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Abstract: A mapping from multidimensional data
(multi-key records) to one dimension is described. It
simply consists of bitwise interlacing the keys. This
mapping allows to use dynamically balanced binary
search trees for efficient multidimensional range
searching. A range search algorithm for bitwise inter-
laced keys is presented. Experimental results show
that for small hypercube ranges the average number
of records to be inspected is logarithmic with the
number of records. Storage requirements are only
two pointers per record to establish the search tree.

Stichworte: Datenstrukturen, Bereichsanfrage, mehr-
dimensionales Suchen, sortierte Biume, ausgeglichene
Baume

Zusammenfassung: Es wird eine Abbildung mehrdi-
mensionaler Daten (Records mit mehreren Schiisseln)
auf eine Dimension beschrieben. Die Abbildung er-
folgt einfach durch bitweises Verzahnen der Schiiissel.
Diese Art der Abbildung erlaubt eine effiziente Be-
handfung mehrdimensionaler Bereichsanfragen. Dafiir
wird ein Suchalgorithmus vorgestelit. In Experimen-
ten wurde festgestellt, dall fir kleine, gleich lange
Schiiisselbereiche die durchschnittliche Anzahl der zu
inspizierenden Records logarithmisch mit der Gesamt-
zahl der Records steigt. Es werden nur zwei Zeiger
pro Record fir die Baumstruktur bendtigt.

T Introduction

Range searching is one of the standard requirements of
database systems: each record having keys within some
specified range is to be reported. In a distributing house
database, e.g. all customers with age between 20 and 30
an postal number between 7500 and 7599 may be que-
ried. Quite another field where range queries must be
performed is pattern recognition (where the work des-
cribed here was triggered off). Here, near neighbour
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searching is a subproblem that can be treated as range
searching. Image analysis is a subfield of pattern recogni-
tion where there is typically the following situation: Af-
ter preprocessing the raw image data, one has to deal with
a sometimes tremendous amount of pattern primitives
each given by several properties. For example, there are
edge elements given by position (x and y value), length,
and orientation which corresponds to a 4-key-record for
each edge element. In the course of the anylysis, range
searching in this data volume is a standard procedure.
When dealing with real image analysis applications, algo-
rithms must be fast; so it is worth worrying about how to
perform range searches efficiently. The more advanced
pattern recognition systems have a feedback from ana-
lysis to preprocessing which results in dynamic volumes
of pattern primitives to be handled.

N records of k keys can be regarded as N pointsin a k
dimensional space. In [1] a survey is given on problems
that arise and data structures that are in use for the k > 1
case. A review of data structures for range searching,
especially, is given in [2]. One of the basic structures is
the k-d ("k-dimensional*) tree. In [3] it is discussed in
the general database context. In [4] a general technique,
called “multidimensional divide an conquer”, is des-
cribed that leads to a data structure called "range tree*.
It has O (N log“~" N) storage requirement and O

(log* N+F) query time to search the structure, where F
is the number of records found.

The k-d tree has bee shown to be well adapted to range
searching. Unfortunately, there is one disadvantage:
there is no technique known to rebalance the trees when
inserting or deleting a record. In this paper, a technique
is proposed appearently sharing the advantageous proper-
ties of k-d trees for range searching, which allows to use
any standard tree balancing mechanism.

It simply consists of bitwise interlacing the keys to form
a one dimensional code. Because this is a mapping from
k dimensions to one dimension, any tree balancing
mechanism can be used for inserting and deleting. For
range searching, an algorithm for bitwise interlaced data
is presented. It tums out to be simply realized by basic
bit manipulations. Experimental results indicate loga-
rithmic time complexity: for small hypercube ranges the
average number of records to be inspected is logarithmic
with the number of records.
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2 Bitwise Interlacing the Keys for Range Searching

In this chapter, bitwise interlacing is inductive intro-
duced. After that, the relationship to k-d trees is dis-
cussed informally.

The goal is to find a bijective mapping from multi-key
records to one dimension so that multidimensional range
queries can be efficiently performed. Multi-key records
can be considered as points in a multidimensional space.
At first, we treat the two dimensional case where each
point is given by its x and y value in the plane. The gene-
ralization to more dimensions, after that, turns out to be
straightforward.

Given k keys of 1 bit length, the one dimensional code
must have k*| lenght when the mapping is bijective. A
naive approach would be to concatenate the keys to
form a code as depicted in Fig. 1. This, of course, is a
bijective mapping. It leads to sorting primarily according
to x value; points with identical x value are sorted accor-
ding to y value. After sorting, an exact match query is
performed in O (k*log N) time, N being the number of
records. Insertion and deletion are performed in O
(k*log N) time, provided that dynamically balanced
trees are chosen as data structure. However, it is not the
right choice for range searches, as illustrated in Fig. 2:
Although only a few or even no points may be within
the search range, it is expected that many points (having
x values within the specified range) must be inspected.
With the example of range searching in a geographical
data base in mind, Knuth wrote in 1973 [S]: *Perhaps
the best approach is to partition the set of all possible
LATITUDE and LONGITUDE values rather coarsely ...,
then to have on inverted list for each combined
(LATITUDE, LONGITUDE) class“. This partition can
be done by dividing the plane into coarse slices after x
value, which in turn are divided after y value. This is
illustrated in Fig. 3, where each direction is divided up
into ten regions. Here, when range searching, we must
only inspect the points lying in the squares overlapping
the search range (see Fig. 3). The coarse squares, in tum,
can recursively be subdivided as shown in Fig. 4, for
further reducing the number of points to be inspected.
How can this type of partition be referred to mapping?
Looking at Figs. 3 and 4 (where we have chosen ten
subregions for each division) one recognizes that it is
equivalent to a mapping which is simply realized by
interlacing the digits of the keys: Firstly we exclusively
worry about the first digit of x and y, after that we con-
sider the following digits. Interlacing the digits is an im- |
proved mapping from multidimensional data to one
dimension for efficient range searching.

How can the mapping be further improved? The answer
is simply to take the bits instead of the digits driving the
idea of stepwise refinement and alternating x and y
values to the extreme. Bitwise interlacing the keys is the
simple mapping scheme we shall discuss here. It is illus-
trated in Fig. 5 and is easily expanded to more dimen-
sions in the obvious way.
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Fig. 5 Bitwise interlacing the keys (x and y value) to form the code

In Fig 6 the codes are depicted for the two dimensional
case where the x and y values range from O to 7. One
casily recognizes the recursive coding scheme.

Let us look at the bitwise interlacing scheme from some
other point of view: One way of thinking of it is that
nearby multidimensional data points should also lic in
some ¢lose neighbourhood after mapping to one dimen-
sion. Of course, a bijective mapping from multidimen-
sional data to one dimension cannot be done the way
that in any case nearbv multidimensional points are also
close together in one dimension. Nevertheless, the coding
scheme shown here tries to group them together. This
“grouping feature* is desirable when searching for com-
pact ranges. In this sense, there is some relationship to
k-d trees which have been shown to be well suited for
range searching: They also group the data points to-
gether alternating the discriminating keys.

The data structuring scheme of k-d trees is illustrated in
Fig. 7: Point | corresponds to the root. The points the
X values of which are greater than the x values of the
root are in the right subtree of the root (the root of this
subtree, node 2, corresponds to point 2). All other
points are in the left subtree. The points of the right sub-
trec the y values of which are greater than the y values
of point 2 are in the right subtree of node 2, etc. Each
node of a k-d tree has a discriminator which indicates
the discriminating dimension. This discriminator may
be implicitly given by reducing the level of the node
modulo k (k = dimension). The essential difference be-
tween the k-d trees and bitwise interlacing the keys it

as follows: in k-d trees the discriminating dimension is

a feature of the data structuring scheme. Binwise inter-
lacing, on the other hand, is a feature of the data repre-
sentation itself. So we have still the free choice of struc-
turing the data. This freedom leads to easy restructuring
when handling dynamic data volumes.

Two advantageous characteristics are shared by the k-d
trees: (1) x and y values are almost equal in importance
(of course one of them must be the first; in Fig. 5 the

x value is the more important one); (2) the scheme is
casily extended to more dimensions. [t is easy to see
that for equally spaced duta points sorting the bitwise
interlaced codes is equivalent to the k-d tree structuring
mechanism,

An advantage of bitwise interlaced data over k-d trees is
that the data structure adapts automatically to the data
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Fig. 7 The k-d tree structuring scheme

distribution: Data points with identical x values are
automatically ordered according to y values, and vice
versa. This is done without providing or handling any
discriminators.

But the main advantage is, as already mentioned, that
dynamic data structures can be built which allow to
insert and delete multi-key records. In the next section
we will briefly review the bacic data structures taken
into consideration.

3 Structuring the Bitwise Interlaced Data

The bitwise interlaced keys, called "codes™ or "record
codes™ in the following, are regarded as one dimen-
sional data. So any data structure lor storing single keys
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can be used. A sequential allocation of sorted codes is
appropriate when no insertions and deletions of records
must be performed. Binary search on this structure can
be regarded as an implicit tree structure. To manage
dynamically changing data volumes, we select the binary
search tree (Fig. 8) making the tree structure explicit.

Although randomly built search trees have a good mean
behaviour they may degenerate in the worst case yiel-
ding an O (N) insertion and deletion time. Therefore,
we have actually used balanced trees. The classical AVL
tree balancing mechanim is known best [S]. Actually we
have chosen the recently developed 1-2 brother tree
mechanism [6] which is conceptionally simpler. A 1-2
sther tree is a height balanced search tree, where each
internal node has either two sons or, if it has one son, its
brother has two sons. 1-2 brother trees have O (log N)
worst case insertion and deletion time.
The range search algorithm described in the following
chapter applies to both randomly built and balanced
trees. The experimental results shown in chapter 5 are
obtained by using 1-2 brother trees.

4 Range Search

In this section we describe the range query algorithm
with bitwise interlaced keys (Fig. 5). To illustrate the
algorithm, we discuss the two dimensional case (k = 2)
in which all records have two keys. The search range is
given by two records, By interlacing the keys of each,
record, one gets the minimum and the maximum code,
thus defining the code range (see Fig. 9).

first approach of range query is now the same as in the
two dimensional case. We suppose a binary search tree.
Each node of this tree is associated with a record, re-
presented by a record code. This record code is the re-
sult of interlacing the multidimensional keys of the
record.
To show clearly the essence of the algorithms, special
cases like “tree is empty” or “node is a leaf™ are omitted
in this paper.
Let P be the root node of the tree.

Range (P)

Case 1 [Recordeode (P) < Minimumcode]
Low subtree (containing only recordcodes less
than recordcode (P)) is discarded. Perform
RANGE (HISON).
(HISON is the son of P with recordcode
greater than recordcode (P).)
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Case 2 [Recordcode (P) > Maximumcode]
High subtree (corresponding to low subtrec) is
discarded; Perform RANGE (LOSON).
(LOSON corresponding to HISON.)

Case 3 [Minimumecode <= Recordcode (P) < = Maxi-
mumcode |
If the record lies within the search range, re-
port P; Perform RANGE (LOSON); Perform
RANGE (HISON).

This is not a really effective algorithm because it does
not consider the fact that many record codes can be
between range minimum code and range maximum code
without being within the search range. This is illustrated
in Fig. 9 by two staircases, The codes above the upper
staircase are less than the range minimum code, codes
below the lower staircase are greater than the range
maximum code. They are not within the search range.
But all codes between the two staircases are potential
candidates for range searching. In figure 9 the case is
illustrated when a given record code (58) is between
range minimum and range maximum code without being
in the range.

We now can draw a staircase the upper codes of which
are always less or equal the record code and the lower
codes of which are always greater than the record code,
This staircase, of course, is cutting the search range. If



we do so, we gel two new codes within the range. One
code being the greatest code (55) within the range which
is less than the record code (named LITMAX) and the
other being the lowest code (74) within the range but
greater than the record code (named BIGMIN). Because
in our binary tree all nodes in the left subtree have codes
greater than the root node, one can update the code
range for each subtree. Figure 9 shows that we only have
to search between range minimum code and LITMAX
for the low subtiee and between BIGMIN and range
maximum code for the high subtree, because il is sale to
say that codes between LITMAX and BIGMIN do not lie
within the range. In this way we can dynamically shrink
the code range for cach subtree, which is data dependent.
Now we can formulate a range search algorithm con-
sidering the dynamically code range shrinking. By dy-
namically code range shrinking, a subtree is visited by
the algorithm if and only if one of its nodes might lie in
the range. The computation of LITMAX and BIGMIN
for a given code the staircase of which cuts the search
range is described below.

Let P be the root node of the tree.

Start with RMIN = range minimum code and RMAX =
range maximum code,

Range (P, RMIN, RMAX)

Case |  [Recordcode (') < RMIN]
Perform RANGE (HISON, RMIN, RMAX).

Case 2 [Recordcode (P) > RMAX]
Perform RANGE (LOSON, RMIN, RMAX).

Cuse 3 [RMIN <= Recordcode (P) <= RMAX]
IF record lies within the search range
THEN  BEGIN report p;
Perform RANGE (LOSON, RMIN,
Recordcode (P);
Perform RANGE (H1ISON, Record-
code (P), RMAX)
END
ELSE  BEGIN Compute LITMAX and BIGMIN
Perform RANGE (LOSON, RMIN,
LITMAX);
Perform RANGE (HISON, BIGMIN,
RMAX)

END

In case 3, it is possible that a code range consists merely
of one point and this point is found. In such a case, it is
not necessary o visit any subtree. In our implemented
algorithm we do not consider this case as it tumed out

to-be very seldom and so we could spare to query this case.

Computing LITMAX and BIGMIN

First, the idea of computing LITMAX and BIGMIN is
outlined. Second, the implementation is given in a
decision table form.

The algorithm can best be understood as a binary search.
At cach step a bisection of the x-y plane is made. The bi-
section alternates in X and y direction. The situation is

shown in Fig. 10 when scarching LITMAX. There actual-
ly the x dimension is devided. All codes on the right of
the dividing line are greater than any code on the left.
Without loss of generality we assume that the x value of
the record point is greater than the dividing x value xd.
Three cases are possible:
1. The range is entirely on the right (xmin > xd).
Then the search continues on the right.
2. The range is entircly on the left (xmax < xd).
Then the lower right corner, indicated by “X" in
figure 10, is LITMAX.
3. The range is overlapping the dividing line (xmin <=
xd <= xmax).
Then LITMAX is either the “candidate point” (in-
dicated by “*" in figure 10) or within the hatched
region.
(Here the “‘candidate point” is saved and the search
continues on the right. If this search fails, the
“candidate point” is LITMAX.)
The search for BIGMIN is along the same lines.
This binary search is implemented by bitwise scanning
the codes of range minimum, range maximum and divid-
ing record point (beginning at the most significant bit).
The three bits are examined at each step according to
the LITMAX and BIGMIN decision tables given below.
LOAD function in the tables means: set a bit pattern in-
to the bits of a code associated with the actual dimension
starting with actual bitposition (see Fig. 11).
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By modifying the LOAD function, the computation of
LITMAX and BIGMIN applies also to any other inter-
lacing scheme,
Let us now reconsider the effects of bitwise interlacing

on range scarching (for the two dimensional case):
Comparing bitwise interlacing with the other extreme,

the concatenation of keys (Fig. 1), one recognizes that in
the latter case the dynamic code range shrinking leads to
discarding narrow slices. Bitwise interlacing, however,

leads to discarding arcas, which is more adapted to searching
for compact ranges.

5 Experimental Results

The experimental results presented in this section were

obtained under the following conditions:

1-2 brother trees were chosen as data structure.

The key values were produced using a pscudo random

generator with uniform distribution.
® Both Fig. 12 and Fig. 13 show averages over 300

examples.

+ Hypercube search ranges (which are the extreme of

“compact ranges'’) are used in both figures.

In Fig. 12 for k = 2 the average number of records
inspected, neglecting the number of records found, is

LITMAKX decision table

depicted. From this figure we derive that the range
searching is logarithmic with the number of records (N).
In this experiment, the expected number of records to
be found was held constant when increasing the total
number of records (N). This was done by varying the
range of key values, as shown.

Fig. 13 shows the surprising fact that the search effort
decreases when increasing the number of dimensions.
Some experiments with Gaussian distribution led to
approximately the same results.

6 Discussion

In [3] Bentley says: “perhaps the most outstanding open

problem is that of maintaining dynamic k-d trees.” In

this paper we have presented a simple data structure with

the roilowing leatures:

® Dynamically balancing; this results in logarithmic worst
case insertion and deletion time. Exact matches are also
performed in logarithmic worst case time.

® Any tree balancing mechanism can be used.

® Storage requirements are only two pointers per record

to establish the search tree; no discriminators are
needed.

Actual bits of
Dividing- Range- Range-
record- minimum- maximum- Action
code code code
(MIN) (MAX)
0 0 0 No action, continue
0 0 | MAX = LOAD ("0111...", MAX); continue.
0 1 0) This case not possible because MIN < = MAX.
0 1 1 Finish.
1 L] 0 LITMAX = Max; finish,
1 0 1 LITMAX = LOAD (*0111...", MAX);
MIN = LOAD (*1000...”, MIN); continue.
(1 1 0) This case not possible because MIN < = MAX.
1 1 1 No action; continue
BIGMIN decision table
Actual bits of
Dividing- Range- Range-
record- minimum- maximum- Action
code code code
(MIN) (MAX)
0 0 0 No action; continue.
0 0 1 BIGMIN = LOAD (*1000...", MIN);
MAX = LOAD ("0111...", MAX);
continue.
(0 1 0) This case not possible because MIN < = MAX.
0 1 1 BIGMIN = MIN; finish.
1 0 0 Finish.
1 0 1 MIN = LOAD (*1000...", MIN); continue.
(1 1 Q) This case not possible because MIN <= MAX.
1 1 1 No action; continue. 4
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® Logarithunic behavior is indicated by experiments: The
results show that for small hypercube ranges the average
number of records to be inspected is logarithmic with
the number of records.

For both comparing the codes and computing LITMAX
and BIGMIN, the computing timme for each node is linear
with k. Therefore, we assume that the expected time for
searching small hypercube ranges is O (k (log N + F)),
where k is the dimension, N is the number of records,
and F is the number of records found.

A theoretical treatise of worst case and average complexity
seems to be hard, especially when taking into account the
“shape” of the search range. Perhaps some researcher will
be encouraged by the experimental results to tackle this
open problem.

The approach to range searching presented in this paper
turns out to be simply realized with basic bit manipul-
ations that call for assembly language programming. It is
even easy to cast them into simple hardware realizations.
This is especially interesting when constructing image
analysis systems; in this field hardware support is a well
introduced engineering practice.
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Fig. 13 Average number of records inspected for different dimen-
sions. Range of key values for each k: 0... 140
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