
REC-xml-19980210

Extensible Markup Language (XML) 1.0
W3C Recommendation 10-Feb-98

This version

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210.xml
http://www.w3.org/TR/1998/REC-xml-19980210.html
http://www.w3.org/TR/1998/REC-xml-19980210.pdf
http://www.w3.org/TR/1998/REC-xml-19980210.ps

Latest version

http://www.w3.org/TR/REC-xml

Previous version

http://www.w3.org/TR/PR-xml-971208

Editors

Tim Bray, Textuality and Netscape (tbray@textuality.com)
Jean Paoli, Microsoft (jeanpa@microsoft.com)
C. M. Sperberg-McQueen, University of Illinois at Chicago (cmsmcq@uic.edu)

Abstract

The Extensible Markup Language (XML) is a subset of SGML that is completely described
in this document. Its goal is to enable generic SGML to be served, received, and processed
on the Web in the way that is now possible with HTML. XML has been designed for ease of
implementation and for interoperability with both SGML and HTML.

Status of this document
This document has been reviewed by W3C Members and other interested parties and has
been endorsed by the Director as a W3C Recommendation. It is a stable document and may
be used as reference material or cited as a normative reference from another document.
W3C's role in making the Recommendation is to draw attention to the specification and to
promote its widespread deployment. This enhances the functionality and interoperability of
the Web.

This document specifies a syntax created by subsetting an existing, widely used international
text processing standard (Standard Generalized Markup Language, ISO 8879:1986(E) as
amended and corrected) for use on the World Wide Web. It is a product of the W3C XML
Activity, details of which can be found at http://www.w3.org/XML. A list of current W3C
Recommendations and other technical documents can be found at http://www.w3.org/TR.

This specification uses the term URI, which is defined by [Berners-Lee], a work in progress
expected to update [RFC1738] and [RFC1808].

The list of known errors in this specification is available at http://www.w3.org/XML/xml-
19980210-errata.

Please report errors in this document to xml-editor@w3.org.

This page intentionally left blank.

Table of Contents

1. Introduction .. 1

1.1 Origin and Goals.. 1
1.2 Terminology .. 1

2. Documents... 2

2.1 Well-Formed XML Documents..3
2.2 Characters.. 3
2.3 Common Syntactic Constructs.. 3
2.4 Character Data and Markup.. 4
2.5 Comments ... 5
2.6 Processing Instructions... 5
2.7 CDATA Sections... 5
2.8 Prolog and Document Type Declaration ... 5
2.9 Standalone Document Declaration.. 7
2.10 White Space Handling.. 8
2.11 End-of-Line Handling.. 8
2.12 Language Identification.. 8

3. Logical Structures... 10

3.1 Start-Tags, End-Tags, and Empty-Element Tags... 10
3.2 Element Type Declarations .. 11
3.3 Attribute-List Declarations... 13
3.4 Conditional Sections .. 15

4. Physical Structures ... 16

4.1 Character and Entity References... 16
4.2 Entity Declarations .. 17
4.3 Parsed Entities ... 19
4.4 XML Processor Treatment of Entities and References... 20
4.5 Construction of Internal Entity Replacement Text... 22
4.6 Predefined Entities... 23
4.7 Notation Declarations .. 23
4.8 Document Entity.. 23

5. Conformance... 24

5.1 Validating and Non-Validating Processors.. 24
5.2 Using XML Processors .. 24

6. Notation... 24

Appendices

A. References .. 26

A.1 Normative References ... 26
A.2 Other References... 26

B. Character Classes... 27

C. XML and SGML (Non-Normative) ... 29

D. Expansion of Entity and Character References (Non-Normative).. 29

E. Deterministic Content Models (Non-Normative)... 30

F. Autodetection of Character Encodings (Non-Normative).. 30

G. W3C XML Working Group (Non-Normative).. 32

This page intentionally left blank.

Extensible Markup Language (XML) 1.0

Page 1

1. Introduction
Extensible Markup Language, abbreviated XML, describes a class of data objects called XML documents
and partially describes the behavior of computer programs which process them. XML is an application
profile or restricted form of SGML, the Standard Generalized Markup Language [ISO8879]. By
construction, XML documents are conforming SGML documents.

XML documents are made up of storage units called entities, which contain either parsed or unparsed data.
Parsed data is made up of characters, some of which form character data, and some of which form markup.
Markup encodes a description of the document's storage layout and logical structure. XML provides a
mechanism to impose constraints on the storage layout and logical structure.

A software module called an XML processor is used to read XML documents and provide access to their
content and structure. It is assumed that an XML processor is doing its work on behalf of another module,
called the application. This specification describes the required behavior of an XML processor in terms of
how it must read XML data and the information it must provide to the application.

1.1 Origin and Goals
XML was developed by an XML Working Group (originally known as the SGML Editorial Review Board)
formed under the auspices of the World Wide Web Consortium (W3C) in 1996. It was chaired by Jon
Bosak of Sun Microsystems with the active participation of an XML Special Interest Group (previously
known as the SGML Working Group) also organized by the W3C. The membership of the XML Working
Group is given in an appendix. Dan Connolly served as the WG's contact with the W3C.

The design goals for XML are:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.
4. It shall be easy to write programs which process XML documents.
5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.
7. The XML design should be prepared quickly.
8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.
10.Terseness in XML markup is of minimal importance.

This specification, together with associated standards (Unicode and ISO/IEC 10646 for characters, Internet
RFC 1766 for language identification tags, ISO 639 for language name codes, and ISO 3166 for country
name codes), provides all the information necessary to understand XML Version 1.0 and construct
computer programs to process it.

This version of the XML specification may be distributed freely, as long as all text and legal notices remain
intact.

1.2 Terminology
The terminology used to describe XML documents is defined in the body of this specification. The terms
defined in the following list are used in building those definitions and in describing the actions of an XML
processor:

may
Conforming documents and XML processors are permitted to but need not behave as described.

Extensible Markup Language (XML) 1.0

Page 2

must
Conforming documents and XML processors are required to behave as described; otherwise they are
in error.

error
A violation of the rules of this specification; results are undefined. Conforming software may detect
and report an error and may recover from it.

fatal error
An error which a conforming XML processor must detect and report to the application. After
encountering a fatal error, the processor may continue processing the data to search for further errors
and may report such errors to the application. In order to support correction of errors, the processor
may make unprocessed data from the document (with intermingled character data and markup)
available to the application. Once a fatal error is detected, however, the processor must not continue
normal processing (i.e., it must not continue to pass character data and information about the
document's logical structure to the application in the normal way).

at user option
Conforming software may or must (depending on the modal verb in the sentence) behave as
described; if it does, it must provide users a means to enable or disable the behavior described.

validity constraint
A rule which applies to all valid XML documents. Violations of validity constraints are errors; they
must, at user option, be reported by validating XML processors.

well-formedness constraint
A rule which applies to all well-formed XML documents. Violations of well-formedness constraints
are fatal errors.

match
(Of strings or names:) Two strings or names being compared must be identical. Characters with
multiple possible representations in ISO/IEC 10646 (e.g. characters with both precomposed and
base+diacritic forms) match only if they have the same representation in both strings. At user option,
processors may normalize such characters to some canonical form. No case folding is performed. (Of
strings and rules in the grammar:) A string matches a grammatical production if it belongs to the
language generated by that production. (Of content and content models:) An element matches its
declaration when it conforms in the fashion described in the constraint Section 3: Element Valid.

for compatibility
A feature of XML included solely to ensure that XML remains compatible with SGML.

for interoperability
A non-binding recommendation included to increase the chances that XML documents can be
processed by the existing installed base of SGML processors which predate the WebSGML
Adaptations Annex to ISO 8879.

2. Documents
A data object is an XML document if it is well-formed, as defined in this specification. A well-formed XML
document may in addition be valid if it meets certain further constraints.

Each XML document has both a logical and a physical structure. Physically, the document is composed of
units called entities. An entity may refer to other entities to cause their inclusion in the document. A
document begins in a "root" or document entity. Logically, the document is composed of declarations,
elements, comments, character references, and processing instructions, all of which are indicated in the
document by explicit markup. The logical and physical structures must nest properly, as described in
Section 4.3.2: Well-Formed Parsed Entities.

Extensible Markup Language (XML) 1.0

Page 4

beginning with the string "xml ", or any string which would match (('X'|'x') ('M'|'m')
('L'|'l')) , are reserved for standardization in this or future versions of this specification.

NOTE: The colon character within XML names is reserved for experimentation with name spaces. Its
meaning is expected to be standardized at some future point, at which point those documents using the
colon for experimental purposes may need to be updated. (There is no guarantee that any name-space
mechanism adopted for XML will in fact use the colon as a name-space delimiter.) In practice, this means
that authors should not use the colon in XML names except as part of name-space experiments, but that
XML processors should accept the colon as a name character.

An Nmtoken (name token) is any mixture of name characters.

Names and Tokens

[4] NameChar ::= Letter | Digit | '.' | '-' | '_' | ':' | CombiningChar |
Extender

[5] Name ::= (Letter | '_' | ':') (NameChar)*
[6] Names ::= Name (S Name)*
[7] Nmtoken ::= (NameChar)+
[8] Nmtokens ::= Nmtoken (S Nmtoken)*

Literal data is any quoted string not containing the quotation mark used as a delimiter for that string.
Literals are used for specifying the content of internal entities (EntityValue), the values of attributes
(AttValue), and external identifiers (SystemLiteral). Note that a SystemLiteral can be parsed without
scanning for markup.

Literals

[9] EntityValue ::= '"' ([^%&"] | PEReference | Reference)* '"'
| "'" ([^%&'] | PEReference | Reference)* "'"

[10] AttValue ::= '"' ([^<&"] | Reference)* '"'
| "'" ([^<&'] | Reference)* "'"

[11] SystemLiteral ::= ('"' [^"]* '"') | ("'" [^']* "'")
[12] PubidLiteral ::= '"' PubidChar* '"' | "'" (PubidChar - "'")* "'"
[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-'()+,./:=?;!*#@$_%]

2.4 Character Data and Markup
Text consists of intermingled character data and markup. Markup takes the form of start-tags, end-tags,
empty-element tags, entity references, character references, comments, CDATA section delimiters,
document type declarations, and processing instructions.

All text that is not markup constitutes the character data of the document.

The ampersand character (&) and the left angle bracket (<) may appear in their literal form only when used
as markup delimiters, or within a comment, a processing instruction, or a CDATA section. They are also
legal within the literal entity value of an internal entity declaration; see Section 4.3.2: Well-Formed
Parsed Entities. If they are needed elsewhere, they must be escaped using either numeric character
references or the strings "&" and "< " respectively. The right angle bracket (>) may be represented
using the string "> ", and must, for compatibility, be escaped using "> " or a character reference
when it appears in the string "]]> " in content, when that string is not marking the end of a CDATA
section.

In the content of elements, character data is any string of characters which does not contain the start-
delimiter of any markup. In a CDATA section, character data is any string of characters not including the
CDATA-section-close delimiter, "]]> ".

To allow attribute values to contain both single and double quotes, the apostrophe or single-quote character
(') may be represented as "' ", and the double-quote character (") as "" ".

Character Data

[14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)

Extensible Markup Language (XML) 1.0

Page 5

2.5 Comments
Comments may appear anywhere in a document outside other markup; in addition, they may appear within
the document type declaration at places allowed by the grammar. They are not part of the document's
character data; an XML processor may, but need not, make it possible for an application to retrieve the text
of comments. For compatibility, the string "-- " (double-hyphen) must not occur within comments.

Comments

[15] Comment ::= '<!--' ((Char - '-') | ('-' (Char - '-')))* '-->'

An example of a comment:

<!-- declarations for <head> & <body> -->

2.6 Processing Instructions
Processing instructions (PIs) allow documents to contain instructions for applications.

Processing Instructions

[16] PI ::= '<?' PITarget (S (Char* - (Char* '?>' Char*)))? '?>'
[17] PITarget ::= Name - (('X' | 'x') ('M' | 'm') ('L' | 'l'))

PIs are not part of the document's character data, but must be passed through to the application. The PI
begins with a target (PITarget) used to identify the application to which the instruction is directed. The
target names "XML", "xml ", and so on are reserved for standardization in this or future versions of this
specification. The XML Notation mechanism may be used for formal declaration of PI targets.

2.7 CDATA Sections
CDATA sections may occur anywhere character data may occur; they are used to escape blocks of text
containing characters which would otherwise be recognized as markup. CDATA sections begin with the
string "<![CDATA[" and end with the string "]]> ":

CDATA Sections

[18] CDSect ::= CDStart CData CDEnd
[19] CDStart ::= '<![CDATA['
[20] CData ::= (Char* - (Char* ']]>' Char*))
[21] CDEnd ::= ']]>'

Within a CDATA section, only the CDEnd string is recognized as markup, so that left angle brackets and
ampersands may occur in their literal form; they need not (and cannot) be escaped using "< " and
"&". CDATA sections cannot nest.

An example of a CDATA section, in which "<greeting> " and "</greeting> " are recognized as
character data, not markup:

<![CDATA[<greeting>Hello, world!</greeting>]]>

2.8 Prolog and Document Type Declaration
XML documents may, and should, begin with an XML declaration which specifies the version of XML
being used. For example, the following is a complete XML document, well-formed but not valid:

<?xml version="1.0"?>
<greeting>Hello, world!</greeting>

and so is this:

<greeting>Hello, world!</greeting>

Extensible Markup Language (XML) 1.0

Page 6

The version number "1.0 " should be used to indicate conformance to this version of this specification; it is
an error for a document to use the value "1.0 " if it does not conform to this version of this specification. It
is the intent of the XML working group to give later versions of this specification numbers other than
"1.0 ", but this intent does not indicate a commitment to produce any future versions of XML, nor if any
are produced, to use any particular numbering scheme. Since future versions are not ruled out, this
construct is provided as a means to allow the possibility of automatic version recognition, should it become
necessary. Processors may signal an error if they receive documents labeled with versions they do not
support.

The function of the markup in an XML document is to describe its storage and logical structure and to
associate attribute-value pairs with its logical structures. XML provides a mechanism, the document type
declaration, to define constraints on the logical structure and to support the use of predefined storage units.
An XML document is valid if it has an associated document type declaration and if the document complies
with the constraints expressed in it.

The document type declaration must appear before the first element in the document.

Prolog

[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?
[23] XMLDecl ::= '<?xml' VersionInfo EncodingDecl? SDDecl? S? '?>'
[24] VersionInfo ::= S 'version' Eq (' VersionNum ' | " VersionNum ")
[25] Eq ::= S? '=' S?
[26] VersionNum ::= ([a-zA-Z0-9_.:] | '-')+
[27] Misc ::= Comment | PI | S

The XML document type declaration contains or points to markup declarations that provide a grammar for
a class of documents. This grammar is known as a document type definition, or DTD. The document type
declaration can point to an external subset (a special kind of external entity) containing markup
declarations, or can contain the markup declarations directly in an internal subset, or can do both. The DTD
for a document consists of both subsets taken together.

A markup declaration is an element type declaration, an attribute-list declaration, an entity declaration, or a
notation declaration. These declarations may be contained in whole or in part within parameter entities, as
described in the well-formedness and validity constraints below. For fuller information, see Section 4:
Physical Structures.

Document Type Definition

[28] doctypedecl ::= '<!DOCTYPE' S Name (S ExternalID)? S?
('[' (markupdecl | PEReference | S)*
']' S?)? '>'

[VC: Root Element Type]

[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl
| NotationDecl | PI | Comment

[VC: Proper Declaration/PE
Nesting]

[WFC: PEs in Internal Subset]

The markup declarations may be made up in whole or in part of the replacement text of parameter entities.
The productions later in this specification for individual nonterminals (elementdecl, AttlistDecl, and so on)
describe the declarations after all the parameter entities have been included.

VALIDITY CONSTRAINT: Root Element Type. The Name in the document type declaration must match
the element type of the root element.

VALIDITY CONSTRAINT: Proper Declaration/PE Nesting. Parameter-entity replacement text must be
properly nested with markup declarations. That is to say, if either the first character or the last character of a
markup declaration (markupdecl above) is contained in the replacement text for a parameter-entity
reference, both must be contained in the same replacement text.

WELL-FORMEDNESS CONSTRAINT: PEs in Internal Subset. In the internal DTD subset, parameter-
entity references can occur only where markup declarations can occur, not within markup declarations. (This
does not apply to references that occur in external parameter entities or to the external subset.)

Extensible Markup Language (XML) 1.0

Page 7

Like the internal subset, the external subset and any external parameter entities referred to in the DTD must
consist of a series of complete markup declarations of the types allowed by the non-terminal symbol
markupdecl, interspersed with white space or parameter-entity references. However, portions of the
contents of the external subset or of external parameter entities may conditionally be ignored by using the
conditional section construct; this is not allowed in the internal subset.

External Subset

[30] extSubset ::= TextDecl? extSubsetDecl
[31] extSubsetDecl ::= (markupdecl | conditionalSect | PEReference | S)*

The external subset and external parameter entities also differ from the internal subset in that in them,
parameter-entity references are permitted within markup declarations, not only between markup
declarations.

An example of an XML document with a document type declaration:

<?xml version="1.0"?>
<!DOCTYPE greeting SYSTEM "hello.dtd">
<greeting>Hello, world!</greeting>

The system identifier "hello.dtd " gives the URI of a DTD for the document.

The declarations can also be given locally, as in this example:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE greeting [
 <!ELEMENT greeting (#PCDATA)>
]>
<greeting>Hello, world!</greeting>

If both the external and internal subsets are used, the internal subset is considered to occur before the
external subset. This has the effect that entity and attribute-list declarations in the internal subset take
precedence over those in the external subset.

2.9 Standalone Document Declaration
Markup declarations can affect the content of the document, as passed from an XML processor to an
application; examples are attribute defaults and entity declarations. The standalone document declaration,
which may appear as a component of the XML declaration, signals whether or not there are such
declarations which appear external to the document entity.

Standalone Document Declaration

[32] SDDecl ::= S 'standalone' Eq (("'" ('yes' | 'no') "'")
| ('"' ('yes' | 'no') '"'))

[VC: Standalone Document
Declaration]

In a standalone document declaration, the value "yes " indicates that there are no markup declarations
external to the document entity (either in the DTD external subset, or in an external parameter entity
referenced from the internal subset) which affect the information passed from the XML processor to the
application. The value "no" indicates that there are or may be such external markup declarations. Note that
the standalone document declaration only denotes the presence of external declarations; the presence, in a
document, of references to external entities, when those entities are internally declared, does not change its
standalone status.

If there are no external markup declarations, the standalone document declaration has no meaning. If there
are external markup declarations but there is no standalone document declaration, the value "no" is
assumed.

Any XML document for which standalone="no" holds can be converted algorithmically to a
standalone document, which may be desirable for some network delivery applications.

Extensible Markup Language (XML) 1.0

Page 8

VALIDITY CONSTRAINT: Standalone Document Declaration. The standalone document declaration
must have the value "no" if any external markup declarations contain declarations of:

z attributes with default values, if elements to which these attributes apply appear in the document without
specifications of values for these attributes, or

z entities (other than amp, lt , gt , apos , quot), if references to those entities appear in the document, or

z attributes with values subject to normalization, where the attribute appears in the document with a value
which will change as a result of normalization, or

z element types with element content, if white space occurs directly within any instance of those types.

An example XML declaration with a standalone document declaration:

<?xml version="1.0" standalone='yes'?>

2.10 White Space Handling
In editing XML documents, it is often convenient to use "white space" (spaces, tabs, and blank lines,
denoted by the nonterminal S in this specification) to set apart the markup for greater readability. Such
white space is typically not intended for inclusion in the delivered version of the document. On the other
hand, "significant" white space that should be preserved in the delivered version is common, for example in
poetry and source code.

An XML processor must always pass all characters in a document that are not markup through to the
application. A validating XML processor must also inform the application which of these characters
constitute white space appearing in element content.

A special attribute named xml:space may be attached to an element to signal an intention that in that
element, white space should be preserved by applications. In valid documents, this attribute, like any other,
must be declared if it is used. When declared, it must be given as an enumerated type whose only possible
values are "default " and "preserve ". For example:

 <!ATTLIST poem xml:space (default|preserve) 'preserve'>

The value "default " signals that applications' default white-space processing modes are acceptable for
this element; the value "preserve " indicates the intent that applications preserve all the white space. This
declared intent is considered to apply to all elements within the content of the element where it is specified,
unless overriden with another instance of the xml:space attribute.

The root element of any document is considered to have signaled no intentions as regards application space
handling, unless it provides a value for this attribute or the attribute is declared with a default value.

2.11 End-of-Line Handling
XML parsed entities are often stored in computer files which, for editing convenience, are organized into
lines. These lines are typically separated by some combination of the characters carriage-return (#xD) and
line-feed (#xA).

To simplify the tasks of applications, wherever an external parsed entity or the literal entity value of an
internal parsed entity contains either the literal two-character sequence "#xD#xA" or a standalone literal
#xD, an XML processor must pass to the application the single character #xA. (This behavior can
conveniently be produced by normalizing all line breaks to #xA on input, before parsing.)

2.12 Language Identification
In document processing, it is often useful to identify the natural or formal language in which the content is
written. A special attribute named xml:lang may be inserted in documents to specify the language used
in the contents and attribute values of any element in an XML document. In valid documents, this attribute,
like any other, must be declared if it is used. The values of the attribute are language identifiers as defined
by [RFC1766], "Tags for the Identification of Languages":

Extensible Markup Language (XML) 1.0

Page 9

Language Identification

[33] LanguageID ::= Langcode ('-' Subcode)*
[34] Langcode ::= ISO639Code | IanaCode | UserCode
[35] ISO639Code ::= ([a-z] | [A-Z]) ([a-z] | [A-Z])
[36] IanaCode ::= ('i' | 'I') '-' ([a-z] | [A-Z])+
[37] UserCode ::= ('x' | 'X') '-' ([a-z] | [A-Z])+
[38] Subcode ::= ([a-z] | [A-Z])+

The Langcode may be any of the following:

z a two-letter language code as defined by [ISO639], "Codes for the representation of names of
languages"

z a language identifier registered with the Internet Assigned Numbers Authority [IANA]; these begin with
the prefix "i- " (or "I- ")

z a language identifier assigned by the user, or agreed on between parties in private use; these must begin
with the prefix "x- " or "X- " in order to ensure that they do not conflict with names later standardized or
registered with IANA

There may be any number of Subcode segments; if the first subcode segment exists and the Subcode
consists of two letters, then it must be a country code from [ISO3166], "Codes for the representation of
names of countries." If the first subcode consists of more than two letters, it must be a subcode for the
language in question registered with IANA, unless the Langcode begins with the prefix "x- " or "X- ".

It is customary to give the language code in lower case, and the country code (if any) in upper case. Note
that these values, unlike other names in XML documents, are case insensitive.

For example:

<p xml:lang="en">The quick brown fox jumps over the lazy dog.</p>
<p xml:lang="en-GB">What colour is it?</p>
<p xml:lang="en-US">What color is it?</p>
<sp who="Faust" desc='leise' xml:lang="de">
 <l>Habe nun, ach! Philosophie,</l>
 <l>Juristerei, und Medizin</l>
 <l>und leider auch Theologie</l>
 <l>durchaus studiert mit heißem Bemüh'n.</l>
 </sp>

The intent declared with xml:lang is considered to apply to all attributes and content of the element
where it is specified, unless overridden with an instance of xml:lang on another element within that
content.

A simple declaration for xml:lang might take the form

xml:lang NMTOKEN #IMPLIED

but specific default values may also be given, if appropriate. In a collection of French poems for English
students, with glosses and notes in English, the xml:lang attribute might be declared this way:

 <!ATTLIST poem xml:lang NMTOKEN 'fr'>
 <!ATTLIST gloss xml:lang NMTOKEN 'en'>
 <!ATTLIST note xml:lang NMTOKEN 'en'>

Extensible Markup Language (XML) 1.0

Page 10

3. Logical Structures
Each XML document contains one or more elements, the boundaries of which are either delimited by start-
tags and end-tags, or, for empty elements, by an empty-element tag. Each element has a type, identified by
name, sometimes called its "generic identifier" (GI), and may have a set of attribute specifications. Each
attribute specification has a name and a value.

Element

[39] element ::= EmptyElemTag
| STag content ETag [WFC: Element Type Match]

[VC: Element Valid]

This specification does not constrain the semantics, use, or (beyond syntax) names of the element types and
attributes, except that names beginning with a match to (('X'|'x')('M'|'m')('L'|'l')) are
reserved for standardization in this or future versions of this specification.

WELL-FORMEDNESS CONSTRAINT: Element Type Match. The Name in an element's end-tag must
match the element type in the start-tag.

VALIDITY CONSTRAINT: Element Valid. An element is valid if there is a declaration matching elementdecl
where the Name matches the element type, and one of the following holds:

1. The declaration matches EMPTY and the element has no content.
2. The declaration matches children and the sequence of child elements belongs to the language

generated by the regular expression in the content model, with optional white space (characters
matching the nonterminal S) between each pair of child elements.

3. The declaration matches Mixed and the content consists of character data and child elements whose
types match names in the content model.

4. The declaration matches ANY, and the types of any child elements have been declared.

3.1 Start-Tags, End-Tags, and Empty-Element Tags
The beginning of every non-empty XML element is marked by a start-tag.

Start-tag

[40] STag ::= '<' Name (S Attribute)* S? '>' [WFC: Unique Att Spec]
[41] Attribute ::= Name Eq AttValue [VC: Attribute Value Type]

[WFC: No External Entity References]
[WFC: No < in Attribute Values]

The Name in the start- and end-tags gives the element's type. The Name-AttValue pairs are referred to as the
attribute specifications of the element, with the Name in each pair referred to as the attribute name and the
content of the AttValue (the text between the ' or " delimiters) as the attribute value.

WELL-FORMEDNESS CONSTRAINT: Unique Att Spec. No attribute name may appear more than once in
the same start-tag or empty-element tag.

VALIDITY CONSTRAINT: Attribute Value Type. The attribute must have been declared; the value must be
of the type declared for it. (For attribute types, see Section 3.3: Attribute-List Declarations .)

WELL-FORMEDNESS CONSTRAINT: No External Entity References. Attribute values cannot contain
direct or indirect entity references to external entities.

WELL-FORMEDNESS CONSTRAINT: No < in Attribute Values. The replacement text of any entity
referred to directly or indirectly in an attribute value (other than "< ") must not contain a <.

An example of a start-tag:

<termdef id="dt-dog" term="dog">

The end of every element that begins with a start-tag must be marked by an end-tag containing a name that
echoes the element's type as given in the start-tag:

Extensible Markup Language (XML) 1.0

Page 11

End-tag

[42] ETag ::= '</' Name S? '>'

An example of an end-tag:

</termdef>

The text between the start-tag and end-tag is called the element's content:

Content of Elements

[43] content ::= (element | CharData | Reference | CDSect | PI | Comment)*

If an element is empty, it must be represented either by a start-tag immediately followed by an end-tag or
by an empty-element tag. An empty-element tag takes a special form:

Tags for Empty Elements

[44] EmptyElemTag ::= '<' Name (S Attribute)* S? '/>' [WFC: Unique Att Spec]

Empty-element tags may be used for any element which has no content, whether or not it is declared using
the keyword EMPTY. For interoperability, the empty-element tag must be used, and can only be used, for
elements which are declared EMPTY.

Examples of empty elements:

<IMG align="left"
 src="http://www.w3.org/Icons/WWW/w3c_home" />

</br>

3.2 Element Type Declarations
The element structure of an XML document may, for validation purposes, be constrained using element
type and attribute-list declarations. An element type declaration constrains the element's content.

Element type declarations often constrain which element types can appear as children of the element. At
user option, an XML processor may issue a warning when a declaration mentions an element type for
which no declaration is provided, but this is not an error.

An element type declaration takes the form:

Element Type Declaration

[45] elementdecl ::= '<!ELEMENT' S Name S contentspec S? '>' [VC: Unique Element Type
Declaration]

[46] contentspec ::= 'EMPTY' | 'ANY' | Mixed | children

where the Name gives the element type being declared.

VALIDITY CONSTRAINT: Unique Element Type Declaration. No element type may be declared more
than once.

Examples of element type declarations:

<!ELEMENT br EMPTY>
<!ELEMENT p (#PCDATA|emph)* >
<!ELEMENT %name.para; %content.para; >
<!ELEMENT container ANY>

Extensible Markup Language (XML) 1.0

Page 12

3.2.1 Element Content
An element type has element content when elements of that type must contain only child elements (no
character data), optionally separated by white space (characters matching the nonterminal S). In this case,
the constraint includes a content model, a simple grammar governing the allowed types of the child
elements and the order in which they are allowed to appear. The grammar is built on content particles (cps),
which consist of names, choice lists of content particles, or sequence lists of content particles:

Element-content Models

[47] children ::= (choice | seq) ('?' | '*' | '+')?
[48] cp ::= (Name | choice | seq) ('?' | '*' | '+')?
[49] choice ::= '(' S? cp (S? '|' S? cp)* S? ')' [VC: Proper Group/PE Nesting]
[50] seq ::= '(' S? cp (S? ',' S? cp)* S? ')' [VC: Proper Group/PE Nesting]

where each Name is the type of an element which may appear as a child. Any content particle in a choice
list may appear in the element content at the location where the choice list appears in the grammar; content
particles occurring in a sequence list must each appear in the element content in the order given in the list.
The optional character following a name or list governs whether the element or the content particles in the
list may occur one or more (+), zero or more (*), or zero or one times (?). The absence of such an operator
means that the element or content particle must appear exactly once. This syntax and meaning are identical
to those used in the productions in this specification.

The content of an element matches a content model if and only if it is possible to trace out a path through
the content model, obeying the sequence, choice, and repetition operators and matching each element in the
content against an element type in the content model. For compatibility, it is an error if an element in the
document can match more than one occurrence of an element type in the content model. For more
information, see Appendix E: Deterministic Content Models.

VALIDITY CONSTRAINT: Proper Group/PE Nesting. Parameter-entity replacement text must be properly
nested with parenthetized groups. That is to say, if either of the opening or closing parentheses in a choice,
seq, or Mixed construct is contained in the replacement text for a parameter entity, both must be contained
in the same replacement text.

For interoperability, if a parameter-entity reference appears in a choice, seq, or Mixed construct, its
replacement text should not be empty, and neither the first nor last non-blank character of the replacement
text should be a connector (| or ,).

Examples of element-content models:

<!ELEMENT spec (front, body, back?)>
<!ELEMENT div1 (head, (p | list | note)*, div2*)>
<!ELEMENT dictionary-body (%div.mix; | %dict.mix;)*>

3.2.2 Mixed Content
An element type has mixed content when elements of that type may contain character data, optionally
interspersed with child elements. In this case, the types of the child elements may be constrained, but not
their order or their number of occurrences:

Mixed-content Declaration

[51] Mixed ::= '(' S? '#PCDATA' (S? '|' S? Name)* S? ')*'
| '(' S? '#PCDATA' S? ')' [VC: Proper Group/PE Nesting]

[VC: No Duplicate Types]

where the Names give the types of elements that may appear as children.

VALIDITY CONSTRAINT: No Duplicate Types. The same name must not appear more than once in a
single mixed-content declaration.

Extensible Markup Language (XML) 1.0

Page 13

Examples of mixed content declarations:

<!ELEMENT p (#PCDATA|a|ul|b|i|em)*>
<!ELEMENT p (#PCDATA | %font; | %phrase; | %special; | %form;)* >
<!ELEMENT b (#PCDATA)>

3.3 Attribute-List Declarations
Attributes are used to associate name-value pairs with elements. Attribute specifications may appear only
within start-tags and empty-element tags; thus, the productions used to recognize them appear in Section
3.1: Start-Tags, End-Tags, and Empty-Element Tags. Attribute-list declarations may be used:

z To define the set of attributes pertaining to a given element type.

z To establish type constraints for these attributes.
z To provide default values for attributes.

Attribute-list declarations specify the name, data type, and default value (if any) of each attribute
associated with a given element type:

Attribute-list Declaration

[52] AttlistDecl ::= '<!ATTLIST' S Name AttDef* S? '>'
[53] AttDef ::= S Name S AttType S DefaultDecl

The Name in the AttlistDecl rule is the type of an element. At user option, an XML processor may issue a
warning if attributes are declared for an element type not itself declared, but this is not an error. The Name
in the AttDef rule is the name of the attribute.

When more than one AttlistDecl is provided for a given element type, the contents of all those provided are
merged. When more than one definition is provided for the same attribute of a given element type, the first
declaration is binding and later declarations are ignored. For interoperability, writers of DTDs may choose
to provide at most one attribute-list declaration for a given element type, at most one attribute definition for
a given attribute name, and at least one attribute definition in each attribute-list declaration. For
interoperability, an XML processor may at user option issue a warning when more than one attribute-list
declaration is provided for a given element type, or more than one attribute definition is provided for a
given attribute, but this is not an error.

3.3.1 Attribute Types
XML attribute types are of three kinds: a string type, a set of tokenized types, and enumerated types. The
string type may take any literal string as a value; the tokenized types have varying lexical and semantic
constraints, as noted:

Attribute Types

[54] AttType ::= StringType | TokenizedType | EnumeratedType
[55] StringType ::= 'CDATA'
[56] TokenizedType ::= 'ID' [VC: ID]

[VC: One ID per Element Type]
[VC: ID Attribute Default]

| 'IDREF' [VC: IDREF]
| 'IDREFS' [VC: IDREF]
| 'ENTITY' [VC: Entity Name]
| 'ENTITIES' [VC: Entity Name]
| 'NMTOKEN' [VC: Name Token]
| 'NMTOKENS' [VC: Name Token]

VALIDITY CONSTRAINT: ID. Values of type ID must match the Name production. A name must not appear
more than once in an XML document as a value of this type; i.e., ID values must uniquely identify the
elements which bear them.

Extensible Markup Language (XML) 1.0

Page 14

VALIDITY CONSTRAINT: One ID per Element Type. No element type may have more than one ID
attribute specified.

VALIDITY CONSTRAINT: ID Attribute Default. An ID attribute must have a declared default of #IMPLIED
or #REQUIRED.

VALIDITY CONSTRAINT: IDREF. Values of type IDREF must match the Name production, and values of
type IDREFS must match Names; each Name must match the value of an ID attribute on some element in
the XML document; i.e. IDREF values must match the value of some ID attribute.

VALIDITY CONSTRAINT: Entity Name. Values of type ENTITY must match the Name production, values
of type ENTITIES must match Names; each Name must match the name of an unparsed entity declared in
the DTD.

VALIDITY CONSTRAINT: Name Token. Values of type NMTOKEN must match the Nmtoken production;
values of type NMTOKENS must match Nmtokens.

Enumerated attributes can take one of a list of values provided in the declaration. There are two kinds of
enumerated types:

Enumerated Attr ibute Types

[57] EnumeratedType ::= NotationType | Enumeration
[58] NotationType ::= 'NOTATION' S '(' S? Name (S? '|' S?

Name)* S? ')'
[VC: Notation Attributes]

[59] Enumeration ::= '(' S? Nmtoken (S? '|' S? Nmtoken)*
S? ')'

[VC: Enumeration]

A NOTATION attribute identifies a notation, declared in the DTD with associated system and/or public
identifiers, to be used in interpreting the element to which the attribute is attached.

VALIDITY CONSTRAINT: Notation Attributes. Values of this type must match one of the notation names
included in the declaration; all notation names in the declaration must be declared.

VALIDITY CONSTRAINT: Enumeration. Values of this type must match one of the Nmtoken tokens in the
declaration.

For interoperability, the same Nmtoken should not occur more than once in the enumerated attribute types
of a single element type.

3.3.2 Attribute Defaults
An attribute declaration provides information on whether the attribute's presence is required, and if not,
how an XML processor should react if a declared attribute is absent in a document.

Attribute Defaults

[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED'
| (('#FIXED' S)? AttValue) [VC: Required Attribute]

[VC: Attribute Default Legal]
[WFC: No < in Attribute Values]
[VC: Fixed Attribute Default]

In an attribute declaration, #REQUIRED means that the attribute must always be provided, #IMPLIED that
no default value is provided. If the declaration is neither #REQUIRED nor #IMPLIED , then the AttValue
value contains the declared default value; the #FIXED keyword states that the attribute must always have
the default value. If a default value is declared, when an XML processor encounters an omitted attribute, it
is to behave as though the attribute were present with the declared default value.

VALIDITY CONSTRAINT: Required Attribute. If the default declaration is the keyword #REQUIRED, then
the attribute must be specified for all elements of the type in the attribute-list declaration.

VALIDITY CONSTRAINT: Attribute Default Legal. The declared default value must meet the lexical
constraints of the declared attribute type.

VALIDITY CONSTRAINT: Fixed Attribute Default. If an attribute has a default value declared with the
#FIXED keyword, instances of that attribute must match the default value.

Extensible Markup Language (XML) 1.0

Page 15

Examples of attribute-list declarations:

<!ATTLIST termdef
 id ID #REQUIRED
 name CDATA #IMPLIED>
<!ATTLIST list
 type (bullets|ordered|glossary) "ordered">
<!ATTLIST form
 method CDATA #FIXED "POST">

3.3.3 Attribute-Value Normalization
Before the value of an attribute is passed to the application or checked for validity, the XML processor
must normalize it as follows:

z a character reference is processed by appending the referenced character to the attribute value

z an entity reference is processed by recursively processing the replacement text of the entity
z a whitespace character (#x20, #xD, #xA, #x9) is processed by appending #x20 to the normalized value,

except that only a single #x20 is appended for a "#xD#xA" sequence that is part of an external parsed
entity or the literal entity value of an internal parsed entity

z other characters are processed by appending them to the normalized value

If the declared value is not CDATA, then the XML processor must further process the normalized attribute
value by discarding any leading and trailing space (#x20) characters, and by replacing sequences of space
(#x20) characters by a single space (#x20) character.

All attributes for which no declaration has been read should be treated by a non-validating parser as if
declared CDATA.

3.4 Conditional Sections
Conditional sections are portions of the document type declaration external subset which are included in, or
excluded from, the logical structure of the DTD based on the keyword which governs them.

Conditional Section

[61] conditionalSect ::= includeSect | ignoreSect
[62] includeSect ::= '<![' S? 'INCLUDE' S? '[' extSubsetDecl ']]>'
[63] ignoreSect ::= '<![' S? 'IGNORE' S? '[' ignoreSectContents* ']]>'
[64] ignoreSectContents ::= Ignore ('<![' ignoreSectContents ']]>' Ignore)*
[65] Ignore ::= Char* - (Char* ('<![' | ']]>') Char*)

Like the internal and external DTD subsets, a conditional section may contain one or more complete
declarations, comments, processing instructions, or nested conditional sections, intermingled with white
space.

If the keyword of the conditional section is INCLUDE, then the contents of the conditional section are part
of the DTD. If the keyword of the conditional section is IGNORE, then the contents of the conditional
section are not logically part of the DTD. Note that for reliable parsing, the contents of even ignored
conditional sections must be read in order to detect nested conditional sections and ensure that the end of
the outermost (ignored) conditional section is properly detected. If a conditional section with a keyword of
INCLUDE occurs within a larger conditional section with a keyword of IGNORE, both the outer and the
inner conditional sections are ignored.

If the keyword of the conditional section is a parameter-entity reference, the parameter entity must be
replaced by its content before the processor decides whether to include or ignore the conditional section.

Extensible Markup Language (XML) 1.0

Page 16

An example:

<!ENTITY % draft 'INCLUDE' >
<!ENTITY % final 'IGNORE' >

<![%draft;[
<!ELEMENT book (comments*, title, body, supplements?)>
]]>
<![%final;[
<!ELEMENT book (title, body, supplements?)>
]]>

4. Physical Structures
An XML document may consist of one or many storage units. These are called entities; they all have
content and are all (except for the document entity, see below, and the external DTD subset) identified by
name. Each XML document has one entity called the document entity, which serves as the starting point for
the XML processor and may contain the whole document.

Entities may be either parsed or unparsed. A parsed entity's contents are referred to as its replacement text;
this text is considered an integral part of the document.

An unparsed entity is a resource whose contents may or may not be text, and if text, may not be XML.
Each unparsed entity has an associated notation, identified by name. Beyond a requirement that an XML
processor make the identifiers for the entity and notation available to the application, XML places no
constraints on the contents of unparsed entities.

Parsed entities are invoked by name using entity references; unparsed entities by name, given in the value
of ENTITY or ENTITIES attributes.

General entities are entities for use within the document content. In this specification, general entities are
sometimes referred to with the unqualified term entity when this leads to no ambiguity. Parameter entities
are parsed entities for use within the DTD. These two types of entities use different forms of reference and
are recognized in different contexts. Furthermore, they occupy different namespaces; a parameter entity and
a general entity with the same name are two distinct entities.

4.1 Character and Entity References
A character reference refers to a specific character in the ISO/IEC 10646 character set, for example one
not directly accessible from available input devices.

Character Reference

[66] CharRef ::= '&#' [0-9]+ ';'
| '&#x' [0-9a-fA-F]+ ';' [WFC: Legal Character]

WELL-FORMEDNESS CONSTRAINT: Legal Character. Characters referred to using character references
must match the production for Char.

If the character reference begins with "&#x", the digits and letters up to the terminating ; provide a
hexadecimal representation of the character's code point in ISO/IEC 10646. If it begins just with "&#", the
digits up to the terminating ; provide a decimal representation of the character's code point.

An entity reference refers to the content of a named entity. References to parsed general entities use
ampersand (&) and semicolon (;) as delimiters. Parameter-entity references use percent-sign (%) and
semicolon (;) as delimiters.

Extensible Markup Language (XML) 1.0

Page 17

Entity Reference

[67] Reference ::= EntityRef | CharRef
[68] EntityRef ::= '&' Name ';' [WFC: Entity Declared]

[VC: Entity Declared]
[WFC: Parsed Entity]
[WFC: No Recursion]

[69] PEReference ::= '%' Name ';' [VC: Entity Declared]
[WFC: No Recursion]
[WFC: In DTD]

WELL-FORMEDNESS CONSTRAINT: Entity Declared. In a document without any DTD, a document with
only an internal DTD subset which contains no parameter entity references, or a document with
"standalone='yes' ", the Name given in the entity reference must match that in an entity declaration,
except that well-formed documents need not declare any of the following entities: amp, lt , gt , apos , quot .
The declaration of a parameter entity must precede any reference to it. Similarly, the declaration of a general
entity must precede any reference to it which appears in a default value in an attribute-list declaration.

Note that if entities are declared in the external subset or in external parameter entities, a non-validating
processor is not obligated to read and process their declarations; for such documents, the rule that an entity
must be declared is a well-formedness constraint only if standalone='yes'.

VALIDITY CONSTRAINT: Entity Declared. In a document with an external subset or external parameter
entities with "standalone='no' ", the Name given in the entity reference must match that in an entity
declaration. For interoperability, valid documents should declare the entities amp, lt , gt , apos , quot , in the
form specified in Section 4.6: Predefined Entities . The declaration of a parameter entity must precede any
reference to it. Similarly, the declaration of a general entity must precede any reference to it which appears
in a default value in an attribute-list declaration.

WELL-FORMEDNESS CONSTRAINT: Parsed Entity. An entity reference must not contain the name of an
unparsed entity. Unparsed entities may be referred to only in attribute values declared to be of type ENTITY
or ENTITIES .

WELL-FORMEDNESS CONSTRAINT: No Recursion. A parsed entity must not contain a recursive
reference to itself, either directly or indirectly.

WELL-FORMEDNESS CONSTRAINT: In DTD. Parameter-entity references may only appear in the DTD.

Examples of character and entity references:

Type <key>less-than</key> (<) to save options.
This document was prepared on &docdate; and
is classified &security-level;.

Example of a parameter-entity reference:

<!-- declare the parameter entity "ISOLat2"... -->
<!ENTITY % ISOLat2
 SYSTEM "http://www.xml.com/iso/isolat2-xml.entities" >
<!-- ... now reference it. -->
%ISOLat2;

4.2 Entity Declarations
Entities are declared thus:

Entity Declaration

[70] EntityDecl ::= GEDecl | PEDecl
[71] GEDecl ::= '<!ENTITY' S Name S EntityDef S? '>'
[72] PEDecl ::= '<!ENTITY' S '%' S Name S PEDef S? '>'
[73] EntityDef ::= EntityValue | (ExternalID NDataDecl?)
[74] PEDef ::= EntityValue | ExternalID

Extensible Markup Language (XML) 1.0

Page 18

The Name identifies the entity in an entity reference or, in the case of an unparsed entity, in the value of an
ENTITY or ENTITIES attribute. If the same entity is declared more than once, the first declaration
encountered is binding; at user option, an XML processor may issue a warning if entities are declared
multiple times.

4.2.1 Internal Entities
If the entity definition is an EntityValue, the defined entity is called an internal entity. There is no separate
physical storage object, and the content of the entity is given in the declaration. Note that some processing
of entity and character references in the literal entity value may be required to produce the correct
replacement text: see Section 4.5: Construction of Internal Entity Replacement Text.

An internal entity is a parsed entity.

Example of an internal entity declaration:

<!ENTITY Pub-Status "This is a pre-release of the
 specification.">

4.2.2 External Entities
If the entity is not internal, it is an external entity, declared as follows:

External Entity Declaration

[75] ExternalID ::= 'SYSTEM' S SystemLiteral
| 'PUBLIC' S PubidLiteral S SystemLiteral

[76] NDataDecl ::= S 'NDATA' S Name [VC: Notation Declared]

If the NDataDecl is present, this is a general unparsed entity; otherwise it is a parsed entity.

VALIDITY CONSTRAINT: Notation Declared. The Name must match the declared name of a notation.

The SystemLiteral is called the entity's system identifier. It is a URI, which may be used to retrieve the
entity. Note that the hash mark (#) and fragment identifier frequently used with URIs are not, formally, part
of the URI itself; an XML processor may signal an error if a fragment identifier is given as part of a system
identifier. Unless otherwise provided by information outside the scope of this specification (e.g. a special
XML element type defined by a particular DTD, or a processing instruction defined by a particular
application specification), relative URIs are relative to the location of the resource within which the entity
declaration occurs. A URI might thus be relative to the document entity, to the entity containing the
external DTD subset, or to some other external parameter entity.

An XML processor should handle a non-ASCII character in a URI by representing the character in UTF-8
as one or more bytes, and then escaping these bytes with the URI escaping mechanism (i.e., by converting
each byte to %HH, where HH is the hexadecimal notation of the byte value).

In addition to a system identifier, an external identifier may include a public identifier. An XML processor
attempting to retrieve the entity's content may use the public identifier to try to generate an alternative URI.
If the processor is unable to do so, it must use the URI specified in the system literal. Before a match is
attempted, all strings of white space in the public identifier must be normalized to single space characters
(#x20), and leading and trailing white space must be removed.

Examples of external entity declarations:

<!ENTITY open-hatch
 SYSTEM "http://www.textuality.com/boilerplate/OpenHatch.xml">
<!ENTITY open-hatch
 PUBLIC "-//Textuality//TEXT Standard open-hatch boilerplate//EN"
 "http://www.textuality.com/boilerplate/OpenHatch.xml">
<!ENTITY hatch-pic
 SYSTEM "../grafix/OpenHatch.gif"
 NDATA gif >

Extensible Markup Language (XML) 1.0

Page 19

4.3 Parsed Entities

4.3.1 The Text Declaration
External parsed entities may each begin with a text declaration.

Text Declaration

[77] TextDecl ::= '<?xml' VersionInfo? EncodingDecl S? '?>'

The text declaration must be provided literally, not by reference to a parsed entity. No text declaration may
appear at any position other than the beginning of an external parsed entity.

4.3.2 Well-Formed Parsed Entities
The document entity is well-formed if it matches the production labeled document. An external general
parsed entity is well-formed if it matches the production labeled extParsedEnt. An external parameter
entity is well-formed if it matches the production labeled extPE.

Well-Formed External Parsed Entity

[78] extParsedEnt ::= TextDecl? content
[79] extPE ::= TextDecl? extSubsetDecl

An internal general parsed entity is well-formed if its replacement text matches the production labeled
content. All internal parameter entities are well-formed by definition.

A consequence of well-formedness in entities is that the logical and physical structures in an XML
document are properly nested; no start-tag, end-tag, empty-element tag, element, comment, processing
instruction, character reference, or entity reference can begin in one entity and end in another.

4.3.3 Character Encoding in Entities
Each external parsed entity in an XML document may use a different encoding for its characters. All XML
processors must be able to read entities in either UTF-8 or UTF-16.

Entities encoded in UTF-16 must begin with the Byte Order Mark described by ISO/IEC 10646 Annex E
and Unicode Appendix B (the ZERO WIDTH NO-BREAK SPACE character, #xFEFF). This is an
encoding signature, not part of either the markup or the character data of the XML document. XML
processors must be able to use this character to differentiate between UTF-8 and UTF-16 encoded
documents.

Although an XML processor is required to read only entities in the UTF-8 and UTF-16 encodings, it is
recognized that other encodings are used around the world, and it may be desired for XML processors to
read entities that use them. Parsed entities which are stored in an encoding other than UTF-8 or UTF-16
must begin with a text declaration containing an encoding declaration:

Encoding Declaration

[80] EncodingDecl ::= S 'encoding' Eq ('"' EncName '"' | "'" EncName "'")
[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | '-')* /* Encoding name

contains only Latin
characters */

In the document entity, the encoding declaration is part of the XML declaration. The EncName is the name
of the encoding used.

In an encoding declaration, the values "UTF-8 ", "UTF-16 ", "ISO-10646-UCS-2 ", and "ISO-10646-
UCS-4" should be used for the various encodings and transformations of Unicode / ISO/IEC 10646, the
values "ISO-8859-1 ", "ISO-8859-2 ", ... "ISO-8859-9 " should be used for the parts of ISO 8859,
and the values "ISO-2022-JP ", "Shift_JIS ", and "EUC-JP" should be used for the various encoded
forms of JIS X-0208-1997. XML processors may recognize other encodings; it is recommended that

Extensible Markup Language (XML) 1.0

Page 20

character encodings registered (as charsets) with the Internet Assigned Numbers Authority [IANA], other
than those just listed, should be referred to using their registered names. Note that these registered names
are defined to be case-insensitive, so processors wishing to match against them should do so in a case-
insensitive way.

In the absence of information provided by an external transport protocol (e.g. HTTP or MIME), it is an
error for an entity including an encoding declaration to be presented to the XML processor in an encoding
other than that named in the declaration, for an encoding declaration to occur other than at the beginning of
an external entity, or for an entity which begins with neither a Byte Order Mark nor an encoding
declaration to use an encoding other than UTF-8. Note that since ASCII is a subset of UTF-8, ordinary
ASCII entities do not strictly need an encoding declaration.

It is a fatal error when an XML processor encounters an entity with an encoding that it is unable to process.

Examples of encoding declarations:

<?xml encoding='UTF-8'?>
<?xml encoding='EUC-JP'?>

4.4 XML Processor Treatment of Entities and References
The table below summarizes the contexts in which character references, entity references, and invocations
of unparsed entities might appear and the required behavior of an XML processor in each case. The labels
in the leftmost column describe the recognition context:

Reference in Content
as a reference anywhere after the start-tag and before the end-tag of an element; corresponds to the
nonterminal content.

Reference in Attribute Value
as a reference within either the value of an attribute in a start-tag, or a default value in an attribute
declaration; corresponds to the nonterminal AttValue.

Occurs as Attribute Value
as a Name, not a reference, appearing either as the value of an attribute which has been declared as
type ENTITY, or as one of the space-separated tokens in the value of an attribute which has been
declared as type ENTITIES .

Reference in Entity Value
as a reference within a parameter or internal entity's literal entity value in the entity's declaration;
corresponds to the nonterminal EntityValue.

Reference in DTD
as a reference within either the internal or external subsets of the DTD, but outside of an EntityValue
or AttValue.

Extensible Markup Language (XML) 1.0

Page 21

Entity Type

Parameter Internal
General

External
Parsed
General

Unparsed
Character

Reference in
Content

Not
recognized Included Included if

validating Forbidden Included

Reference in
Attribute

Value

Not
recognized

Included in
literal Forbidden Forbidden Included

Occurs as
Attribute

Value

Not
recognized Forbidden Forbidden Notify

Not
recognized

Reference in
EntityValue

Included in
literal Bypassed Bypassed Forbidden Included

Reference in
DTD

Included as
PE Forbidden Forbidden Forbidden Forbidden

4.4.1 Not Recognized
Outside the DTD, the % character has no special significance; thus, what would be parameter entity
references in the DTD are not recognized as markup in content. Similarly, the names of unparsed entities
are not recognized except when they appear in the value of an appropriately declared attribute.

4.4.2 Included
An entity is included when its replacement text is retrieved and processed, in place of the reference itself,
as though it were part of the document at the location the reference was recognized. The replacement text
may contain both character data and (except for parameter entities) markup, which must be recognized in
the usual way, except that the replacement text of entities used to escape markup delimiters (the entities
amp, lt , gt , apos , quot) is always treated as data. (The string "AT&T; " expands to "AT&T; " and
the remaining ampersand is not recognized as an entity-reference delimiter.) A character reference is
included when the indicated character is processed in place of the reference itself.

4.4.3 Included If Validating
When an XML processor recognizes a reference to a parsed entity, in order to validate the document, the
processor must include its replacement text. If the entity is external, and the processor is not attempting to
validate the XML document, the processor may, but need not, include the entity's replacement text. If a
non-validating parser does not include the replacement text, it must inform the application that it
recognized, but did not read, the entity.

This rule is based on the recognition that the automatic inclusion provided by the SGML and XML entity
mechanism, primarily designed to support modularity in authoring, is not necessarily appropriate for other
applications, in particular document browsing. Browsers, for example, when encountering an external
parsed entity reference, might choose to provide a visual indication of the entity's presence and retrieve it
for display only on demand.

Extensible Markup Language (XML) 1.0

Page 22

4.4.4 Forbidden
The following are forbidden, and constitute fatal errors:

z the appearance of a reference to an unparsed entity.

z the appearance of any character or general-entity reference in the DTD except within an EntityValue or
AttValue.

z a reference to an external entity in an attribute value.

4.4.5 Included in Literal
When an entity reference appears in an attribute value, or a parameter entity reference appears in a literal
entity value, its replacement text is processed in place of the reference itself as though it were part of the
document at the location the reference was recognized, except that a single or double quote character in the
replacement text is always treated as a normal data character and will not terminate the literal. For example,
this is well-formed:

<!ENTITY % YN '"Yes"' >
<!ENTITY WhatHeSaid "He said &YN;" >

while this is not:

<!ENTITY EndAttr "27'" >
<element attribute='a-&EndAttr;>

4.4.6 Notify
When the name of an unparsed entity appears as a token in the value of an attribute of declared type
ENTITY or ENTITIES , a validating processor must inform the application of the system and public (if
any) identifiers for both the entity and its associated notation.

4.4.7 Bypassed
When a general entity reference appears in the EntityValue in an entity declaration, it is bypassed and left
as is.

4.4.8 Included as PE
Just as with external parsed entities, parameter entities need only be included if validating. When a
parameter-entity reference is recognized in the DTD and included, its replacement text is enlarged by the
attachment of one leading and one following space (#x20) character; the intent is to constrain the
replacement text of parameter entities to contain an integral number of grammatical tokens in the DTD.

4.5 Construction of Internal Entity Replacement Text
In discussing the treatment of internal entities, it is useful to distinguish two forms of the entity's value. The
literal entity value is the quoted string actually present in the entity declaration, corresponding to the non-
terminal EntityValue. The replacement text is the content of the entity, after replacement of character
references and parameter-entity references.

The literal entity value as given in an internal entity declaration (EntityValue) may contain character,
parameter-entity, and general-entity references. Such references must be contained entirely within the
literal entity value. The actual replacement text that is included as described above must contain the
replacement text of any parameter entities referred to, and must contain the character referred to, in place of
any character references in the literal entity value; however, general-entity references must be left as-is,
unexpanded. For example, given the following declarations:

<!ENTITY % pub "Éditions Gallimard" >
<!ENTITY rights "All rights reserved" >
<!ENTITY book "La Peste: Albert Camus,
© 1947 %pub;. &rights;" >

Extensible Markup Language (XML) 1.0

Page 23

then the replacement text for the entity "book " is:

La Peste: Albert Camus,
© 1947 Éditions Gallimard. &rights;

The general-entity reference "&rights; " would be expanded should the reference "&book; " appear in
the document's content or an attribute value.

These simple rules may have complex interactions; for a detailed discussion of a difficult example, see
Appendix D: Expansion of Entity and Character References.

4.6 Predefined Entities
Entity and character references can both be used to escape the left angle bracket, ampersand, and other
delimiters. A set of general entities (amp, lt , gt , apos , quot) is specified for this purpose. Numeric
character references may also be used; they are expanded immediately when recognized and must be
treated as character data, so the numeric character references "< " and "& " may be used to
escape < and & when they occur in character data.

All XML processors must recognize these entities whether they are declared or not. For interoperability,
valid XML documents should declare these entities, like any others, before using them. If the entities in
question are declared, they must be declared as internal entities whose replacement text is the single
character being escaped or a character reference to that character, as shown below.

<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY amp "&#38;">
<!ENTITY apos "'">
<!ENTITY quot """>

Note that the < and & characters in the declarations of "lt " and "amp" are doubly escaped to meet the
requirement that entity replacement be well-formed.

4.7 Notation Declarations
Notations identify by name the format of unparsed entities, the format of elements which bear a notation
attribute, or the application to which a processing instruction is addressed.

Notation declarations provide a name for the notation, for use in entity and attribute-list declarations and in
attribute specifications, and an external identifier for the notation which may allow an XML processor or its
client application to locate a helper application capable of processing data in the given notation.

Notation Declarations

[82] NotationDecl ::= '<!NOTATION' S Name S (ExternalID | PublicID) S? '>'
[83] PublicID ::= 'PUBLIC' S PubidLiteral

XML processors must provide applications with the name and external identifier(s) of any notation
declared and referred to in an attribute value, attribute definition, or entity declaration. They may
additionally resolve the external identifier into the system identifier, file name, or other information needed
to allow the application to call a processor for data in the notation described. (It is not an error, however,
for XML documents to declare and refer to notations for which notation-specific applications are not
available on the system where the XML processor or application is running.)

4.8 Document Entity
The document entity serves as the root of the entity tree and a starting-point for an XML processor. This
specification does not specify how the document entity is to be located by an XML processor; unlike other
entities, the document entity has no name and might well appear on a processor input stream without any
identification at all.

Extensible Markup Language (XML) 1.0

Page 24

5. Conformance

5.1 Validating and Non-Validating Processors
Conforming XML processors fall into two classes: validating and non-validating.

Validating and non-validating processors alike must report violations of this specification's well-
formedness constraints in the content of the document entity and any other parsed entities that they read.

Validating processors must report violations of the constraints expressed by the declarations in the DTD,
and failures to fulfill the validity constraints given in this specification. To accomplish this, validating
XML processors must read and process the entire DTD and all external parsed entities referenced in the
document.

Non-validating processors are required to check only the document entity, including the entire internal
DTD subset, for well-formedness. While they are not required to check the document for validity, they are
required to process all the declarations they read in the internal DTD subset and in any parameter entity
that they read, up to the first reference to a parameter entity that they do not read; that is to say, they must
use the information in those declarations to normalize attribute values, include the replacement text of
internal entities, and supply default attribute values. They must not process entity declarations or attribute-
list declarations encountered after a reference to a parameter entity that is not read, since the entity may
have contained overriding declarations.

5.2 Using XML Processors
The behavior of a validating XML processor is highly predictable; it must read every piece of a document
and report all well-formedness and validity violations. Less is required of a non-validating processor; it
need not read any part of the document other than the document entity. This has two effects that may be
important to users of XML processors:

z Certain well-formedness errors, specifically those that require reading external entities, may not be
detected by a non-validating processor. Examples include the constraints entitled Entity Declared,
Parsed Entity, and No Recursion, as well as some of the cases described as forbidden in Section 4.4:
XML Processor Treatment of Entities and References.

z The information passed from the processor to the application may vary, depending on whether the
processor reads parameter and external entities. For example, a non-validating processor may not
normalize attribute values, include the replacement text of internal entities, or supply default attribute
values, where doing so depends on having read declarations in external or parameter entities.

For maximum reliability in interoperating between different XML processors, applications which use non-
validating processors should not rely on any behaviors not required of such processors. Applications which
require facilities such as the use of default attributes or internal entities which are declared in external
entities should use validating XML processors.

6. Notation
The formal grammar of XML is given in this specification using a simple Extended Backus-Naur Form
(EBNF) notation. Each rule in the grammar defines one symbol, in the form

symbol ::= expression

Symbols are written with an initial capital letter if they are defined by a regular expression, or with an
initial lower case letter otherwise. Literal strings are quoted.

Within the expression on the right-hand side of a rule, the following expressions are used to match strings
of one or more characters:

#xN

where N is a hexadecimal integer, the expression matches the character in ISO/IEC 10646 whose
canonical (UCS-4) code value, when interpreted as an unsigned binary number, has the value

Extensible Markup Language (XML) 1.0

Page 25

indicated. The number of leading zeros in the #xN form is insignificant; the number of leading zeros
in the corresponding code value is governed by the character encoding in use and is not significant
for XML.

[a-zA-Z] , [#xN-#xN]

matches any character with a value in the range(s) indicated (inclusive).

[^a-z] , [^#xN-#xN]

matches any character with a value outside the range indicated.

[^abc] , [^#xN#xN#xN]

matches any character with a value not among the characters given.

"string"

matches a literal string matching that given inside the double quotes.

'string'

matches a literal string matching that given inside the single quotes.

These symbols may be combined to match more complex patterns as follows, where A and B represent
simple expressions:

(expression)
expression is treated as a unit and may be combined as described in this list.

A?

matches A or nothing; optional A.

A B

matches A followed by B.

A | B

matches A or B but not both.

A - B

matches any string that matches A but does not match B.

A+

matches one or more occurrences of A.

A*

matches zero or more occurrences of A.

Other notations used in the productions are:

/* ... */

comment.

[wfc: ...]

well-formedness constraint; this identifies by name a constraint on well-formed documents associated
with a production.

[vc: ...]

validity constraint; this identifies by name a constraint on valid documents associated with a
production.

Extensible Markup Language (XML) 1.0

Page 26

Appendices

A. References

A.1 Normative References

(Internet Assigned Numbers Authority) Official Names for Character Sets, ed. Keld Simonsen et al. See
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets.

IETF (Internet Engineering Task Force). RFC 1766: Tags for the Identification of Languages, ed. H.
Alvestrand. 1995.

(International Organization for Standardization). ISO 639:1988 (E). Code for the representation of names
of languages. [Geneva]: International Organization for Standardization, 1988.

(International Organization for Standardization). ISO 3166-1:1997 (E). Codes for the representation of
names of countries and their subdivisions -- Part 1: Country codes [Geneva]: International Organization
for Standardization, 1997.

ISO (International Organization for Standardization). ISO/IEC 10646-1993 (E). Information technology --
Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic Multilingual
Plane. [Geneva]: International Organization for Standardization, 1993 (plus amendments AM 1 through
AM 7).

The Unicode Consortium. The Unicode Standard, Version 2.0. Reading, Mass.: Addison-Wesley
Developers Press, 1996.

A.2 Other References

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools. Reading:
Addison-Wesley, 1986, rpt. corr. 1988.

Berners-Lee, T., R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic Syntax and
Semantics. 1997. (Work in progress; see updates to RFC1738.)

Brüggemann-Klein, Anne. Regular Expressions into Finite Automata. Extended abstract in I. Simon, Hrsg.,
LATIN 1992, S. 97-98. Springer-Verlag, Berlin 1992. Full Version in Theoretical Computer Science
120: 197-213, 1993.

Brüggemann-Klein, Anne, and Derick Wood. Deterministic Regular Languages. Universität Freiburg,
Institut für Informatik, Bericht 38, Oktober 1991.

James Clark. Comparison of SGML and XML. See http://www.w3.org/TR/NOTE-sgml-xml-971215.

IETF (Internet Engineering Task Force). RFC 1738: Uniform Resource Locators (URL), ed. T. Berners-
Lee, L. Masinter, M. McCahill. 1994.

IETF (Internet Engineering Task Force). RFC 1808: Relative Uniform Resource Locators, ed. R. Fielding.
1995.

IETF (Internet Engineering Task Force). RFC 2141: URN Syntax, ed. R. Moats. 1997.

ISO (International Organization for Standardization). ISO 8879:1986(E). Information processing -- Text
and Office Systems -- Standard Generalized Markup Language (SGML). First edition -- 1986-10-15.
[Geneva]: International Organization for Standardization, 1986.

ISO (International Organization for Standardization). ISO/IEC 10744-1992 (E). Information technology --
Hypermedia/Time-based Structuring Language (HyTime). [Geneva]: International Organization for
Standardization, 1992. Extended Facilities Annexe. [Geneva]: International Organization for
Standardization, 1996.

Extensible Markup Language (XML) 1.0

Page 27

B. Character Classes
Following the characteristics defined in the Unicode standard, characters are classed as base characters
(among others, these contain the alphabetic characters of the Latin alphabet, without diacritics),
ideographic characters, and combining characters (among others, this class contains most diacritics); these
classes combine to form the class of letters. Digits and extenders are also distinguished.

Characters

[84] Letter ::= BaseChar | Ideographic
[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6]

| [#x00D8-#x00F6] | [#x00F8-#x00FF] | [#x0100-#x0131]
| [#x0134-#x013E] | [#x0141-#x0148] | [#x014A-#x017E]
| [#x0180-#x01C3] | [#x01CD-#x01F0] | [#x01F4-#x01F5]
| [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1]
| #x0386 | [#x0388-#x038A] | #x038C | [#x038E-#x03A1]
| [#x03A3-#x03CE] | [#x03D0-#x03D6] | #x03DA | #x03DC
| #x03DE | #x03E0 | [#x03E2-#x03F3] | [#x0401-#x040C]
| [#x040E-#x044F] | [#x0451-#x045C] | [#x045E-#x0481]
| [#x0490-#x04C4] | [#x04C7-#x04C8] | [#x04CB-#x04CC]
| [#x04D0-#x04EB] | [#x04EE-#x04F5] | [#x04F8-#x04F9]
| [#x0531-#x0556] | #x0559 | [#x0561-#x0586]
| [#x05D0-#x05EA] | [#x05F0-#x05F2] | [#x0621-#x063A]
| [#x0641-#x064A] | [#x0671-#x06B7] | [#x06BA-#x06BE]
| [#x06C0-#x06CE] | [#x06D0-#x06D3] | #x06D5
| [#x06E5-#x06E6] | [#x0905-#x0939] | #x093D
| [#x0958-#x0961] | [#x0985-#x098C] | [#x098F-#x0990]
| [#x0993-#x09A8] | [#x09AA-#x09B0] | #x09B2
| [#x09B6-#x09B9] | [#x09DC-#x09DD] | [#x09DF-#x09E1]
| [#x09F0-#x09F1] | [#x0A05-#x0A0A] | [#x0A0F-#x0A10]
| [#x0A13-#x0A28] | [#x0A2A-#x0A30] | [#x0A32-#x0A33]
| [#x0A35-#x0A36] | [#x0A38-#x0A39] | [#x0A59-#x0A5C]
| #x0A5E | [#x0A72-#x0A74] | [#x0A85-#x0A8B] | #x0A8D
| [#x0A8F-#x0A91] | [#x0A93-#x0AA8] | [#x0AAA-#x0AB0]
| [#x0AB2-#x0AB3] | [#x0AB5-#x0AB9] | #x0ABD | #x0AE0
| [#x0B05-#x0B0C] | [#x0B0F-#x0B10] | [#x0B13-#x0B28]
| [#x0B2A-#x0B30] | [#x0B32-#x0B33] | [#x0B36-#x0B39]
| #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61]
| [#x0B85-#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-#x0B95]
| [#x0B99-#x0B9A] | #x0B9C | [#x0B9E-#x0B9F]
| [#x0BA3-#x0BA4] | [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5]
| [#x0BB7-#x0BB9] | [#x0C05-#x0C0C] | [#x0C0E-#x0C10]
| [#x0C12-#x0C28] | [#x0C2A-#x0C33] | [#x0C35-#x0C39]
| [#x0C60-#x0C61] | [#x0C85-#x0C8C] | [#x0C8E-#x0C90]
| [#x0C92-#x0CA8] | [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9]
| #x0CDE | [#x0CE0-#x0CE1] | [#x0D05-#x0D0C]
| [#x0D0E-#x0D10] | [#x0D12-#x0D28] | [#x0D2A-#x0D39]
| [#x0D60-#x0D61] | [#x0E01-#x0E2E] | #x0E30
| [#x0E32-#x0E33] | [#x0E40-#x0E45] | [#x0E81-#x0E82]
| #x0E84 | [#x0E87-#x0E88] | #x0E8A | #x0E8D
| [#x0E94-#x0E97] | [#x0E99-#x0E9F] | [#x0EA1-#x0EA3]
| #x0EA5 | #x0EA7 | [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE]
| #x0EB0 | [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-#x0EC4]
| [#x0F40-#x0F47] | [#x0F49-#x0F69] | [#x10A0-#x10C5]
| [#x10D0-#x10F6] | #x1100 | [#x1102-#x1103]
| [#x1105-#x1107] | #x1109 | [#x110B-#x110C]
| [#x110E-#x1112] | #x113C | #x113E | #x1140 | #x114C
| #x114E | #x1150 | [#x1154-#x1155] | #x1159
| [#x115F-#x1161] | #x1163 | #x1165 | #x1167 | #x1169

Extensible Markup Language (XML) 1.0

Page 28

| [#x116D-#x116E] | [#x1172-#x1173] | #x1175 | #x119E
| #x11A8 | #x11AB | [#x11AE-#x11AF] | [#x11B7-#x11B8]
| #x11BA | [#x11BC-#x11C2] | #x11EB | #x11F0 | #x11F9
| [#x1E00-#x1E9B] | [#x1EA0-#x1EF9] | [#x1F00-#x1F15]
| [#x1F18-#x1F1D] | [#x1F20-#x1F45] | [#x1F48-#x1F4D]
| [#x1F50-#x1F57] | #x1F59 | #x1F5B | #x1F5D
| [#x1F5F-#x1F7D] | [#x1F80-#x1FB4] | [#x1FB6-#x1FBC]
| #x1FBE | [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC]
| [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB] | [#x1FE0-#x1FEC]
| [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | #x2126
| [#x212A-#x212B] | #x212E | [#x2180-#x2182]
| [#x3041-#x3094] | [#x30A1-#x30FA] | [#x3105-#x312C]
| [#xAC00-#xD7A3]

[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029]
[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486]

| [#x0591-#x05A1] | [#x05A3-#x05B9] | [#x05BB-#x05BD]
| #x05BF | [#x05C1-#x05C2] | #x05C4 | [#x064B-#x0652]
| #x0670 | [#x06D6-#x06DC] | [#x06DD-#x06DF]
| [#x06E0-#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED]
| [#x0901-#x0903] | #x093C | [#x093E-#x094C] | #x094D
| [#x0951-#x0954] | [#x0962-#x0963] | [#x0981-#x0983]
| #x09BC | #x09BE | #x09BF | [#x09C0-#x09C4]
| [#x09C7-#x09C8] | [#x09CB-#x09CD] | #x09D7
| [#x09E2-#x09E3] | #x0A02 | #x0A3C | #x0A3E | #x0A3F
| [#x0A40-#x0A42] | [#x0A47-#x0A48] | [#x0A4B-#x0A4D]
| [#x0A70-#x0A71] | [#x0A81-#x0A83] | #x0ABC
| [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9] | [#x0ACB-#x0ACD]
| [#x0B01-#x0B03] | #x0B3C | [#x0B3E-#x0B43]
| [#x0B47-#x0B48] | [#x0B4B-#x0B4D] | [#x0B56-#x0B57]
| [#x0B82-#x0B83] | [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8]
| [#x0BCA-#x0BCD] | #x0BD7 | [#x0C01-#x0C03]
| [#x0C3E-#x0C44] | [#x0C46-#x0C48] | [#x0C4A-#x0C4D]
| [#x0C55-#x0C56] | [#x0C82-#x0C83] | [#x0CBE-#x0CC4]
| [#x0CC6-#x0CC8] | [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6]
| [#x0D02-#x0D03] | [#x0D3E-#x0D43] | [#x0D46-#x0D48]
| [#x0D4A-#x0D4D] | #x0D57 | #x0E31 | [#x0E34-#x0E3A]
| [#x0E47-#x0E4E] | #x0EB1 | [#x0EB4-#x0EB9]
| [#x0EBB-#x0EBC] | [#x0EC8-#x0ECD] | [#x0F18-#x0F19]
| #x0F35 | #x0F37 | #x0F39 | #x0F3E | #x0F3F
| [#x0F71-#x0F84] | [#x0F86-#x0F8B] | [#x0F90-#x0F95]
| #x0F97 | [#x0F99-#x0FAD] | [#x0FB1-#x0FB7] | #x0FB9
| [#x20D0-#x20DC] | #x20E1 | [#x302A-#x302F] | #x3099
| #x309A

[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-#x06F9]
| [#x0966-#x096F] | [#x09E6-#x09EF] | [#x0A66-#x0A6F]
| [#x0AE6-#x0AEF] | [#x0B66-#x0B6F] | [#x0BE7-#x0BEF]
| [#x0C66-#x0C6F] | [#x0CE6-#x0CEF] | [#x0D66-#x0D6F]
| [#x0E50-#x0E59] | [#x0ED0-#x0ED9] | [#x0F20-#x0F29]

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #x0E46
| #x0EC6 | #x3005 | [#x3031-#x3035] | [#x309D-#x309E]
| [#x30FC-#x30FE]

The character classes defined here can be derived from the Unicode character database as follows:

z Name start characters must have one of the categories Ll, Lu, Lo, Lt, Nl.

z Name characters other than Name-start characters must have one of the categories Mc, Me, Mn, Lm, or
Nd.

Extensible Markup Language (XML) 1.0

Page 29

z Characters in the compatibility area (i.e. with character code greater than #xF900 and less than #xFFFE)
are not allowed in XML names.

z Characters which have a font or compatibility decomposition (i.e. those with a "compatibility formatting
tag" in field 5 of the database -- marked by field 5 beginning with a "<") are not allowed.

z The following characters are treated as name-start characters rather than name characters, because the
property file classifies them as Alphabetic: [#x02BB-#x02C1], #x0559, #x06E5, #x06E6.

z Characters #x20DD-#x20E0 are excluded (in accordance with Unicode, section 5.14).

z Character #x00B7 is classified as an extender, because the property list so identifies it.
z Character #x0387 is added as a name character, because #x00B7 is its canonical equivalent.
z Characters ':' and '_' are allowed as name-start characters.

z Characters '-' and '.' are allowed as name characters.

C. XML and SGML (Non-Normative)
XML is designed to be a subset of SGML, in that every valid XML document should also be a conformant
SGML document. For a detailed comparison of the additional restrictions that XML places on documents
beyond those of SGML, see [Clark].

D. Expansion of Entity and Character References (Non-
Normative)
This appendix contains some examples illustrating the sequence of entity- and character-reference
recognition and expansion, as specified in Section 4.4: XML Processor Treatment of Entities and
References.

If the DTD contains the declaration

<!ENTITY example "<p>An ampersand (&#38;) may be escaped
numerically (&#38;#38;) or with a general entity
(&amp;).</p>" >

then the XML processor will recognize the character references when it parses the entity declaration, and
resolve them before storing the following string as the value of the entity "example ":

<p>An ampersand (&) may be escaped
numerically (&#38;) or with a general entity
(&amp;).</p>

A reference in the document to "&example; " will cause the text to be reparsed, at which time the start-
and end-tags of the "p" element will be recognized and the three references will be recognized and
expanded, resulting in a "p" element with the following content (all data, no delimiters or markup):

An ampersand (&) may be escaped
numerically (&) or with a general entity
(&).

A more complex example will illustrate the rules and their effects fully. In the following example, the line
numbers are solely for reference.

1 <?xml version='1.0'?>
2 <!DOCTYPE test [
3 <!ELEMENT test (#PCDATA) >
4 <!ENTITY % xx '%zz;'>
5 <!ENTITY % zz '<!ENTITY tricky "error-prone" >' >
6 %xx;
7]>
8 <test>This sample shows a &tricky; method.</test>

Extensible Markup Language (XML) 1.0

Page 30

This produces the following:

z in line 4, the reference to character 37 is expanded immediately, and the parameter entity "xx " is stored
in the symbol table with the value "%zz; ". Since the replacement text is not rescanned, the reference to
parameter entity "zz " is not recognized. (And it would be an error if it were, since "zz " is not yet
declared.)

z in line 5, the character reference "< " is expanded immediately and the parameter entity "zz " is
stored with the replacement text "<!ENTITY tricky "error-prone" > ", which is a well-
formed entity declaration.

z in line 6, the reference to "xx " is recognized, and the replacement text of "xx " (namely "%zz; ") is
parsed. The reference to "zz " is recognized in its turn, and its replacement text ("<!ENTITY tricky
"error-prone" > ") is parsed. The general entity "tricky " has now been declared, with the
replacement text "error-prone ".

z in line 8, the reference to the general entity "tricky " is recognized, and it is expanded, so the full
content of the "test " element is the self-describing (and ungrammatical) string This sample shows a
error-prone method.

E. Deterministic Content Models (Non-Normative)
For compatibility, it is required that content models in element type declarations be deterministic.

SGML requires deterministic content models (it calls them "unambiguous"); XML processors built using
SGML systems may flag non-deterministic content models as errors.

For example, the content model ((b, c) | (b, d)) is non-deterministic, because given an initial b
the parser cannot know which b in the model is being matched without looking ahead to see which element
follows the b. In this case, the two references to b can be collapsed into a single reference, making the
model read (b, (c | d)) . An initial b now clearly matches only a single name in the content model.
The parser doesn't need to look ahead to see what follows; either c or d would be accepted.

More formally: a finite state automaton may be constructed from the content model using the standard
algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and Ullman [Aho]. In many such algorithms, a
follow set is constructed for each position in the regular expression (i.e., each leaf node in the syntax tree
for the regular expression); if any position has a follow set in which more than one following position is
labeled with the same element type name, then the content model is in error and may be reported as an
error.

Algorithms exist which allow many but not all non-deterministic content models to be reduced
automatically to equivalent deterministic models; see Brüggemann-Klein 1991 [ABK].

F. Autodetection of Character Encodings (Non-
Normative)
The XML encoding declaration functions as an internal label on each entity, indicating which character
encoding is in use. Before an XML processor can read the internal label, however, it apparently has to
know what character encoding is in use--which is what the internal label is trying to indicate. In the general
case, this is a hopeless situation. It is not entirely hopeless in XML, however, because XML limits the
general case in two ways: each implementation is assumed to support only a finite set of character
encodings, and the XML encoding declaration is restricted in position and content in order to make it
feasible to autodetect the character encoding in use in each entity in normal cases. Also, in many cases
other sources of information are available in addition to the XML data stream itself. Two cases may be
distinguished, depending on whether the XML entity is presented to the processor without, or with, any
accompanying (external) information. We consider the first case first.

Because each XML entity not in UTF-8 or UTF-16 format must begin with an XML encoding declaration,
in which the first characters must be '<?xml ', any conforming processor can detect, after two to four octets
of input, which of the following cases apply. In reading this list, it may help to know that in UCS-4, '<' is

Extensible Markup Language (XML) 1.0

Page 31

"#x0000003C " and '?' is "#x0000003F ", and the Byte Order Mark required of UTF-16 data streams is
"#xFEFF".

z 00 00 00 3C : UCS-4, big-endian machine (1234 order)

z 3C 00 00 00 : UCS-4, little-endian machine (4321 order)
z 00 00 3C 00 : UCS-4, unusual octet order (2143)

z 00 3C 00 00 : UCS-4, unusual octet order (3412)
z FE FF : UTF-16, big-endian
z FF FE : UTF-16, little-endian

z 00 3C 00 3F : UTF-16, big-endian, no Byte Order Mark (and thus, strictly speaking, in error)
z 3C 00 3F 00 : UTF-16, little-endian, no Byte Order Mark (and thus, strictly speaking, in error)
z 3C 3F 78 6D : UTF-8, ISO 646, ASCII, some part of ISO 8859, Shift-JIS, EUC, or any other 7-bit, 8-

bit, or mixed-width encoding which ensures that the characters of ASCII have their normal positions,
width, and values; the actual encoding declaration must be read to detect which of these applies, but
since all of these encodings use the same bit patterns for the ASCII characters, the encoding declaration
itself may be read reliably

z 4C 6F A7 94 : EBCDIC (in some flavor; the full encoding declaration must be read to tell which code
page is in use)

z other: UTF-8 without an encoding declaration, or else the data stream is corrupt, fragmentary, or
enclosed in a wrapper of some kind

This level of autodetection is enough to read the XML encoding declaration and parse the character-
encoding identifier, which is still necessary to distinguish the individual members of each family of
encodings (e.g. to tell UTF-8 from 8859, and the parts of 8859 from each other, or to distinguish the
specific EBCDIC code page in use, and so on).

Because the contents of the encoding declaration are restricted to ASCII characters, a processor can reliably
read the entire encoding declaration as soon as it has detected which family of encodings is in use. Since in
practice, all widely used character encodings fall into one of the categories above, the XML encoding
declaration allows reasonably reliable in-band labeling of character encodings, even when external sources
of information at the operating-system or transport-protocol level are unreliable.

Once the processor has detected the character encoding in use, it can act appropriately, whether by
invoking a separate input routine for each case, or by calling the proper conversion function on each
character of input.

Like any self-labeling system, the XML encoding declaration will not work if any software changes the
entity's character set or encoding without updating the encoding declaration. Implementors of character-
encoding routines should be careful to ensure the accuracy of the internal and external information used to
label the entity.

The second possible case occurs when the XML entity is accompanied by encoding information, as in some
file systems and some network protocols. When multiple sources of information are available, their relative
priority and the preferred method of handling conflict should be specified as part of the higher-level
protocol used to deliver XML. Rules for the relative priority of the internal label and the MIME-type label
in an external header, for example, should be part of the RFC document defining the text/xml and
application/xml MIME types. In the interests of interoperability, however, the following rules are
recommended.

z If an XML entity is in a file, the Byte-Order Mark and encoding-declaration PI are used (if present) to
determine the character encoding. All other heuristics and sources of information are solely for error
recovery.

z If an XML entity is delivered with a MIME type of text/xml, then the charset parameter on the
MIME type determines the character encoding method; all other heuristics and sources of information
are solely for error recovery.

z If an XML entity is delivered with a MIME type of application/xml, then the Byte-Order Mark and
encoding-declaration PI are used (if present) to determine the character encoding. All other heuristics
and sources of information are solely for error recovery.

Extensible Markup Language (XML) 1.0

Page 32

These rules apply only in the absence of protocol-level documentation; in particular, when the MIME types
text/xml and application/xml are defined, the recommendations of the relevant RFC will supersede these
rules.

G. W3C XML Working Group (Non-Normative)
This specification was prepared and approved for publication by the W3C XML Working Group (WG).
WG approval of this specification does not necessarily imply that all WG members voted for its approval.
The current and former members of the XML WG are:

Jon Bosak, Sun (Chair)
James Clark (Technical Lead)
Tim Bray, Textuality and Netscape (XML Co-editor)
Jean Paoli, Microsoft (XML Co-editor)
C. M. Sperberg-McQueen, U. of Ill. (XML Co-editor)
Dan Connolly, W3C (W3C Liaison)
Paula Angerstein, Texcel
Steve DeRose, INSO
Dave Hollander, HP
Eliot Kimber, ISOGEN
Eve Maler, ArborText
Tom Magliery, NCSA
Murray Maloney, Muzmo and Grif
Makoto Murata, Fuji Xerox Information Systems
Joel Nava, Adobe
Conleth O'Connell, Vignette
Peter Sharpe, SoftQuad
John Tigue, DataChannel

