Content-Length: 285042 | pFad | https://link.springer.com/10.1007/s10588-016-9231-3

86400 Multivariate approximations to portfolio return distribution | Computational and Mathematical Organization Theory Skip to main content
Log in

Multivariate approximations to portfolio return distribution

  • Manuscript
  • Published:
Computational and Mathematical Organization Theory Aims and scope Submit manuscript

Abstract

This article proposes a three-step procedure to estimate portfolio return distributions under the multivariate Gram–Charlier (MGC) distribution. The method combines quasi maximum likelihood (QML) estimation for conditional means and variances and the method of moments (MM) estimation for the rest of the density parameters, including the correlation coefficients. The procedure involves consistent estimates even under density misspecification and solves the so-called ‘curse of dimensionality’ of multivariate modelling. Furthermore, the use of a MGC distribution represents a flexible and general approximation to the true distribution of portfolio returns and accounts for all its empirical regularities. An application of such procedure is performed for a portfolio composed of three European indices as an illustration. The MM estimation of the MGC (MGC-MM) is compared with the traditional maximum likelihood of both the MGC and multivariate Student’s t (benchmark) densities. A simulation on Value-at-Risk (VaR) performance for an equally weighted portfolio at 1 and 5 % confidence indicates that the MGC-MM method provides reasonable approximations to the true empirical VaR. Therefore, the procedure seems to be a useful tool for risk managers and practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aroian LA (1937) The type B Gram-Charlier series. Ann Math Stat 8:183–192

    Article  Google Scholar 

  • Bao Y, Lee T-H, Saltoglu B (2006) Comparing density forecast models. J Forecasting 26:203–225

    Article  Google Scholar 

  • Barton DE, Dennis KER (1952) The Conditions under which Gram-Charlier and Edgeworth curves are positive definite and unimodal. Biometrika 39:425–427

    Article  Google Scholar 

  • Bollerslev T, Wooldridge JM (1992) Quasi maximum likelihood estimation and inference in dynamic models with time varying covariances. Econometric Reviews 11:143–172

    Article  Google Scholar 

  • Charlier CV (1905) Uber die darstellung willkurlicher funktionen. Arvik fur Mathematik Astronomi och fysik 9:1–13

    Google Scholar 

  • Corrado C, Su T (1997) Implied volatility skews and stock return Skewness and kurtosis implied by stock option prices. Eur J Finance 3:73–85

    Article  Google Scholar 

  • Cramér H (1925) On some classes of series used in mathematical statistics. Skandinaviske Matematikercongres, Copenhagen

    Google Scholar 

  • Del Brio EB, Ñíguez TM, Perote J (2009) Gram-Charlier densities: a multivariate approach. Quantitative Finance 9:855–868

    Article  Google Scholar 

  • Del Brio EB, Ñíguez TM, Perote J (2011) Multivariate semi-nonparametric distributions with dynamic conditional corrrelations. Int J Forecast 27:347–364

    Article  Google Scholar 

  • Edgeworth FY (1907) On the representation of statistical frequency by series. J Royal Stat Soc Ser A 70:102–106

    Article  Google Scholar 

  • Engle RF (2002) Dynamic conditional correlation—a simple class of multivariate GARCH models. J Business Econ Stat 20:339–350

    Article  Google Scholar 

  • Engle RF, Kelly B (2012) Dynamic equicorrelation. J Business Econ Stat 30:212–228

    Article  Google Scholar 

  • Gallant AR, Nychka DW (1987) Seminonparametric maximum likelihood estimation. Econometrica 55:363–390

    Article  Google Scholar 

  • Gallant AR, Tauchen G (1989) Seminonparametric estimation of conditionally constrained heterogeneous processes: asset pricing applications. Econometrica 57:1091–1120

    Article  Google Scholar 

  • Jarrow R, Rudd A (1982) Approximate option valuation for arbitrary stochastic processes. J Financ Econ 10:347–369

    Article  Google Scholar 

  • Jondeau E, Rockinger M (2001) Gram-Charlier densities. J Econ Dyn Control 25:1457–1483

    Article  Google Scholar 

  • Jurczenko E, Maillet B, Negrea B (2002) Multi-moment option pricing models: a general comparison (part 1). Working Paper, University of Paris I Panthéon-Sorbonne

  • León A, Rubio G, Serna G (2005) Autoregressive conditional volatility, skewness and kurtosis. Quarterly Rev Econ Finance 45:599–618

    Article  Google Scholar 

  • León A, Mencía J, Sentana E (2009) Parametric properties of semi-nonparametric distributions, with applications to option valuation. J Business Econ Stat 27:176–192

    Article  Google Scholar 

  • Mauleón I, Perote J (2000) Testing densities with financial data: an empirical comparison of the Edgeworth-Sargan density to the Student’s t. Eur J Finance 6:225–239

    Article  Google Scholar 

  • Muckenhoupt B (1969) Poisson integrals for Hermite and Laguerre expansions. Trans Am Math Soc 139:231–242

    Article  Google Scholar 

  • Ñíguez TM, Perote J (2012) Forecasting heavy-tailed densities with positive Edgeworth and Gram-Charlier expansions. Oxford Bull Econ Stat 74:600–627

    Article  Google Scholar 

  • Ñíguez TM, Perote J (2016) The multivariate moments expansion density: an application of the dynamic equicorrelation model. J Banking Finance (forthcoming). doi:10.1016/j.jbankfin.2015.12.012

    Google Scholar 

  • Ñıguez TM, Paya I, Peel D, Perote J (2012) On the stability of the CRRA utility under high degrees of uncertainty. Econ Lett 115:244–248

    Article  Google Scholar 

  • Nishiyama Y, Robinson PM (2000) Edgeworth expansions for semi-parametric averaged derivatives. Econometrica 68:931–980

    Article  Google Scholar 

  • Perote J (2004) The multivariate Edgeworth-Sargan density. SpanEconRev 6:77–96

    Article  Google Scholar 

  • Polanski A, Stoja E (2010) Incorporating higher moments into value at risk forecasting. J Forecasting 29:523–535

    Article  Google Scholar 

  • Rompolis L, Tzavalis E (2006) Retrieving risk-neutral densities based on risk neutral moments through a Gram-Charlier series expansion. Math Modelling Computation 46:225–234

    Article  Google Scholar 

  • Sargan JD (1975) Gram-Charlier approximations applied to t ratios of k-class estimators. Econometrica 43:327–346

    Article  Google Scholar 

  • Szegö G (1975) Orthogonal Polynomials 23, 4th edn. American Mathematical Society, American Mathematical Society Colloquium Publications Providence, USA

    Google Scholar 

  • Tanaka K, Yamada T, Watanabe T (2005) Approximation of interest rate derivatives by Gram-Charlier expansion and bond moments. Working Paper IMES, Bank of Japan

  • Velasco C, Robinson PM (2001) Edgeworth expansions for spectral density estimates and studentized simple mean. Econometric Theory 17:497–539

    Article  Google Scholar 

  • Verhoeven P, McAleer M (2004) Fat tails in financial volatility models. Math Computers in Simulation 64:351–362

    Article  Google Scholar 

  • Wallace DL (1958) Asymptotic approximations to distributions. Ann Math Stat 29:635

    Article  Google Scholar 

Download references

Acknowledgments

Javier Perote acknowledges financial support from the Spanish Ministry of Economics and Competitiveness, through the project ECO2013-44483-P, and from the Junta de Castilla y León, through the proyect SA072U16. Andrés Mora-Valencia acknowledges financial support from FAPA-Uniandes through the project P16.100322.001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Perote.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora-Valencia, A., Ñíguez, TM. & Perote, J. Multivariate approximations to portfolio return distribution. Comput Math Organ Theory 23, 347–361 (2017). https://doi.org/10.1007/s10588-016-9231-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10588-016-9231-3

Keywords









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://link.springer.com/10.1007/s10588-016-9231-3

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy