, H.; Mizumaki, M.; Kawamura, N.; Ishimatsu, N. Pressure and magnetic field effects on the valence transition of EuRh2Si2. Physica B 2018, 536, 427–431; https://doi.org/10.1016/j.physb.2017.10.045.Search in Google Scholar

Molander, G. A. Application of lanthanide reagents in organic synthesis. Chem. Rev. 1992, 92, 29–68; https://doi.org/10.1021/cr00009a002.Search in Google Scholar

Mörsen, E.; Mosel, B. D.; Müller-Warmuth, W.; Reehuis, M.; Jeitschko, W. A 151Eu Mössbauer study of the magnetic hyperfine interactions in the metallic compound Eu2Co12P7 containing trivalent europium. J. Phys. C: Solid State Phys. 1988a, 21, 3133–3140; https://doi.org/10.1088/0022-3719/21/16/023.Search in Google Scholar

Mörsen, E.; Mosel, B. D.; Müller-Warmuth, W.; Reehuis, M.; Jeitschko, W. Mössbauer and magnetic susceptibility investigations of strontium, lanthanum and europium transition metal phosphides with ThCr2Si2 type structure. J. Phys. Chem. Solids 1988b, 49, 785–795; https://doi.org/10.1016/0022-3697(88)90030-3.Search in Google Scholar

Müllmann, R.; Mosel, B. D.; Eckert, H.; Kotzyba, G.; Pöttgen, R. A 151Eu Mössbauer spectroscopic and magnetic susceptibility investigation of the intermetallic compounds EuTIn (T = Zn, Pd, Pt, Au). J. Solid State Chem. 1998, 137, 174–180; https://doi.org/10.1006/jssc.1998.7750.Search in Google Scholar

Nagarajan, R.; Sampathkumaran, E. V.; Gupta, L. C.; Vijayaraghavan, R.; Bhaktdarshan; Padalia, B. D. X-ray absorption spectroscopic study of a mixed valence system, EuPd2Si2. Phys. Lett. A 1981, 81, 397–398; https://doi.org/10.1016/0375-9601(81)90100-6.Search in Google Scholar

Nagarajan, R.; Patil, S.; Gupta, L. C.; Vijayaraghavan, R. 151Eu Mössbauer studies in EuNiSi2 – a new mixed valence system – and in EuNi2Si2 and EuNiSi3. J. Magn. Magn. Mater. 1986, 54–57, 349–350; https://doi.org/10.1016/0304-8853(86)90614-1.Search in Google Scholar

Nagarajan, R.; Sampathkumaran, E. V.; Vijayaghavan, R. Unusual 151Eu Mössbauer line broadening in EuPt2Si2. Physica B 1990, 163, 591–593; https://doi.org/10.1016/0921-4526(90)90278-3.Search in Google Scholar

Namy, J. L.; Girard, P.; Kagan, H. B. A new preparation of some divalent lanthanide iodides and their usefulness in organic synthesis. Nouv. J. Chim. 1977, 1, 5–7.10.1002/chin.197724312Search in Google Scholar

Nemkovski, K. S.; Kozlenko, D. P.; Alekseev, P. A.; Mignot, J.-M.; Menushenkov, A. P.; Yaroslavtsev, A. A.; Clementyev, E. S.; Ivanov, A. S.; Rols, S.; Lobes, B.; Hermann, R. P.; Gribanov, A. V. Europium mixed-valence, long-range magnetic order, and dynamic magnetic response in EuCu2(SixGe1–x)2. Phys. Rev. B 2016, 94, 195101; https://doi.org/10.1103/physrevb.94.195101.Search in Google Scholar

Nowik, I.; Felner, I.; Wertheim, G. K. Europium valency in EuCu2−xFexSi2, EuCu2Si2−xGex, EuCu2−xSi2+x and EuNi2−xSi2+x. Hyperfine Interact. 1987, 33, 145–159; https://doi.org/10.1007/bf02394105.Search in Google Scholar

Nowik, I.; Felner, I.; Mermelstein, C.; Bauminger, E. R. Europium valencies in substituted EuCu2Si2 systems. Hyperfine Interact. 1990, 54, 847–851; https://doi.org/10.1007/bf02396139.Search in Google Scholar

Nowik, I.; Felner, I.; Bauminger, E. R. Phase transitions of europium valency and manganese magnetic order and thermal hysteresis phenomena in EuMn2Si2-xGex. Phys. Rev. B 1997, 55, 3033–3041; https://doi.org/10.1103/physrevb.55.3033.Search in Google Scholar

Oliver, F. W.; West, K. W.; Cohen, R. L.; Buschow, K. H. J. Mössbauer effect of 151Eu in EuNi5, EuMg2 and their hydrides. J. Phys. F: Met. Phys. 1978, 8, 701–707; https://doi.org/10.1088/0305-4608/8/4/021.Search in Google Scholar

Ōnuki, Y.; Nakamura, A.; Honda, F.; Aoki, D.; Tekeuchi, T.; Nakashima, M.; Amako, Y.; Harima, H.; Matsubayashi, K.; Uwatoko, Y.; Kayama, S.; Kagayama, T.; Shimizu, K.; Esakki Muthu, S.; Braithwaite, D.; Salce, B.; Shiba, H.; Yara, T.; Ashitomi, Y.; Akamine, H.; Tomori, K.; Hedo, M.; Nakama, T. Divalent, trivalent, and heavy fermion states in Eu compounds. Philos. Mag. 2017, 97, 3399–3414; https://doi.org/10.1080/14786435.2016.1218081.Search in Google Scholar

Padalia, B. D.; Prabhawalkar, V.; Prabhawalkar, P. D.; Sampathkumaran, E. V.; Gupta, L. C.; Vijayaraghavan, R. ESCA studies of some mixed-valence rare-earth intermetallics. Bull. Mater. Sci. 1981, 3, 163–167; https://doi.org/10.1007/bf02908491.Search in Google Scholar

Pani, M.; Fornasini, M. L.; Manfrinetti, P.; Merlo, F. Intermetallic compounds in the M–Cu–Sn systems with M = Eu, Sr, Ba. Intermetallics 2011, 19, 957–963; https://doi.org/10.1016/j.intermet.2011.02.018.Search in Google Scholar

Parks, R. D. Mixed valence phenomena: an overview. Hyperfine Interact. 1985, 24-26, 565–581; https://doi.org/10.1007/bf02354667.Search in Google Scholar

Perscheid, B.; Sampathkumaran, E. V.; Kaindl, G. Temperature and pressure dependence of the mean valence of Eu in EuNi2P2. J. Magn. Magn. Mater. 1985, 47-48, 410–412; https://doi.org/10.1016/0304-8853(85)90453-6.Search in Google Scholar

Perscheid, B.; Nowik, I.; Wortmann, G.; Schmiester, G.; Kaindl, G.; Felner, I. Eu valency and recoil-free fraction in EuCo2Si2-xGex. Z. Phys. B: Condens. Matter 1989, 73, 511–517; https://doi.org/10.1007/bf01319380.Search in Google Scholar

Peter, M.; Matthias, B. T. Paramagnetic resonance in metallic europium and intermetallic compounds. Phys. Rev. Lett. 1960, 4, 449–450; https://doi.org/10.1103/physrevlett.4.449.Search in Google Scholar

Pöttgen, R.; Chevalier, B. Cerium intermetallics with ZrNiAl-type structure – a review. Z. Naturforsch. 2015, 70b, 289–304; https://doi.org/10.1515/znb-2015-0018.Search in Google Scholar

Pöttgen, R.; Johrendt, D. Equiatomic intermetallic europium compounds: syntheses, crystal chemistry, chemical bonding, and physical properties. Chem. Mater. 2000, 12, 875–897; https://doi.org/10.1021/cm991183v.Search in Google Scholar

Pöttgen, R.; Hoffmann, R.-D.; Müllmann, R.; Mosel, B. D.; Kotzyba, G. A quintupled Superstructure of the KHg2 type realized for the new stannide EuAuSn. Chem. Eur J. 1997, 3, 1852–1859; https://doi.org/10.1002/chem.19970031118.Search in Google Scholar

Pöttgen, R.; Hoffmann, R.-D.; Möller, M. H.; Kotzyba, G.; Künnen, B.; Rosenhahn, C.; Mosel, B. D. Syntheses, crystal structures, and properties of EuRhIn, EuIr2, and EuIrSn2. J. Solid State Chem. 1999, 145, 174–181; https://doi.org/10.1006/jssc.1999.8236.Search in Google Scholar

Pöttgen, R.; Johrendt, D.; Kußmann, D. Structure-Property Relations of Ternary Equiatomic YbTX Intermetallics in Handbook on the Physics and Chemistry of Rare Earths, Vol. 32, Chapter 207; Elsevier: Amsterdam, 2001.Search in Google Scholar

Pöttgen, R.; Janka, O.; Chevalier, B. Cerium intermetallics CeTX – review III. Z. Naturforsch. 2016, 71b, 165–191; https://doi.org/10.1515/znb-2016-0013.Search in Google Scholar

Prasad, A.; Anand, V. K.; Hossain, Z.; Paulose, P. L.; Geibel, C. Anisotropic magnetic behavior in EuIr2Ge2 single crystal. J. Phys.: Condens. Matter 2008, 20, 285217; https://doi.org/10.1088/0953-8984/20/28/285217.Search in Google Scholar

Radzieowski, M.; Block, T.; Fickenscher, T.; Zhang, Y.; Fokwa, B. P. T.; Janka, O. Synthesis, crystal and electronic structures, physical properties and 121Sb and 151Eu Mössbauer spectroscopy of the alumo-antimonide Zintl-phase Eu5Al2Sb6. Mater. Chem. Front. 2017, 1, 1563–1572; https://doi.org/10.1039/c7qm00057j.Search in Google Scholar

Radzieowski, M.; Stegemann, F.; Block, T.; Stahl, J.; Johrendt, D.; Janka, O. Abrupt europium valence change in Eu2Pt6Al15 around 45 K. J. Am. Chem. Soc. 2018, 140, 8950–8957; https://doi.org/10.1021/jacs.8b05188.Search in Google Scholar PubMed

Radzieowski, M.; Block, T.; Klenner, S.; Zhang, Y.; Fokwa, B. P. T.; Janka, O. Synthesis, crystal and electronic structure, physical properties and 121Sb and 151Eu Mössbauer spectroscopy of the Eu14AlPn11 series (Pn = As, Sb). Inorg. Chem. Front. 2019, 6, 137–147; https://doi.org/10.1039/c8qi01099d.Search in Google Scholar

Radzieowski, M.; Stegemann, F.; Klenner, S.; Zhang, Y.; Fokwa, B. P. T.; Janka, O. On the divalent character of the Eu atoms in the ternary Zintl phases Eu5In2Pn6 and Eu3MAs3 (Pn = As–Bi; M = Al, Ga). Mater. Chem. Front. 2020, 4, 1231–1248; https://doi.org/10.1039/c9qm00703b.Search in Google Scholar

Rau, R. C. The crystal structure of Eu3O4. Acta Crystallogr. 1966, 20, 716–723; https://doi.org/10.1107/s0365110x66001737.Search in Google Scholar

Ryan, D. H.; Legros, A.; Niehaus, O.; Pöttgen, R.; Cadogan, J. M.; Flacau, R. Modulated ferromagnetic ordering and the magnetocaloric response of Eu4PdMg. J. Appl. Phys. 2015, 117, 17D108; https://doi.org/10.1063/1.4907239.Search in Google Scholar

Sampathkumaran, E. V. Intermediate valence in rare earth systems. Hyperfine Interact. 1986, 27, 183–192; https://doi.org/10.1007/bf02354754.Search in Google Scholar

Sampathkumaran, E. V.; Gupta, L. C.; Vijayaraghavan, R.; Gopalakrishnan, K. V.; Pillay, R. G.; Devare, H. G. A new and unique Eu-based mixed valence system: EuPd2Si2. J. Phys. C: Solid State Phys. 1981, 14, L237–L241; https://doi.org/10.1088/0022-3719/14/9/006.Search in Google Scholar

Schellenberg, I.; Eul, M.; Pöttgen, R. EuGa2Sb2: a new Zintl phase with four-bonded gallium and three-bonded antimony in a complex three-dimensional [Ga2Sb2] polyanion. Monatsh. Chem. 2011, 142, 875–880; https://doi.org/10.1007/s00706-011-0544-0.Search in Google Scholar

Schmiegel, J.-P.; Block, T.; Gerke, B.; Fickenscher, T.; Touzani, R. S.; Fokwa, B. P. T.; Janka, O. EuAu3Al2 Crystal and electronic structures and spectroscopic, magnetic, and magnetocaloric properties. Inorg. Chem. 2016, 55, 9057–9064; https://doi.org/10.1021/acs.inorgchem.6b01530.Search in Google Scholar PubMed

Schwickert, C.; Winter, F.; Pöttgen, R. The Stannides EuPd2Sn2, EuPt2Sn2, EuAu2Sn2, and Eu3Ag5.4Sn5.6 – Structure and Magnetic Properties. Z. Naturforsch. 2014, 69b, 775–785; https://doi.org/10.5560/znb.2014-4098.Search in Google Scholar

Segre, C. U.; Croft, M.; Hodges, J. A.; Murgai, V.; Gupta, L. C.; Parks, R. D. Valence instability in Eu(Pd1-xAux)2Si2: the global phase diagram. Phys. Rev. Lett. 1982, 49, 1947–1950; https://doi.org/10.1103/physrevlett.49.1947.Search in Google Scholar

Seidel, S.; Harmening, T.; Kösters, J.; Koldemir, A.; Pröbsting, W.; Pöttgen, R. First europium compounds with U2Mn3Si5 type structure but different europium valence. Z. Naturforsch. 2023, 78b; https://doi.org/10.1515/znb-2023-0009.Search in Google Scholar

Seiro, S.; Kummer, K.; Vyalikh, D.; Caroca-Canales, N.; Geibel, C. Anomalous susceptibility in single crystals of EuCo2Si2 with trivalent Eu: influence of excited J multiplets. Phys. Status Solidi B 2013, 250, 621–625; https://doi.org/10.1002/pssb.201200892.Search in Google Scholar

Seidel, S.; Niehaus, O.; Matar, S. F.; Janka, O.; Gerke, B.; Rodewald, U. C.; Pöttgen, R. The gallium intermetallics REPdGa3 (RE = La, Ce, Pr, Nd, Sm, Eu) with SrPdGa3-type structure. Z. Naturforsch. 2014, 69b, 1105–1118; https://doi.org/10.5560/znb.2014-4119.Search in Google Scholar

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

Shannon, R. D.; Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. 1969, B25, 925–946; https://doi.org/10.1107/s0567740869003220.Search in Google Scholar

Stegemann, F.; Block, T.; Klenner, S.; Janka, O. An unusual valence state: trivalent europium in intermetallic Eu2Ir3Al9. Chem. Eur J. 2019a, 25, 3505–3509; https://doi.org/10.1002/chem.201806297.Search in Google Scholar PubMed

Stegemann, F.; Block, T.; Klenner, S.; Zhang, Y.; Fokwa, B. P. T.; Timmer, A.; Mönig, H.; Doerenkamp, C.; Eckert, H.; Janka, O. From 3D to 2D: Structural, spectroscopic and theoretical investigations of the Dimensionality reduction in the [PtAl2]δ– polyanions of the isotypic MPtAl2 series (M = Ca–Ba, Eu). Chem. Eur J. 2019b, 25, 10735–10747; https://doi.org/10.1002/chem.201901867.Search in Google Scholar PubMed

Stegemann, F.; Zhang, Y.; Fokwa, B. P. T.; Janka, O. On the formation of the Gd3Ru4Al12 versus the Y2Co3Ga9 type structure – M3Rh4Al12 (M = Ca, Eu) versus M2T3Al9 (M = Ca, Sr, Eu, Yb; T = Ir, Pt). Dalton Trans. 2020, 49, 6398–6406; https://doi.org/10.1039/d0dt00521e.Search in Google Scholar PubMed

Steudel, F.; Johnson, J. A.; Johnson, C. E.; Schweizer, S. Characterization of Luminescent materials with 151Eu Mössbauer spectroscopy. Materials 2018, 11, 828; https://doi.org/10.3390/ma11050828.Search in Google Scholar PubMed PubMed Central

Szytuła, A.; Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Search in Google Scholar

Takeuchi, T.; Yara, T.; Ashitomi, Y.; Iha, W.; Kakihana, M.; Nakashima, M.; Amako, Y.; Honda, F.; Homma, Y.; Aoki, D.; Uwatoko, Y.; Kida, T.; Tahara, T.; Hagiwara, M.; Haga, Y.; Hedo, M.; Nakama, T.; Ōnuki, Y. Effects of magnetic field and pressure on the valence-fluctuating antiferromagnetic compound EuPt2Si2. J. Phys. Soc. Jpn. 2018, 87, 074709; https://doi.org/10.7566/jpsj.87.074709.Search in Google Scholar

Takigawa, Y.; Noguchi, S.; Okuda, K. XPS study in CeAg and EuCu2Si2 at low temperatures down to 4 K. J. Magn. Magn. Mater. 1988, 76–77, 345–346; https://doi.org/10.1016/0304-8853(88)90418-0.Search in Google Scholar

Takikawa, Y.; Ebisu, S.; Nagata, S. Van Vleck paramagnetism of the trivalent Eu ions. J. Phys. Chem. Solids 2010, 71, 1592–1598; https://doi.org/10.1016/j.jpcs.2010.08.006.Search in Google Scholar

Taylor, R. D.; Pasternak, M. P. Sub-megabar Mössbauer studies using diamond anvil cells. Hyperfine Interact. 1990, 53, 159–174; https://doi.org/10.1007/bf02101045.Search in Google Scholar

Templeton, D. H.; Dauben, C. H. Crystal structures of rare earth oxychlorides. J. Am. Chem. Soc. 1953, 75, 6069–6070; https://doi.org/10.1021/ja01119a535.Search in Google Scholar

van Vleck, J. H. The Theory of Electric and Magnetic Susceptibilities; Oxford At The Clarendon Press: Oxford, 1932.Search in Google Scholar

Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2022/23); ASM International®: Materials Park, Ohio (USA), 2023.Search in Google Scholar

Wei, X.; Wang, J. Pressure-induced structural phase transition in EuNi2P2. ACS Omega 2022, 7, 15200–15205; https://doi.org/10.1021/acsomega.2c01325.Search in Google Scholar PubMed PubMed Central

Wickman, H. H.; Wernick, J. H.; Sherwood, R. C.; Wagner, C. F. Mössbauer and magnetic properties of several europium intermetallic compounds. J. Phys. Chem. Solids 1968, 29, 181–182; https://doi.org/10.1016/0022-3697(68)90268-0.Search in Google Scholar

Wortmann, G.; Nowik, I.; Perscheid, B.; Kaindl, G.; Felner, I. Critical evaluation of Eu valences from LIII-edge X-ray-absorption and Mössbauer spectroscopy of EuNi2Si2-xGex. Phys. Rev. B 1991, 43, 5261–5268; https://doi.org/10.1103/physrevb.43.5261.Search in Google Scholar PubMed

Zachariasen, W. H. The crystal structure of the modification C of the sesquioxides of the rare earth metals, and of indium and thallium. Nor. Geol. Tidsskr. 1927, 9, 310–316.Search in Google Scholar

Zalkin, A.; Templeton, D. H. The crystal structures of YF3 and related compounds. J. Am. Chem. Soc. 1953, 75, 2453–2458; https://doi.org/10.1021/ja01106a052.Search in Google Scholar

Received: 2023-01-12
Accepted: 2023-03-02
Published Online: 2023-04-07
Published in Print: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.3.2025 from https://www.degruyter.com/document/doi/10.1515/revic-2023-0003/html
Scroll to top button








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1515%2Frevic-2023-0003

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy