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ABSTRACT
Botnets continue to be a significant problem on the Internet.
Accordingly, a great deal of research has focused on methods
for detecting and mitigating the effects of botnets. Two of the
primary factors preventing the development of effective large-scale,
wide-area botnet detection systems are seemingly contradictory.
On the one hand, technical and administrative restrictions result
in a general unavailability of raw network data that would facil-
itate botnet detection on a large scale. On the other hand, were
this data available, real-time processing at that scale would be a
formidable challenge. In contrast to raw network data, NetFlow
data is widely available. However, NetFlow data imposes several
challenges for performing accurate botnet detection.

In this paper, we present Disclosure, a large-scale, wide-area
botnet detection system that incorporates a combination of novel
techniques to overcome the challenges imposed by the use of
NetFlow data. In particular, we identify several groups of features
that allow Disclosure to reliably distinguish C&C channels from
benign traffic using NetFlow records (i.e., flow sizes, client access
patterns, and temporal behavior). To reduce Disclosure’s false
positive rate, we incorporate a number of external reputation
scores into our system’s detection procedure. Finally, we provide
an extensive evaluation of Disclosure over two large, real-world
networks. Our evaluation demonstrates that Disclosure is able
to perform real-time detection of botnet C&C channels over
datasets on the order of billions of flows per day.

1. INTRODUCTION
Malware continues to run rampant across the Internet, and

among the myriad forms that modern malware can assume, bot-
nets represent one of the gravest threats to Internet security.
Through the large-scale compromise of vulnerable end hosts,
botmasters can both violate the confidentiality of sensitive user
information—for instance, banking or social network authen-
tication credentials—as well as leverage groups of bots as an
underground computational platform for performing other illicit
activities.

Accordingly, a great deal of research has focused on methods
for detecting and mitigating the deleterious effects of botnets.
Research to date has largely followed one of two major approaches:
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(i) vertical correlation, or detecting command and control (C&C)
channels used by botmasters to communicate with each infected
machine [17,19,21,29]; and (ii) horizontal correlation, where botnet
detection is based upon patterns of crowd behavior exhibited by
collections of bots in response to botmaster commands [6,16,18,32,
35]. Once bots or, ideally, C&C servers have been identified, a num-
ber of actions can be performed, ranging from removal of infected
endpoints from the network, to filtering C&C channels at edge
routers, to orchestrated take-downs of the C&C servers themselves.

Unfortunately, while previous botnet detection approaches are
effective under certain circumstances, none of these approaches
scales beyond a single administrative domain while retaining
useful detection accuracy. This limitation restricts the application
of automated botnet detection systems to those entities that are
informed or motivated enough to deploy them. Thus, we have
the current state of botnet mitigation, where small pockets of
the Internet are fairly well protected against infection while the
majority of endpoints remain vulnerable.

This situation is not ideal. Botnets are an Internet-wide prob-
lem that spans individual administrative domains and, therefore,
a problem that requires an Internet-scale solution. In particular,
botnets can continue to wreak havoc upon the Internet despite
the deployment of localized detection systems by focusing on
propagation through less well-protected populations.

Two of the primary factors preventing the development of effec-
tive large-scale, wide-area botnet detection systems are seemingly
contradictory. On the one hand, technical and administrative
restrictions result in a general unavailability of raw network data
that would facilitate botnet detection on a large scale. On the
other hand, were this data available, real-time processing at that
scale would be a formidable challenge. While the ideal data source
for large-scale botnet detection does not currently exist, there
is, however, an alternative data source that is widely available
today: NetFlow data [10].

NetFlow data is often captured by large ISPs using a distributed
set of collectors for auditing and performance monitoring across
backbone networks. While it is otherwise extremely attractive,
NetFlow data imposes several challenges for performing accurate
botnet detection. First, and perhaps most critically, NetFlow
records do not include packet payloads; rather, flow records are
limited to aggregate metadata concerning a network flow such
as the flow duration and number of bytes transferred. Second,
NetFlow records are half-duplex; that is, they only record one
direction of a network connection. Third, NetFlow data is of-
ten collected by sampling the monitored network, often at rates
several orders of magnitude or more removed from real traffic.

Each of these characteristics of NetFlow data complicates the
development of an effective botnet detector over this domain. The
detector must be able to distinguish between benign and malicious
network traffic without access to network payloads, which is the
component of network data that carries direct evidence of mali-
cious behavior. The detector must also be able to recognize weak



signals indicating the presence of a botnet due to the combined
effects of half-duplex capture and aggressive sampling.

In this paper, we present Disclosure, a large-scale, wide-area
botnet detection system that incorporates a combination of novel
techniques to overcome the challenges imposed by the use of
NetFlow data. In particular, we identify several groups of features
that allow Disclosure to reliably distinguish C&C channels from
benign traffic using NetFlow records: (i) flow sizes, (ii) client
access patterns, and (iii) temporal behavior. We demonstrate that
these features are not only effective in detecting current C&C
channels, but that these features are relatively robust against
expected countermeasures future botnets might deploy against
our system. Furthermore, these features are oblivious to the
specific structure of known botnet C&C protocols.

While the aforementioned features are sufficient to capture core
characteristics of generic C&C traffic, they also generate false
positives in isolation. To reduce Disclosure’s false positive rate,
we incorporate a number of external reputation scores into our
system’s detection procedure. These additional signals function
as a filter that reduces Disclosure’s false positive rate to a level
where the system can feasibly be deployed on large-scale networks.

We provide an extensive evaluation of Disclosure over two
real-world networks: a university network spanning a small country
where no NetFlow sampling occurred, and a Tier 1 ISP where Net-
Flow data was sampled at a rate of one out of every ten thousand
flows. Our evaluation demonstrates that Disclosure is able to
perform real-time detection of botnet C&C channels over data sets
on the order of billions of flows per day. In particular, we show that
Disclosure is able to recognize approximately 65% of known bot-
net C&C servers in both settings while producing 1% false positives.
Furthermore, we demonstrate Disclosure’s ability to detect previ-
ously unknown C&C servers by manually verifying 20 and 91 true
positive alerts from the university and ISP networks, respectively.

Finally, we report on our operational experience in deploying
and testing Disclosure on real large-scale networks, highlighting
the most critical areas for tuning the performance of the detection
system. The contributions of the paper is as follows:

• We present Disclosure, a large-scale, wide-area botnet de-
tection system that reliably detects botnet C&C channels in
readily-available NetFlow data using a set of robust statistical
features. To our knowledge, Disclosure is the only NetFlow-
based system that does not assume a priori knowledge of
particular C&C protocols.
• We incorporate several external reputation systems into Dis-

closure’s detection procedure to further refine the accuracy
of the system.
• We evaluate Disclosure over two real-world networks, and

demonstrate its ability to detect both known and unknown
botnet C&C servers at scales not previously achieved.
• We report on our operational experience with Disclosure,

and highlight important tuning considerations for deployment
and reproducibility.

2. SYSTEM OVERVIEW
Disclosure is a botnet detection system designed to identify

C&C servers by employing NetFlow analysis. Figure 1 shows
an overview of the system architecture. The upper half of the
figure describes the detection model generation process, where
a supervised machine learning algorithm is used to train models
on a subset of NetFlows targeting known (i.e., labeled) benign
and C&C servers.

The flows in this labeled data set are first processed by the
feature extraction module. This module reduces the flows to a
number of distinct features: flow size-based features, client access
pattern-based features, and temporal features, which are described
in detail in Section 3. The features extracted from the training
set are then forwarded to Disclosure’s learning module, which
is responsible for building detection models. The learning module
can be tuned with several thresholds to obtain an optimal balance

between detection and false positive rates.
The bottom half of the graph represents the detection phase,

where the models that have been previously generated are applied
to unlabeled NetFlows in order to distinguish benign traffic from
C&C communication. Since the aim of Disclosure is not to
identify bot-infected machines but to detect C&C servers, the first
task of the detection phase is to filter those NetFlows that cannot
be attributed to a server; this process is explained in Section 5.4.
Then, the flows are forwarded to the feature extraction module.
Finally, the resulting feature vectors are processed by the detection
module to produce the final list of suspected C&C servers.

Note that the results of Disclosure can be further processed
by a false positive reduction filter. The goal of this additional
module is to correlate the results of Disclosure with the infor-
mation obtained from other security feeds in order to reduce the
probability of misclassification. For example, in Section 4, we
present a novel technique that associates a reputation score to
the autonomous systems to which the C&C servers belong.

3. FEATURE SELECTION AND CLASSIFI-
CATION

In this section, we present the features extracted by Disclo-
sure from NetFlow data in order to detect botnet C&C channels
at scale, and discuss why these features are suitable for discrim-
inating between C&C channels and benign traffic. We then
describe the particular machine learning techniques we use to
build detection models over these features.

3.1 NetFlow Attributes
NetFlow is a network protocol proposed and implemented by

Cisco Systems [10] for summarizing network traffic as a collection
of network flows. Network elements such as routers and switches
capture these NetFlows and forward them to NetFlow collectors.
A network flow is defined to be a unidirectional sequence of packets
that share specific network properties (e.g., IP source/destination
addresses, and TCP or UDP source/destination ports). Each flow
has a number of associated attributes, or summary statistics that
characterize various general aspects of its behavior. In this paper,
the NetFlow attributes we analyzed for extracting features to
identify C&C servers are: the source IP address, the destination
IP address, the TCP source port, the TCP destination port, the
start and finish timestamps, and the number of bytes and packets
transferred.

Since Disclosure is primarily focused on identifying botnet
C&C channels, it is imperative that the system can reliably
distinguish servers from clients. Therefore, as an intermediate pre-
processing stage, NetFlow data is analyzed by the server classifier
that labels each observed IP address according to whether it pro-
vides one or more network services. In particular, since multiple
services can be made available for each IP address, we represent
each server as a 2-tuple of IP address and port, si = 〈a, p〉, where
a ∈ A is an IP address, A is the set of all IP addresses, p ∈ P
is a TCP port, and P is the set of all ports.

A common, and legitimate, criticism of early attempts to per-
form machine learning-based detection over NetFlow data is that
the features that were selected were often not robust. Hence,
the resulting detection systems would often overfit models to the
specific behavior of malware represented in the training set—for
instance, the particular server port used by a given malware
sample. Such features, however, do not generalize to classes
of malware such as botnets. For example, using our example
of learning a model on server ports, it is clear that the use of
a particular server port is not an intrinsic property of botnet
behavior. Therefore, the design of Disclosure’s feature extractor
module emphasizes the selection of those NetFlow attributes that
best capture invariants in botnet behavior without resorting to
specialization to a particular C&C protocol.

3.2 Disclosure Feature Extraction



Figure 1: The system architecture of Disclosure. In the training phase (upper half), labeled training samples are
used to build detection models. In the detection phase (lower half), the detection models are used to classify IP
addresses as benign or associated with C&C communications.

3.2.1 Flow Size-Based Features
The first class of features extracted from NetFlow data are based

on flow sizes, which simply indicate the total number of bytes
transferred in one direction between two endpoints for a particular
flow. Our premise for analyzing flow sizes in NetFlow data is that
the flow size distributions for C&C servers are significantly and
necessarily different from flow size distributions for benign servers.

We attribute this difference to several factors. First, the main
role of the botnet C&C channel is to establish a connection
between the bots and the C&C server. This channel should be
both reliable as well as relatively innocuous in appearance. Thus,
flows carrying botnet commands or information harvested from
infected clients are preferred to be as short as possible in order
to minimize their observable impact on the network. Considering
that network monitoring tools are widely used and that a botnet’s
local network impact usually scales linearly with the number of
bot infections, tuning for stealth is an important goal. Moreover,
due to the limited number of commands in typical C&C protocols,
flow sizes tend not to fluctuate significantly. On the other hand,
flow sizes generated during accesses to a benign server usually
assume a wide range of values.

The preliminary analysis we performed on known sets of benign
servers and C&C servers supports our premise. Hence, we de-
signed a set of methods to extract features to detect the behavioral
difference between C&C servers and benign servers with respect
to flow size.

Disclosure extracts flow size-based features by first grouping
all flows according to the server si that they originate from or are
destined to. Let si ∈ S be a server, and cj ∈ C be a client. Then,
flow sizes are grouped by time intervals j = 0,1,2, . . ., where Fi,j

denotes a series of flow sizes for flows from endpoint i to j, where
endpoints can be drawn from C or S. Once this set has been
derived, the following feature sets are extracted.
Statistical features. This group of features characterizes the
regularity of flow size behavior over time for both benign and C&C
servers. In particular, we extract the mean µFi,j and standard
deviation σFi,j separately for both incoming and outgoing flows
of each server.
Autocorrelation features. Autocorrelation is widely used for
cross-correlating a signal with itself in the signal processing do-
main [7], and is useful for identifying repeating patterns in time
series data. A series of flow sizes Fi,j can be converted to a
time series by ordering sizes by time. Since the autocorrelation
function also requires a time series that is sampled periodically
as input, we segment the time series by fixed intervals and take
the mean over each interval; empirical testing suggested that a
period of 300 seconds is appropriate. Once a periodically sampled

time series F̂i,j has been derived from Fi,j, the series is processed
by the autocorrelation function, and features are extracted from

the output. Here, we use a discrete autocorrelation coefficient
RF̂i,jF̂i,j

with lag j normalized by the variance σ2, where

RF̂i,jF̂i,j
=

∑n
i=j xixi−j

σ2
.

The autocorrelation function outputs the correlation results for
each period in the time series. This output is further processed
by taking the mean and standard deviation over these values to
derive the final autocorrelation features.
Unique flow sizes. In addition to the statistical features de-
scribed above, Disclosure also includes features that count the
number of unique flow sizes observed, and performs statistical
measurements of occurrence density for each of them during the
analysis time. Specifically, an array is constructed in which the
elements are the number of occurrences of a specific flow size.
Afterward, statistical features are computed over this flow size
incidence array to measure its regularity.

3.2.2 Client Access Patterns-Based Features
One typical property of botnets is that the bots frequently

establish a connection with the C&C server. These connections
tend to be ephemeral, as longer-lived connections might draw
undue attention to a bot’s presence.

Our basis for selecting features to extract in order to distinguish
malicious client access patterns from benign ones is that all of the
clients of a C&C server (i.e., bots) should exhibit similar access
patterns, whereas the clients of a benign server should not. Since
all bots share the same, or nearly identical, malicious program,
they tend to access C&C servers similarly unless specifically pro-
grammed otherwise. On the other hand, clients of benign services
tend to exhibit much more varied patterns due to the vagaries
of human action. Disclosure extracts two sets of features to
characterize client access patterns typical of C&C servers and
those typical of benign servers.
Regular access patterns. For each server si and client cj, Dis-
closure prepares a time series Ti,j of flows observed during the
analysis period. Then, a sequence of flow inter-arrival times Ii,j
is derived from the time series by taking the difference between
consecutive connections; that is,

Ii,j =

n⋃
k=1

ti,j,k − ti,j,k−1,

where ti,j,k is the kth element of Ti,j. Then, statistical features are
computed over each inter-arrival sequence, including the minimum,
maximum, median, and standard deviation. Finally, we derive the
final features for each server si by generating statistical features
across the set of clients that accessed si. This allows Disclosure



Figure 2: Detection rates (DT) and false positive (FP)
rates for different feature combinations. We note that
the DT:FP ratio is most favorable when all features
are used in the detection procedure.

to not only find regular patterns in clients, but to determine
whether the set of clients accessing a server behave similarly.
Unmatched flow density. When a bot is unable to communi-
cate with a legitimate C&C server, it detaches from the rest of the
botnet and becomes a zombie. This might happen because the
C&C server was shutdown, or its IP address has been blacklisted.
Since the zombie cannot distinguish between these situations and
transient network errors, it continues querying the server. This
can result in a significant number of flows to a server that do
not have a matching flow in the opposite direction. It is also
possible that a benign server is unreachable for a period of time.
However, the behavior of a benign server’s clients is significantly
different than the behavior of bots that lose access to their C&C
servers. This is because when a benign user is aware that a
server is offline, it typically does not insist on continuing to query
the server indefinitely. Therefore, Disclosure extracts statistics
regarding the number of unmatched incoming and outgoing flows
to detect this behavior. Specifically, let Ui,j be the number of
unmatched flows for server si in time interval tj, where

Ui,j =
∑
j∈C

abs (|Fi,j| − |Fj,i|) .

Then, Disclosure derives the mean and standard deviation over
a time series of Ui,j as a statistical feature.

3.2.3 Temporal Features
Connections to a benign server are subject to diurnal fluctua-

tions representative of the server’s user population. On the other
hand, connections to C&C servers are dictated by the botmaster,
and require no user intervention. As previously mentioned, the
majority of botnets configure their bots to contact the C&C
server periodically and with relatively short intervals. Therefore,
bot-infected machines connect to C&C servers during periods of
the day that benign clients do not. For example, many benign
servers receive a high volume of traffic during the day, and very
little—or nothing—during the night.

To capitalize on this observation, Disclosure extracts a set
of temporal features that characterize the variability of client
flow volume as a function of time, such that the system can
discriminate between uniform client flow distributions indicative
of C&C servers and benign traffic that follows well-known diurnal
patterns. Specifically, Disclosure segments a time series of
client and flow volume by hour-long intervals per server si, and
calculates statistical features over these.

3.3 Building the Detection Models

To build detection models for identifying C&C servers, we
experimented with a number of machine learning algorithms,
including the J48 decision tree classifier [26], support vector ma-
chines [12], and random forest algorithms [23]. Random forest
classifiers, known to be one of the most accurate learning algo-
rithms, combine multiple classification methods to achieve more
predictive results. In particular, the random forest classifier builds
a number of decision trees, where each node in a tree encodes a
decision using one or more features that partition the input data.
The leaves of each decision tree correspond to the set of possible
labels (i.e., {benign,malicious}), and the output of all of the
trees are then ensembled such that the average behavior among
all trees is produced as the final decision. In our testing, the best
ratio between detection rates (DT) and false positive rates (FP)
were produced by the random forest classifier. Furthermore, the
classifier is efficient enough to perform online detection in our
application. Consequently, Disclosure uses the random forest
classifier to build its detection models.

We evaluated our detection models against NetFlow data col-
lected from two networks: a university network (N1) that does
not apply sampling, and a large Tier 1 network (N2) that samples
one out of 10,000 flows. Figure 2 shows the detection rates (DT1
for N1 and DT2 for N2) and false positive rates (FP1 for N1

and FP2 for N2) for individual features sets, and all possible
combinations among different feature sets. The feature sets we
evaluated are the set of statistical features extracted from (i) the
flow size (F1); (ii) the flow size-based features extracted from
the output of the autocorrelation function (F2); (iii) unique flow
sizes for each server (F3); (iv) the combination of all flow size-
based features (Fall); (v) the features for characterizing client
access patterns (C1); (vi) unmatched flow density (C2); (vii) the
combination of all client access pattern-based features (Call);
(viii) temporal features (Tall); (ix) the combination of client access
pattern and flow size-based features (F +C); (x) the combination
of flow size and temporal features (F+T ); (xi) the combination of
client access pattern and temporal features (C + T ); and, finally,
(xii) the combination of all feature sets (F +C + T).

Figure 2 indicates that individual feature sets are not as effective
as combinations of multiple feature sets. Furthermore, increased
levels of feature aggregation results in better detection rates with
less false positives. Finally, we note that the most promising re-
sults were achieved on both data sets by using all possible feature
sets as input to the classification process. Hence, Disclosure
uses detection models that include all features sets (F +C + T )
to detect botnet C&C channels.

4. FALSE POSITIVE REDUCTION
NetFlow data, by its nature, provides limited information about

the real activities that are carried out in a network. As a con-
sequence, a botnet detection system based only on the analysis
of NetFlow data could produce results that are likely to contain
some false positives (FP).

As we explain in Section 5, Disclosure can be tuned to de-
crease the overall FP rate to 0.5% or below. However, given the vol-
ume of NetFlow data that must be processed every day in large net-
works, even a misclassification rate less than a fraction of a percent
can result in an unacceptably large number of false alarms. Note
that some existing malicious activity detection systems have shown
to be useful for specific classes of malware or attacks. Clearly, it
would be beneficial to correlate the detection results of our system
with the results of some previously built systems. Therefore, in our
architecture, we include a component that has the aim of correlat-
ing the results that Disclosure produces with the public feeds of
other malware analysis or detection platforms. The main insight
here is that by integrating different data sources, it is possible
to further reduce Disclosure’s FP rate to a manageable level.

We have built a reputation-based component for FP reduction
that uses three public services that provide reports about a wide
range of malicious activities on the Internet. The first service we



make use of is FIRE [3,31]. FIRE is a system that identifies orga-
nizations and ISPs that have been observed to engage in malicious
activities. FIRE’s website reports detailed information about many
autonomous systems (AS), including a maliciousness score, relative
rankings among other ASes, as well as the number of C&C servers,
exploit servers, and spam and phishing servers the AS has been
hosting over time. In our implementation, we separate each type
of information into two time series: one representing the current
year, and one containing previous historical data. Afterward, we
compute statistical features for each time series. For instance, for
the time series built from the number of C&C servers observed be-
fore 2011, we compute the minimum, mean, and maximum values.
After we repeat this step for each time series, we compute a final
score by aggregating all the values together by assigning a weight of
0.8 to the value for the current year, and 0.2 to the previous years.

The second public service we use in our FP reduction compo-
nent is EXPOSURE [2,5]. EXPOSURE is a system that uses
passive DNS analysis methods to detect malicious domains. EX-
POSURE currently analyzes data obtained from a large number
of recursive DNS servers, and reports its findings on daily basis.
For each domain, it provides the associated IP address list and the
ASes in which they are located. Leveraging this information, we
count the number of malicious domains detected in each AS and
build a reputation score according to the density of maliciousness
for each AS reported by EXPOSURE.

The last source of information we use for FP reduction is
Google Safe Browsing [4], a service that reports maliciousness
information about a large number of web sites. This tool can also
be used to query specific AS numbers to obtain the percentage
of web sites in that AS that host malicious services.

For each IP address that Disclosure labels as a potential
botnet C&C server, the FP reduction component fetches the asso-
ciated AS number and corresponding reputation scores from FIRE,
EXPOSURE, and Google Safe Browsing. Each of these individual
reputation scores are then aggregated using a weighted linear
combination. That is, given the reputation scores r1, r2, r3 and
corresponding weights w1,w2,w3 for FIRE, EXPOSURE, and
Google Safe Browsing such that

∑
iwi = 1, the final reputation

score R is calculated as

R =

3∑
i=1

wiri,

where 0 ≤ R ≤ 1. If R is below a tunable threshold we denote
as RepThresh, this indicates that a particular server is located
in a network that is historically not associated with malicious
activities, and the corresponding alert is discarded as a FP.

We are aware of the fact that the FP reduction component can
introduce an opportunity for the attacker to evade our system.
For example, she could place her C&C server in a network with
a high reputation score. However, note that this increases the
burden on the attacker, and forces her to move away from more
vulnerable targets located in ASes with lower reputation scores
towards potentially better-protected networks. Therefore, we
believe that, on a large scale, this is a favorable result.

5. EVALUATION
In this section, we present the design and results of several

experiments we conducted to evaluate Disclosure’s detection
accuracy, false positive (FP) rate, and performance. We also
present deployment considerations, and conclude with a discussion
of resilience to evasion.

The accuracy of Disclosure’s classification procedure greatly
depends upon the environment in which the input NetFlows have
been collected. For example, NetFlow collectors placed in a small
company network versus those placed in a large ISP will likely
observe significantly different volumes of traffic. To bound the
storage requirements at each collector, sampling rates might be con-
figured to match the particular traffic volume specific to each site.

Network C&C Servers Benign Servers
University Network (N1) 892 1489
Tier 1 ISP (N2) 2000 1742

Table 2: IP addresses in our labeled data set derived
from data observed in N1 and N2.

To measure how Disclosure responds to varying levels of
sampling, we evaluated our system in two distinct environments:
a medium-size network connecting multiple universities with no
sampling, and a Tier 1 ISP network configured with a sampling
rate of 1:10,000.

5.1 NetFlow Data Sets
Our NetFlow data sets were drawn from two separate envi-

ronments: a university network located in Europe, and an ISP
network located in the USA and Japan. Hereinafter, we refer to
the university network as N1 and to the Tier 1 ISP network as N2.

Table 1 shows summary statistics for the two data sets. The
N1 data set was collected for a period of 18 days between the 7th
and the 25th of September 2011. The NetFlow data of N1 is not
sampled and, therefore, all network flows present in the monitored
network are represented in the data. The sensor inN1 produced an
average of 1.2 billion network flows per day. During this period, we
collected 22 billion flows between 28 million unique IP addresses.

In contrast, we collected NetFlow data observed at N2 for a
period of 40 days between the 1st of June 2011 and the 10th of
July 2011. The sensors in N2 were configured to sample flows
at a rate of 1:10,000. The data was harvested by 68 sensors, each
of which was responsible for monitoring and forwarding NetFlow
traffic collected from specific autonomous systems (ASs). The
sensors collected approximately 400 million network flows per day
between 50 million unique IP addresses.

5.2 Ground-Truth Data Sets
The accuracy of the classification models generated by a ma-

chine learning algorithm greatly depends on the quality of the
training set [33]. In our case, to train the features used by Dis-
closure, we required a ground-truth list containing both known
C&C servers and known benign servers.

The malicious server data set consisted of 4295 IP addresses
associated with real C&C servers observed in the wild during
approximately three weeks preceding our experiments. The list
of botnet C&C servers was provided to us by a company that
specializes in threats intelligence. This list is used by the company
as the core of their reputation-based detection engine. Hence, the
aim is to be both complete with regard to current threats and
keep FPs down. The reputation-based engine is deployed on a
few hundred sites, and operational experience shows that FPs
are minimal and coverage is at least comparable with deployed
anti-virus tools (i.e., the engine captures threats that AV software
installed on these sites misses).

We constructed our benign server training set from ranking
information provided by Alexa [1]. In this case, we assume that
the top 1,000 popular web sites reported by Alexa are not involved
in malicious activities and, in particular, are not responsible for
hosting botnet C&C servers. Alexa reports the top popular web
sites grouped by geographical regions as well. In order to obtain a
comprehensive list of benign servers, we combined the “Alexa Top
1000 Global Sites” with the most visited websites in the regions
where N1 and N2 are located.

Once the benign domains lists were compiled, we resolved each
DNS name on both lists to obtain the corresponding list of IP ad-
dresses. Note that we executed the DNS queries for each list from
the same network geographical locations of the corresponding net-
work (Europe forN1, and US forN2). Hence, the number of IP ad-
dresses collected for each network is different. This process resulted
in 2,958 unique IP addresses forN1, and 3,047 IP addresses forN2.

Table 2 shows the number of benign and malicious servers in



Network Sampling Flows per day Unique IP Addresses
Inter-University Network (N1) 1:1 1.2 billion 28 million
Tier 1 ISP (N2) 1:10.000 400 million 50 million

Table 1: Summary statistics for each of the two NetFlow data sets for N1 and N2.

Figure 3: Area under ROC curves with different
training set lengths for N1 and N2.

our labeled data set that were observed in the traffic of N1 and
N2 respectively.

5.3 Labeled Data Set Detection and False Pos-
itive Rates

In the initial experiment, we evaluated Disclosure’s ability to
recognize known botnet C&C servers from the ground truth con-
structed in the previous section. Disclosure’s detection rate (DR)
and FP rates were measured by generating ROC curves for each
data set under two configurations each that controlled the level
of input data filtering performed prior to detection.

Disclosure requires a minimum number of observed flows
to a particular server in order to provide accurate results. This
minimum is a threshold we denote by MinFlows, and can be set
by a security administrator according to the volume of traffic
at a particular site and any sampling that may be applied. We
evaluated two values for MinFlows for each data set: 20 and 50.
For each experiment, we excluded any servers that did not have
at least one port that received more than MinFlows flows. We
then evaluated the accuracy of Disclosure’s detection models
by performing a 10-fold cross-validation.

We also considered varying the size of the training set as an
additional tunable parameter. Figure 3 shows a summary of
Disclosure’s accuracy, measured by computing the area under
the ROC curve for different training windows. The curve for N2 is
almost constant. In comparison, the curve forN1 steadily increases
over the first 15 days before plateauing. This is due to the fact
that the number of known C&C servers observed in the university
network is low (see Table 2). Therefore, more time is required to
collect enough data to properly train the models. For this reason,
we decided to train Disclosure with all the available data.

Figure 4 shows the individual ROC curves obtained by vary-
ing the classification threshold ClassThresh, i.e., the boundary
separating benign scores from malicious scores, of Disclosure’s
detection module. Consequently, each point in the ROC curves
represents a possible setup configuration of the system. Security
administrators can thus precisely tune Disclosure to achieve
a reasonable trade-off between FPs and false negatives based
on the traffic characteristics of the network. Each graph also
contains a short synopsis of possible working points. For example,
configuring the system for a very high DR is usually too costly in
terms of FPs. On the other end of the scale, it is often possible
to achieve a 0% FP rate if we accept the fact that only one out
of three C&C servers will be detected.

Point on Servers Flagged Servers Flagged
the ROC curve as C&C (N1) as C&C (N2)

1.0% FP 12,383 4,937
0.5% FP 7,856 3,166
0.3% FP 6,295 1,958
0.0% FP 132 960

Table 3: Servers flagged as malicious by Disclosure for
each of the networks N1 and N2 (without incorporating
reputation scores).

Despite the differences between the two data sets, the results
are similar. For instance, with MinFlows set to 20 flows and
ClassThresh tuned to produce a 1% false positive rate, the system
detects 64.3% of the C&C servers in the university network and
66.9% in the ISP network. This similarity emerges from the com-
position of all features, where the individual contribution of each
feature is quite different in the two environments. For instance,
most of the features are better suited to the unsampled data set,
where traffic patterns are clearly preserved. However, some of the
features—for instance, the unmatched flow density—provide the
best results when applied to large networks, even in presence of a
high sampling rate. The mixture of these two classes of features
makes Disclosure less sensitive to variability in the NetFlow
collection environment and, therefore, more robust.

Another important difference between the two experiments is
the fact that in the small network (N1), Disclosure provides
better results for a higher value of the minimum flow threshold,
while in the large network (N2) it performs better with a lower
threshold. This phenomenon is due to the fact that in the second
case, the sensors are only collecting 1 flow out of every 10,000.
Therefore, a high value for MinFlows would filter out all small-to-
medium size botnets, leaving only a few large ones for the analysis.
As a result, the features are now trained on a very few C&C
samples and, therefore, tend to produce inaccurate models. This
is an important issue to keep in mind when configuring the system.
In general, if MinFlows is set too low, the features are exposed
to samples that do not show sufficient regularity because an
insufficient number of flows are observed in the traffic. If, on the
other hand, MinFlows is set too high, the majority of the botnets
are discarded, and the features are trained on too few samples.
In both extremes, the result is a set of poorly trained models.

Finally, we manually verified the features of the benign servers
that Disclosure wrongly classified as being botnet C&C servers.
In several cases, the network or the server were probably mal-
functioning, and the clients (in most of the cases less than 10)
were repeatedly trying to send the same data over and over again
at regular intervals, and receiving no answer back from the server.
This behavior, even though not malicious per se, is indeed quite
similar to that exhibited by bot-infected machines.

5.4 Real-Time Detection
In the previous section, we presented the results obtained

with labeled data sets containing known benign and botnet C&C
servers. In order to apply Disclosure to the remaining unlabeled
data, we needed to perform three separate operations.

First, since Disclosure is meant to discover C&C servers and
not infected machines, we need to restrict the analysis to the
servers only. In order to separate them from the clients, we apply
the following heuristic: an IP address belongs to a server if the num-
ber of flows directed towards its top two ports (i.e., the two that
receives the most connections) account for at least 90% of the flows



(a) N1 with MinFlows = 20. (b) N2 with MinFlows = 20.

(c) N1 with MinFlows = 50. (d) N2 with MinFlows = 50.

Figure 4: Classification accuracy for each data set (N1 and N2) with MinFlows ∈ {20,50}.

Point on C&C Servers after C&C Servers after
the ROC curve the RF (N1) the RF (N2)

1.0% FP 1779 1516
0.5% FP 1448 688
0.3% FP 1236 271
0.0% FP 20 91

Table 4: Servers flagged as malicious by Disclosure for
each of the networks N1 and N2 (incorporating reputa-
tion scores). Here, RF refers to “reputation filter.”

towards that address. From the count, we removed the ports used
less than 3 times to filter out the noise generated by the fact that
servers may also have outgoing connections. By adopting this tech-
nique, we identified 82,580 servers inN1 and 530,011 servers inN2.

The second step consisted of setting the value of the MinFlows
threshold. According to the results obtained in the labeled data set,
we decided to perform the rest of the experiments with the thresh-
old set to 50 flows for N1 and to 20 for N2. After applying the
threshold, we were left with 53,426 servers in N1 and 48,713 in N2.

Finally, we needed to select the operational point on the ROC
curve ClassThresh (i.e., the trade-off between DR and FP rates).
Table 3 shows the number of servers detected in the two networks
obtained with four different configurations of the system.

Despite the fact that the various configurations were chosen to
minimize the number of FPs generated by the system, the number
IP addresses suspected of being C&C servers is still relatively high.
Therefore, to further reduce the probability of misclassification, we
combined the results of Disclosure with a reputation score based
on the information provided by EXPOSURE [2,5], FIRE [3,31],

and Google Safe Browsing [4]. As explained in Section 4, this
approach has the effect of narrowing down the results to the
servers that have a higher probability of being malicious.

The way in which the reputation score is computed can be
tuned according to the desired results and the number of daily
alerts that the security administrator can tolerate. The more
aggressive the filtering, the smaller the set of IP addresses flagged
as C&C servers. In our experiments, we increased the strength of
the FP reduction until we reduced the amount of alerts to a level
that can be manually verified. The results are reported in Table 4.

Figure 5 shows the ports distributions of the C&C servers
detected by Disclosure in the 0.5% false positive setting for N1

and N2. The graphs report the two most frequently used proto-
cols: HTTP-related (ports 80, 443, 8080, 8000) and SMTP/IMAP
(ports 25, 143, and 993). The remaining ports are grouped in two
categories: the reserved ports (0-1023), and the registered and
ephemeral ports (1024-65535). This classification is based only
on the port number and not on identification of the true protocol.
For instance, a botmaster can run a C&C server on port 25 to
avoid firewalls, but that does not mean that he will adopt the
SMTP protocol as well. It is interesting to note that the majority
of the services identified by Disclosure run on ports higher than
1024. However, the distribution changes significantly after the
FP reduction is applied. In fact, the reputation system filters out
around half of the HTTP services, but cuts between 70 and 90%
of the services running on high port numbers.

Finally, we manually investigated the C&C servers detected by
Disclosure to gain some insight into the accuracy of the detec-
tion models and the reasons for misclassification. To this end, we
chose the most conservative configuration: Disclosure configured
for 0% FP + Reputation filter. With this setup, during one week



(a) N1 port distribution. (b) N2 port distribution.

Figure 5: Port distributions of the C&C servers detected by Disclosure for both N1 and N2, with and without AS
reputation scores.

of operation, Disclosure reported 91 previously unknown C&C
servers on the ISP network, and 20 on the university network.

We first manually queried popular search engines for each of the
111 entries. In 36 cases (32.4%), we found evidence of malware
that was related to those IP addresses.1 The fact that one third of
our reports were confirmed by other sources is a strong support of
the ability of Disclosure to successfully detect C&C servers. Out
of the remaining servers, 30 were associated with HTTP-related
ports. After a manual investigation, seven of them seemed to be
legitimate web sites—even though it is unusual that a small real
estate company or a personal page in the Philippines would receive
the large number of connections we observed in our traffic. Four
pages were default placeholders obtained with a fresh installation
of a web server; the number of NetFlow entries and varying
flow sizes is suspicious, although this could be attributed to the
web server not having a default virtual host configured. Four
servers returned errors related to either unauthorized access or bad
requests. Three of the HTTPS servers did not use the SSL/TLS
protocol but some other form of binary protocol. The remaining
servers were unaccessible at the time we checked them, which was
approximately three weeks after the data was collected. Of the
non-HTTP services, only four were still running at the time the
checks were performed. Three of these appeared legitimate, but
the remaining service was a web server located in Russia listening
to a non-standard port. Finally, interestingly, eight servers were
located in the Amazon cloud network, which is rapidly increasing
in popularity for hosting ephemeral malicious services.

5.5 Performance Evaluation
As described in Section 2, the detection phase consists of two

modules: feature extraction and detection. The detection mod-
ule is highly efficient, requiring only several minutes to process
an entire day’s worth of data. Hence, detection performance is
constrained by the analysis of input NetFlow data to extract the
requisite features for analysis.

However, since the extraction of each feature is an independent
process, the feature extraction procedure is an example of an em-
barrassingly parallel problem that can be easily distributed on mul-
tiple machines should the need arise. Nevertheless, even with the
large amount of input data for our evaluation networks, we have
not found it necessary to parallelize feature extraction. The current
prototype implementation of Disclosure consists of a number of
Perl and Python scripts, all running on the same server: a 16 core

1This evidence included reports from ThreatExpert, various
sandbox malware analysis tools, MaliciousUrl.com, or the
offensive IP database.

Intel(R) Xeon(R) CPU E5630 @ 2.53 GHz with 24 GB of ram.
In the course of our experiments, we run all individual feature

extraction modules in series in 10 hours 53 minutes for 24 hours of
data. Therefore, Disclosure is able to perform at approximately
2x real-time.

5.6 Deployment Considerations
To deploy Disclosure to a real network, the administrator

should configure three main settings: the minimum flows threshold
MinFlows, the classification threshold ClassThresh, and the FP
reduction threshold RepThresh. This setup can be accomplished
by performing the following steps:

1. Choose the MinFlows threshold.
This value should be selected according to the NetFlow sam-
pling rate for the monitored network and the amount of
available training data. If the threshold is set too high, the
system will not have enough C&C samples to properly train.
But, if it is set too low, the system will train on poor data,
and produce inaccurate models.

2. Choose an operational point on the ROC curve for ClassThresh.
This value should be selected according to the traffic volume of
the network and the misclassification rate that can be tolerated.
On one extreme, the system will be able to detect most of
the C&C servers, but it will also generate too many FPs. On
the other end of the scale, the system will miss many C&C
servers, but the results will be much more precise.

3. (Optional) Apply and tune the FP reduction module using
RepThresh.
To reduce the number of alerts in large networks, Disclosure
can be coupled with other detection or verification techniques.
In this paper, we propose the use of an AS reputation-based
score to filter the servers hosted in benign networks. The
weights for the constituent reputation systems can be mod-
ified to have a more aggressive or a more lightweight filtering
contribution, and the overall reputation score filtering strength
can be adjusted by setting RepThresh.

5.7 Evasion Resilience
The detection approach presented in this paper is predicated

on the assumption that existing botnets often exhibit a regular,
detectable pattern in their communication with the C&C server.
However, we have not discussed how strong this requirement
is and how difficult it might be for an attacker to perturb this
regularity to avoid detection.

To answer this question, we designed two botnet families (here-
inafter B1 and B2) that attempt to evade our system by inserting
a random delay between consecutive connections and a random



length padding in each flow. In our implementation, we employed
two different randomization functions. The first randomization
function produces uniformly distributed values on a fixed range.
This is intended to model a botnet in which the programmer uses
a random number generator to select a value from a fixed range.
The second family adopts a more sophisticated approach and
generates random numbers from a Poisson distribution. In this
case, we model a more complex scenario in which the botmaster
tries to mimic the flow inter-arrival times of benign services, which
are known to be well-approximated as a Poisson process [22].

In our experiment, we generated 300 C&C servers for both
B1 and B2. First, we randomly specified the size of each botnet
and the duration of its activity. Afterward, we created synthetic
NetFlow data for each server, using one of the aforementioned ran-
domization functions to generate random flow sizes and intervals
between consecutive flows.

Each botnet was created according to the following parameters:
Botnet lifetime 1 - 33 days
Number of bots 1,000 - 100,000

Flow sizes 4 - 3076 bytes
Delay between flows 1 min - 1 hr

The only significant difference between the two botnet fami-
lies is that for B1, the delay between consecutive flows between
each bot and the the C&C server was a uniformly-distributed
random value between 1 minute and 1 hour. For B2, the delay
was, instead, drawn from a Poisson distribution whose mean was
randomly chosen in the 1 minute to 1 hour range. We decided
to set 1 hour as an upper bound since, in order to maintain a
reasonable flexibility and control over the botnet, a botmaster
must be able to to send commands to the infected machines with
a delay that is no longer than an hour or two.

Finally, we added the synthetically-generated NetFlows to our
labeled data set and re-ran the classification evaluation using a
10-fold cross-validation. In both cases, Disclosure was able to
detect all the experimental C&C servers belonging to B1 and
B2. In addition, the addition of these synthetic botnets to the
training set had the side effect of actually increasing the overall
detection rate. In other words, some of the real botnets that were
not detected by Disclosure in our normal experiments were
detected after we added the synthetic data. This implies that our
detection models were not properly trained to detect this kind
of variability in the C&C channel behavior. However, by adding
many new samples with a randomized behavior to supplement
the training set, Disclosure was able to subsequently detect real
botnets that present similar access patterns.

6. RELATED WORK
In the last couple of years, much work has been done to investi-

gate the topologies of botnets, understand how they operate, and
create novel approaches to detect them. In this section, we analyze
and discuss the state-of-the-art in network-based botnet detection,
as well as the previous work on NetFlow-based anomaly detection.

6.1 Network-based Botnet Detection
Botnet-related research can be divided to two groups: work

that focuses on the measuring botnets [11,15,20,27] and work
that focuses on detecting them [6,16–19,21,29,32].

A number of botnet detection systems perform horizontal
correlation. While initial detection proposals relied on some
protocol-specific knowledge about the C&C channel [19,21], sub-
sequent techniques overcame this shortcoming [17,29]. The main
limitation of systems that perform horizontal correlation is that
they need to observe multiple bots of the same botnet to spot
behavioral similarities. This is significant because as botnets
decrease in size [11], it becomes more difficult to protect small
networks, and a botmaster can deliberately split infected machines
within the same network range into different botnets.

A second line of research explored vertical correlation to be able
detect individual bot-infected machines. A number of systems

focus on specific protocols such as IRC [6,16,32]. More advanced
systems in this category provide generic solutions. For example,
BotHunter [18] correlates the output of three IDS sensors and
a scan detection engine to identify different phases in the lifecyle
of bots. Wurzinger et al. [35] automatically generates detection
models to identify single bot infected machines without any a
priori knowledge on the C&C protocol. The problem with the
approach, however, is that the system is only able to detect known
instances of botnets.

6.2 Anomaly Detection Through NetFlow Anal-
ysis

To date, there has been a considerable amount of research on
anomaly detection using NetFlow analysis. While some of the
works proposed anomaly detection methods to detect specific
kinds of malware such as worms [34] or spamming botnets [28],
others tried to propose more general approaches to distinguish
malicious traffic from benign traffic [8,13,30].

Wagner et al. [34] present an entropy-based approach to iden-
tify fast worms in real-time network traffic. Dewaele et al. [13]
extract sub-traces from randomly chosen traffic traces, model
them using Gamma laws, and identify the anomalous traces by
tuning the deviations in the parameters of the models. Brauck-
hoff et al. [8] present a histogram-based anomaly detector that
identifies anomalous flows by combining various information
extracted from multiple histogram-based anomaly detectors. Sper-
otto et al. [30] analyzed the time series constructed from both
flow and packet sizes, and tested them to find whether they were
sufficient for detecting general intrusions.

Another line of research focuses on the analysis of the impact
of sampling methods applied on NetFlow traffic. Mai et al. [25]
analyze a set of sampling techniques experimented with two classes
of anomalies. The results show that all types of sampling tech-
niques introduce a significant bias on anomaly detection. Another
work [9] as well studied the impact of packet sampling on anomaly
detection metrics. Their analysis concludes that entropy-based
anomaly detection systems are more resilient to packet sampling
because the sampling still preserves the distributional structure.

6.3 Botnet Detection with NetFlow Analysis
Only a few papers exist that propose to use NetFlow analysis

to specifically detect botnets. For example, Livadas et al. [24]
propose a system that identifies the C&C traffic of IRC-based
botnets by using machine learning-based classification methods.

Francois et al. [14] present instead a NetFlow-based method
that uses the PageRank algorithm to detect peer-to-peer botnets.
In their experiments, the authors created synthetic bot traces
that simulate the NetFlow behavior of three P2P botnet families.

Both works succeeded in the identification of a specific type of
botnet traffic, IRC in the first case and peer-to-peer in the second.
Disclosure, on the other hand, can successfully detect C&C
servers without any prior knowledge about the internals of the
C&C protocol. Moreover, our experiments shows how Disclo-
sure can be used to perform real-time detection on large datasets.

7. CONCLUSIONS
Botnets continue to be a significant problem on the Internet.

Accordingly, a great deal of research has focused on methods for
detecting and mitigating the effects of botnets. While the ideal
data source for large-scale botnet detection does not currently exist,
there is, however, an alternative data source that is widely available
today: NetFlow data [10]. Though it is attractive due to its
ubiquity, NetFlow data imposes several challenges for performing
accurate botnet detection. In particular, packet payloads are not
included, and the collected data might be sampled.

In this paper, we present Disclosure, a large-scale, wide-area
botnet detection system that incorporates a combination of novel
techniques to overcome the challenges imposed by the use of
NetFlow data. In particular, we identify several groups of features



that allow Disclosure to reliably distinguish C&C channels from
benign traffic using NetFlow records: (i) flow sizes, (ii) client
access patterns, and (iii) temporal behavior. Our experiments
demonstrate that these features are not only effective in detecting
current C&C channels, but that these features are relatively robust
against expected countermeasures future botnets might deploy
against our system. Furthermore, our technique is oblivious to
the specific structure of known botnet C&C protocols.

We provide an extensive evaluation of Disclosure over two
real-world networks: a university network spanning a small coun-
try where no NetFlow sampling occurred, and a Tier 1 ISP where
NetFlow data was sampled at a rate of one out of every ten
thousand flows. Our evaluation demonstrates that Disclosure
is able to perform real-time detection of botnet C&C channels
over data sets on the order of billions of flows per day.
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