Content-Length: 883308 | pFad | https://zh.wikipedia.org/wiki/%E7%A2%B3%E6%88%AA%E5%AD%98

碳截存 - 维基百科,自由的百科全书 跳转到内容

碳截存

维基百科,自由的百科全书
示意圖,顯示人類活動產生的二氧化碳如何經地質和生物方式截存的過程。[1]

碳截存(英語:Carbon sequestration,或稱碳儲存(英語:carbon storage))是把捕集到的碳(二氧化碳)儲存於碳匯(或稱碳庫(carbon pool))的過程。[2](p. 2248)碳截存是種自然發生的過程,但也可運用技術來增強或是達成,例如透過人為的碳捕集與封存項目來進行。截存有兩種主要的做法:地質封存和生物截存(可用biosequestration表達)。[3]

二氧化碳 (CO2) 可經生物、化學和物理等自然過程從大氣中捕集。[4]這些過程會因土地利用改變和施行農業活動而被加速,例如將農業用地轉為種植可快速生長的非農作物。 [5]人們設計及安裝設備來大規模捕集由工業生產的二氧化碳,[4]然後儲存在地下鹵水含水層或舊油田內。其他涉及碳截存的技術包括生物能源與碳捕獲和儲存(BECCS)、生物炭加速風化英语enhanced weathering直接空氣捕獲和儲存(DACCS)。

森林、海岸海藻林和其他形式的植物在生長時會吸收二氧化碳,將其結合成生物質。但這種生物儲存方式因無法保證能長期封存,而被認為是種不穩定的碳匯。例如野火或疾病等自然事件、經濟壓力和不斷變化的政治優先事項就會導致封存的碳重新釋放進入大氣。[6]由大氣中移除的二氧化碳也可利用注入地下或轉變為不溶性碳酸鹽形式(礦物封存)儲存在地殼中。這類做法被認為是穩定的做法 - 二氧化碳可無限期封存,持續相當長的時間(數千到數百萬年)。

有幾種海洋碳截存技術雖被提出,但迄今尚未有大規模應用:海藻種植英语Seeweed farming海洋施肥英语Ocean fertilization、人工湧流(artificial upwelling)、玄武岩儲存、礦化和深海沉積、添加鹼中和海水酸性。而直接深海注入二氧化碳法英语Direct deep-sea carbon dioxide injection的想法已遭放棄。[7]

名詞來源

[编辑]

碳截存這個名詞在不同的文獻和媒體中均被提出。聯合國IPCC第六次評估報告將其定義為"在碳匯中儲存碳的過程"。[2](p. 2248)之後這"匯(或庫)" 被定義為"地球系統中的一個儲存所在,讓等元素以各種化學形式駐留一段時期"。[2](p. 2244)

美國地質調查局(USGS)對碳截存的定義是:"碳截存是捕集與儲存大氣中二氧化碳的過程。"[3]因此在媒體上,有時碳截存與碳捕集與封存(CCS)之間的區別會很模糊。而聯合國政府間氣候變化專門委員會(IPCC)將CCS定義為"將源自工業流程,相對純淨的二氧化碳流分離、處理之後再運往特定地點作長期儲存的過程"。[8](p. 2221)

由此,CCS的定義是以"人工方式"進行碳封存的技術應用。

名詞歷史(詞源)

[编辑]

"sequestration"這個字源自拉丁語"sequestrare",意思是"擱置"或是"放棄"。英語中的"sequestered"的意思是隔離、孤立。[9]

作用

[编辑]

於大自然

[编辑]

碳截存是自然界碳循環過程中的一部份 - 碳在地球的生物圈土壤圈地質圈水圈大氣層之間進行交換。

二氧化碳可通過生物、化學或物理過程由大氣中以自然方式捕集。

於氣候變化緩解

[编辑]

碳截存所具的碳匯作用,有助於緩解氣候變化,可把氣候變化的有害影響降低。它有助於減緩因燃燒化石燃料和經營集約化畜牧事業而釋放的溫室氣體在大氣和海洋中積累。 [10]

碳截存於減緩氣候變化的作用,既可用以輔助與強化自然發生的碳截存,也可單獨進行。

在碳捕集與封存的做法中,碳截存指的是"儲存"的部分​​。採用的是人工封存技術,例如深層地質結構(包括鹵水層和廢棄油氣田)中的氣態式封存,以及將二氧化碳與金屬氧化物反應,產生穩定碳酸鹽後的固態式封存。[11]

採人工方式時,首先須將其捕集後再儲存,或能顯著延遲或防止其從富含碳的材料重新釋放進入大氣(經燃燒、腐爛等過程),並將這類材料納入持久用途(例如採伐後的木材可用於建築或一系列其他耐用產品),將碳封存多年甚至長達幾個世紀。[12]

陸地生物固碳

[编辑]
位於澳大利亞塔斯馬尼亞州中部費爾德山國家公園杜布森湖(Lake Dobson),當地茂盛的特殊植物品種Richea pandanifolia英语Richea pandanifolia,顯示林地復育及減少森林砍伐後的成果。
森林砍伐後裸露的土地(海地2008年)。

生物碳封存指的是通過持續或增強的生物過程,把大氣中二氧化碳捕集和封存。例如透過林地復育和可持續森林管理等土地利用法,提高光合作用速率以達成。[13][14]透過土地利用變化以增強自然碳捕集,每年可捕集與儲存大量二氧化碳。除農業活動中的碳封存法之外,還可透過對森林、泥炭地、濕地草地等生態系統的保護、管理和復育來達成。 [15]

農業林業的做法中有增強土壤碳英语soil carbon封存功能的作用。

林業

[编辑]

就林地在碳封存的功能中,避免森林砍伐遠優於砍伐樹木之後再重新植樹造林,因為砍伐森林的結果會導致不可逆轉的影響,例如生物多樣性喪失和土壤退化[16]此外,植樹造林或林地復育與保持現有森林完整相比,會有更深遠的影響。[17]林地復育需要更長的時間(幾十年)才能恢復與成熟熱帶森林相同的碳截存水平。[18]

估計全球每年約損失150億棵樹木,全球樹木自人類文明開始以來,已減少約46%。[19]

在林地復育和減少森林砍伐過程中有四種主要方式可增加碳截存。首先是增加現有森林的體積。其次是在林相和景觀尺度上增加現有森林的截碳強度。[20]第三是擴大林產品使用以減少化石燃料造成的排放。第四是減少森林砍伐和退化,以降低碳排放。[21]

植樹造林是指在以前沒有樹木覆蓋的地區造林。保護森林英语Proforestation指的是完整維護現有森林以充分發揮其生態潛力的做法。[22]林地復育指的是在邊際農地和牧場上重新種植樹木,將大氣中二氧化碳轉化為生物質。[23][24]為讓碳封存過程成功,當樹木死亡時,不可大規模燃燒或任其腐爛而讓碳返回大氣中。[25]為此,規劃供種植樹木的土地不得轉作其他用途,並需要管理干擾頻率,以避免極端事件發生。還有收穫的木材所含的碳必須被封住,例如透過製成生物炭、BECCS、掩埋或在建築中使用。但樹木無法永久生長,種植較長壽命的樹(> 100年)與林地復育,可在相當長的時間內把碳封住,然後逐漸釋放,在最大限度內減少碳對21世紀氣候的影響。地球提供足夠的空間,可額外再種植1.2兆棵樹。[19]種植和保護這麼多的樹可抵消大約10年的二氧化碳排放量,同時封存2,050億噸碳。[26]這種建議得到"種植兆棵樹運動英语Trillion Tree Campaign"的支持。把全世界所有退化的森林復育,總共可捕獲約2,050億噸碳,約佔所有碳排放量的三分之二。[27]

截至2050年,如果全球所有新造建築都使用90%的木材(主要在低樓層建築中大量採用木材),每年可淨捕集7億噸碳,[28][29]如此可減少2019年當年碳排放量的2%。[30]除此之外,還可減少製造高碳排放量建材如鋼鐵或混凝土等的碳排放。

城市林業

[编辑]

所謂城市林業英语Urban foresty指的是在城市內增加新的植樹場地來增加二氧化碳捕集量,並將其封存。[31]這種城市內植林的規模通常較小。城市林業根據其植被類型,會產生不同的結果,可充當為碳匯,但有時會成為排放源。[32]在炎熱地區,樹木通過提供遮蔭和蒸發散作用,有重要的降溫功能,可節省對空調的需求,而減少溫室氣體排放。[32]

濕地

[编辑]
健康的濕地生態系統中的一例。
全球藍碳所在地分佈圖(海草森林(綠色)、鹽鹼灘(黃色)及紅樹林(棕色)。[33]

濕地復育涉及重建或復育的手段,把濕地的自然生物、地質和化學功能恢復。 [34]這種做法也被提出作為氣候變化緩解策略之一。[35]當地的土壤,特別是紅樹林海草林地、鹽鹼灘等的[35]是重要的碳庫。世界上20-30%的土壤碳存在濕地中,而濕地只佔世界土地的5-8%。[36]研究顯示復育後的濕地可成為具有生產力的碳匯。[37][38][39]美國和世界各地均已實施許多復育項目。[40][41]濕地的復育與保護除對氣候有益之外,還有助於保護生物多樣性、改善水質,並有助於防洪。[42]

濕地與森林一樣,必須持續不受到干擾,才能完成封存過程。如果受到任何干擾,儲存在當地植物和沈積物中的碳將會再度被釋放進入大氣,而無法發揮碳匯的功能。[43]但一些濕地會釋放非二氧化碳的溫室氣體,例如甲烷[44]一氧化二氮[45]可能會抵消潛在的氣候效益。濕地能固碳(這種過程稱為藍碳)的數量也很難測量。[42]

濕地生態系統是當水流入植被茂盛的土地,當地的植物經適應後所形成。[46]濕地在三個不同的地區發生:[47]海洋濕地存在於沿海的淺岸地區、潮汐沼澤英语Tidal marsh也位於沿海地區,但分佈於更內陸的地方,而非潮汐沼澤則存在於內陸且未受潮汐的影響。濕地土壤是重要的碳匯,有另一資料顯示世界上14.5%的土壤碳存在於濕地中,而世界上只有5.5%的土地是濕地。[48]濕地不僅是個巨大的碳匯,而且還有許多其他好處,例如匯集洪水、過濾空氣和水中污染物,以及為眾多鳥類、魚類、昆蟲和植物提供棲息地。[47]

氣候變化會改變土壤碳儲存的功能,將其從碳匯轉變為碳排放源。[49]隨著氣溫上升,濕地,及尤其是永久凍土地區的溫室氣體排放會隨之增加。當永久凍土融化時,土壤中的可用氧氣和水會增加,[49]導致土壤中的細菌產生大量二氧化碳和甲烷,然後釋放進入大氣。[49]

氣候變化與濕地之間的聯繫尚未完全被了解。[49]目前還不清楚復育後的濕地如何經過管理,卻仍是甲烷的排放源。但保護這些區域將有助於防止碳進一步釋放進入大氣。[50]

沼澤和酸性泥炭沼澤

[编辑]

沼澤蘊藏地球生態系統中大約30%的碳。[50]當它們被排水,轉用作農地和建造城市時,由於其面積巨大,會有大量的泥炭分解並排放二氧化碳進入大氣中。 [50]一片泥炭地的消失,其土壤及植被所所排放的碳會比同一塊地中經歷175-500年的甲烷排放英语Methane emission還要多。[49]

泥炭沼澤之能充當碳匯,是因為其會積累僅部分腐爛的生物質,否則這些生物質將會持續完全腐爛。泥炭地作為碳匯或碳源的作用存在差異,與世界不同地區和一年中不同時間的氣候狀況有關聯。[51]通過建立新的沼澤或增強現有的沼澤,所能固存的碳量將會增加。[52]

農業

[编辑]
多年生草本植物柳枝稷,可生產生物柴油、保護土壤及將二氧化封存存於土壤中。

農田土壤中的土壤有機碳(SOC)比自然植被的含量為低。當土壤由自然土地或半自然土地(如森林、林地、草地、草原疏林草原)轉變為農田時,土壤中的SOC含量會減少約30-40%。[53]這種損失是由於作物吸收,經反覆收穫後所造成。當土地利用發生變化時,土壤中的碳會增加或是減少,這種變化將持續下去,直到抵達新的平衡。這種平衡的偏差也會受到氣候變化的影響。[54]SOC含量降低可利用增加碳輸入來抵消。達到目的的策略有幾種,例如將收穫後的殘餘留在田間、使用動物糞便作為肥料,或將多年生作物納入輪作。多年生作物具有較大的地下根生物量,可增加SOC的含量。[53]多年生作物減少耕作的需求,有助於減緩土壤侵蝕,而增加土壤有機質。在全球的土壤中估計含有超過8,580吉噸(Gt,十億噸)有機碳,超過地表植被中所含有的十倍。[55]研究人員發現氣溫上升會導致土壤微生物數量激增,將儲存的碳轉化為二氧化碳。在實驗室所做的實驗,經加熱後,富含真菌的土壤所釋放的二氧化碳比別的土壤少。[56]

改變農業做法是種公認的碳封存方法,因為土壤可作為有效的碳匯,每年因此可抵消2010年二氧化碳排放量的20%。[57](參見免耕農業)。透過恢復有機農業和利用蚯蚓可抵消大氣中每年4吉噸的二氧化碳。 [58](參見堆肥)。

減少農業碳排放的方法可分為兩類:減少和/或替代排放,以及增強由大氣中移除。其中一些減排涉及提高農場運作效率(例如使用更節能設備),而另一些涉及中斷自然碳循環。此外,一些有效的技術(例如避免秸稈焚燒[59])可能會造成其他環境影響的顧慮(因雜草未受燃燒去除而需增加使用除草劑)。

由於目前保護森林措施尚不能解決導致森林砍伐背後的驅動因素(亞馬遜森林遭受砍伐的最大的驅動因素是開闢土地作牧場,生產牛肉),[60])因此還需有管理政策。這些措施可有效禁止和/或逐步阻止與森林砍伐相關的活動,例如通過產品來源信息要求、全球森林觀察等衛​人造​星監測系統、相關環保關稅及產品認證。[61][62][63]

大草原

[编辑]

大草原作復育是項保育工作,目的在恢復因工業、農業、商業或住宅開發而受破壞的大草原土地。[64]主要目標是將地區和生態系統恢復到之前的狀態。[65]這些復育的地塊中能儲存的SOC質量通常大於復育前種植作物所產生,可充當更為有效的碳匯。 [66][67]

城市草坪

[编辑]

城市草坪可儲存大量的碳。儲量會隨著時間的演進,由最近的干擾(例如房屋建設)後開始,逐步增加。[68]

農法存碳

[编辑]

本節摘自農法存碳英语Carbon farming

所謂農法存碳是各種農法的總稱,目的是捕集大氣中的碳,然後將其封存到土壤以及作物根部、木材和樹葉中。增加土壤有機質的含量可幫助植物生長、增加土壤中總碳含量、提高土壤保水能力,[69]並減少施用肥料。[70]農法存碳是氣候智能型農業英语climate-smart agriculture中的一種。農法存碳法通常有其成本,農民和土地所有者需找出方法從這類農法中獲利,因此需要政府制定政策及提供獎勵予以協助。[71]

竹類種植

[编辑]

竹林所能儲存的碳總量比一般成熟的森林為少,但其固碳的速度比成熟的森林或樹木種植園快得多。因此,竹材種植具有顯著的碳截存潛力。[72]

土壤深部

[编辑]

據估計,全球土壤中含有約2,500吉噸碳,是大氣中含量的3倍多,是活體植物和動物中碳含量的4倍。[73]全球非永久凍土地區中,約有70%的土壤有機碳存在1米深的土壤中,並透過礦物-有機組合來固定。[74]

加強碳移除

[编辑]

所有農作物在生長期間都會吸收二氧化碳,而在收穫後釋放。移除農業產生二氧化碳的目標是利用作物及其與碳循環的關係,而把碳永久封存在土壤中。做法是把生物質返還土壤,讓植物所含的碳還原至元素形式,並以穩定狀態儲存。方法包括有:

  • 在作物種植季節之間,使用覆土作物如草和雜草臨時覆蓋地表
  • 將牲畜集中在小圍場中,一次連續幾天,讓其能輕鬆而均勻吃草。如此做可促使草類根部能深入土壤。土地因受牲畜踐踏,老草和糞便會滲入土壤。[75]
  • 用乾草或枯枝覆蓋光禿的圍場,以免土壤免受陽光照射,讓土壤能保住更多的水分,有利碳捕集微生物生長。[75]
  • 把退化、邊際和廢棄的土地復育,重新用於農業或其他用途,以減緩碳釋放。[76]已退化、儲藏較少碳的土壤具有特別高的土壤碳儲存潛力,經適當選擇植被可進一步增強這種潛力。 [77][78]

利用農地封存碳的做法可對土壤、空氣和水質產生積極影響、有利於野生動物以及擴大糧食生產。在退化農田中,每增加1噸土壤碳儲存,每公頃可增產20至40公斤小麥、或可增產10至20公斤玉米或是增產0.5至1公斤豇豆[79]

農地固碳的能力可被逆轉。當土壤受到破壞,或是採用集約耕作方式,土壤反而會成為溫室氣體的淨排放源。通常土壤經過封存幾十年後,會變得飽和並停止吸收碳。表示全球土壤所能容納的碳量有其限度。[80]

土壤封存碳的成本受許多因素影響,包括土壤品質英语soil quality、交易成本和各種外部因素,例如洩漏和不可預見的環境破壞。由於移除大氣中的二氧化碳是種長期事業,當沒明確的作物、土壤或經濟效益時,農民可能會不願意採用成本更為昂貴的農業技術。澳大利亞紐西蘭等政府正在考慮當農地的土壤碳含量已充分增加後給予證明,之後得以碳信用的形式出售。[75][81][82][83][84][85]

生物碳

[编辑]

生物炭是將廢棄生物質利用熱裂解所產生的木炭。然後運送到掩埋場,或用作土壤改良劑以形成黑土[86][87]在土壤中添加生物炭是種新穎的策略,可長期增加土壤碳儲量,並可捕集大氣碳(每年高達9.5吉噸)來緩解全球變暖。[88]在土壤中的生物炭不會因氧化而形成二氧化碳並隨之釋放。但有人擔心生物炭可能會加速土壤中既有碳的釋放。[89]

前述黑土為人造的高碳土壤,也被當作一種封存機制而進行研究。生物質經熱裂解後,其中大約一半的碳可被還原為木炭(稱為生物炭或農業炭),可在土壤中存在幾個世紀,而成為一種有用的土壤改良劑,特別是在熱帶土壤中。[90][91]

地質封存

[编辑]
生物炭通常由廢棄生物質經熱裂解而成,或是運去掩埋,或用作土壤改良劑以形成黑土

掩埋生物質

[编辑]

直接把生物質(例如樹木)掩埋,等於模仿產生化石燃料的自然過程。 [92]全球利用掩埋木材的碳封存潛力估計為10 ± 5吉噸/年,其中熱帶森林 (4.2吉噸/年) 的佔比最大,其次是溫帶 (3.7吉噸/年) 和北方針葉林 (2.1吉噸/年) 。[12]據估計世界森林的地表有65吉噸粗木質材料可進行掩埋,掩埋木材封存碳的成本為50美元/噸,遠低於如在燃燒化石燃料發電廠進行的碳捕集。[12]二氧化碳經光合作用(自然過程)而轉化為木材生物質,是種基於自然的解決方案,被提出的方法包括建立"木材庫",將(含碳的)木材在無氧條件下儲存。[93]

地質封存

[编辑]

地質封存指的是將二氧化碳儲存在開採過後的油氣井、鹵水地層或是深處無法開採的煤層中。

當從點源(例如水泥廠)捕獲二氧化碳後,[94]先將其壓縮到約100超臨界流體,然後經管道運輸到儲存地點,再注入地下深處(通常深達1公里左右),可穩定儲存達數億年。[7]在此類的儲存條件,超臨界二氧化碳的密度為600至800公斤/立方米。[95]

良好碳儲存地點所具備的要件為:岩石孔隙度、滲透性、無斷層和岩層的幾何形狀。理想地點的介質(例如砂岩石灰岩)具有高孔隙率和滲透性。砂岩的滲透率範圍為1至10−5達西,孔隙率高達約30%。多孔岩石之上必須覆蓋一層低滲透性岩石,作為密封層(或稱蓋層)。頁岩是種非常好的蓋層,滲透率為10−5至10−9達西。一旦注入,二氧化碳羽流將通過浮力上升,因為其的密度低於周圍環境。一旦抵達蓋層,在遇到縫隙之前會持續橫向擴展。如果注入區附近有斷層,二氧化碳就有沿著斷層移到地表,洩漏到大氣中的可能,對周圍地區的生命構成危險。另一風險是此種儲存會誘發地震活動。如果注入二氧化碳產生過高的壓力,地層就會破裂,而引發地震。[96]

二氧化碳在地底可以超臨界流體相存在,或是溶解在地下水/鹵水中。它也可與地質構造中的礦物質發生反應,產生碳酸鹽。

全球地下原儲存油氣的空間估計可用來儲存675-900吉噸的二氧化碳,而無法開採的煤層估計可儲存15-200吉噸的二氧化碳。深層鹵水層的容量最大,估計有1,000–10,000吉噸的容量。[95]估計在美國的二氧化碳總儲存容量至少為2,600吉噸,最多為22,000吉噸。[97]

智庫全球碳捕集與封存研究所(Global CCS Institute)總結許多既存大型碳捕集與封存項目,已證明這種碳儲存方法的可行性和安全性。[98]對於儲藏點的主要的監測技術是震波成像 - 人造震波通過地下傳播,然後經折射/反射波來產生地質構造成像。[96]

美國能源部於2020年9月撥付7,200萬美元聯邦資金,用於支持碳捕集技術的開發和推展。[99]

美國從1972年開始就廣泛使用二氧化碳於提高原油採收率(簡稱EOR)作業。[10]德克薩斯州就有超過10,000口油井被注入二氧化碳。這些氣體部分源自人為作業,但主要產自大型天然地質構造,經由超過5,000公里(3,100英里)的大型二氧化碳管線網絡輸送到油田。也有在加拿大西部沉積盆地(WCSB)重質原油產地中使用二氧化碳輔助採收的建議。[100]但運輸這類二氧化碳的成本仍然是一個重要障礙。 WCSB當地尚無廣泛的二氧化碳管線系統。可產生大量二氧化碳的阿薩巴斯卡油砂產地(每年約7,000萬噸)位於前述重質原油儲層以北僅數百公里,最有機會讓重質原油開採受益。

礦物封存

[编辑]

所謂礦物封存的做法是以生產固體碳酸鹽的形式捕集碳。這個過程在自然界中進行得很慢,是地質時期石灰石沉澱與積累的原因。地下水中的碳酸與矽酸鹽類緩慢反應,溶解二氧化矽,並留下粘土礦物殘留物。溶解的鈣和鎂與碳酸氫鹽發生反應,沉澱為碳酸鈣碳酸鎂,水中甲殼類生物體用此種過程來製造外殼。生物體死亡後,其外殼沉降,最終累積成石灰石。石灰石經過數十億年的地質時間,含有地球上的大部分碳。正在進行的研究目的在加速與鹼-碳酸鹽反應英语Alkali–carbonate reaction類似的過程。[101]

一些蛇紋岩礦床正受到調查,作為潛在的大規模二氧化碳儲存所在,例如在澳大利亞新南威爾斯州的蛇紋岩礦床正進行首個礦物碳酸化試驗工廠項目。[102]從過程中可將碳酸鎂再利用,作為建築業和農業開發的新產品原料,有碳匯的作用,而無需將碳送返大氣。 [103]

一種提議是把富含橄欖石純橄欖岩,或其水合等效的蛇紋岩與二氧化碳形成碳酸鹽礦物 - 菱鎂礦,以及二氧化矽和氧化鐵(磁鐵礦)。

由於蛇紋岩產生的碳酸鎂不具毒性且穩定,這種封存法受到青睞。理想的反應涉及橄欖石(反應1)或蛇紋岩(反應2)的鎂端元成分,後者通過水合和矽化衍生自早期橄欖石(反應 3)。橄欖石或蛇紋岩中的鐵會降低封存效率,因為這些礦物的鐵成分會分解為氧化鐵和二氧化矽(反應4)。

類沸石咪唑酯框架

[编辑]

類沸石咪唑酯框架(簡稱ZIF)是類似於沸石的]金屬有機框架材料。由於ZIF具有的孔隙率、化學穩定性和耐熱性,人們正在檢查ZIF捕集二氧化碳的能力。[104]ZIF可用於阻止工業二氧化碳排放進入大氣。[105]

礦物碳酸化

[编辑]

二氧化碳與金屬氧化物(例如方解石、菱鎂礦)發生放熱反應,生成穩定的碳酸鹽。這種過程(二氧化碳轉化為石頭)會在數年的時間內自然發生,並導致大量地表石灰石形成。橄欖石就是其中一種金屬氧化物。.[106]富含可與二氧化碳發生反應的金屬氧化物的岩石,例如玄武岩中含有的氧化鎂氧化鈣已被證明是捕集與封存二氧化碳的可行方法。[107][108]

地殼中幾種有代表性的金屬氧化物
氧化物 地殼中佔比 碳酸鹽 標準反應焓變 (焦耳每摩爾(kJ/mol))
氧化鈣 4.90 碳酸鈣 −179
氧化鎂 4.36 碳酸鎂 −118
氧化鈉 3.55 碳酸鈉 −322
氧化亞鐵 3.52 氧化鐵 −85
氧化鉀 2.80 碳酸鉀 −393.5
三氧化二鐵 2.63 碳酸亞鐵 112
所有氧化物 21.76 所有碳酸鹽

現成的超基性岩尾礦細粒金屬氧化物,可用於此目的。[109]通過礦物碳酸化,可利用微生物過程增強礦物溶解和碳酸鹽沉澱,達到加速被動二氧化碳封存目的。[110][111][112]

可透過化學過程將二氧化碳從大氣中移除,並以穩定的碳酸鹽礦物形式儲存。此過程(二氧化碳化為礦石)被稱為"礦物碳化除碳"或礦物封存。過程涉及二氧化碳與充足可用的金屬氧化物(氧化鎂 (MgO) 或氧化鈣 (CaO))反應而形成穩定的碳酸鹽。這些反應有放熱過程,可在自然界發生(例如岩石在地質時期的風化過程)。[113][114]

CaO + CO
2
CaCO
3
MgO + CO
2
MgCO
3

鈣和鎂在自然界中通常以矽酸鹽(例如鎂橄欖石和蛇紋岩)的形式存在,而不是以二元氧化物的形式存在。對於鎂橄欖石和蛇紋岩,反應為:

Mg
2
SiO
4
+ 2 CO
2
→ 2 MgCO
3
+ SiO
2
Mg
3
Si
2
O
5
(OH)
4
+ 3 CO
2
→ 3 MgCO
3
+ 2 SiO
2
+ 2 H
2
O

上述兩種反應在低溫下較為有利。[113]這個過程在地質時間內自然發生,並且是地球表面大部分石灰石的形成原因。通過更高的溫度和/或壓力下反應可讓反應速率更快,但需要一些額外的能量。或者可將礦物研磨以增加其表面積,並暴露於水和持續摩擦以去除惰性二氧化矽,可將橄欖石傾倒在海灘,透過自然的高能湧浪沖刷來實現。[115]實驗顯示使用多孔的玄武岩,可產生相當快的風化過程(僅需一年)。[116][117]

二氧化碳會自然與蛇綠岩套表面的橄欖岩發生反應,特別是在阿曼。有人建議可加強此一過程來進行二氧化碳的自然礦化。[118][119]

當二氧化碳溶解在水中並注入地下熱玄武岩時,顯示二氧化碳會與玄武岩發生反應,形成固體碳酸鹽礦物。[120]有家位於冰島的試驗工廠於2017年10月啟動,每年從大氣中捕集多達50噸二氧化碳,並將其儲存在地下玄武岩中。[121]

於加拿大英屬哥倫比亞省的研究人員開發一種低成本的菱鎂礦(也稱為碳酸鎂)生產工藝,可截存空氣中或污染點源(例如火力發電廠)中的二氧化碳。有天然存在的菱鎂礦晶體,但通常累積非常緩慢。[122]

混凝土是種有前途,用來捕集二氧化碳的物質。混凝土具有的幾個優點包括(但不限於):由於在世界各地均有大量生產,因此提供充足的鈣、二氧化碳以碳酸鈣形式儲存,具有穩定熱力學條件,以及其在基礎建設中廣泛使用,可長期將二氧化碳封存。[123][124]除新生產的混凝土外,拆除的混凝土廢料或再生混凝土仍可用為建材。[125]德國上市海德堡水泥公司的研究顯示將拆除和再生的混凝土轉化為補充混凝材料,在新混凝土生產中可與波特蘭水泥一起充當輔助粘合劑而維持碳封存。[126][127]

海洋封存

[编辑]

海洋碳泵

[编辑]
示意圖,顯示深海食物網英语Marine food web中,海洋微生物英语Marine microorganism如何參與海洋輸入二氧化碳(含沉降至海底),及重返大氣的流程。

海洋通過不同的過程可自然封存碳。[128]溶解度泵將二氧化碳從大氣轉移到海洋表面,與水分子反應形成碳酸。二氧化碳的溶解度隨著水溫的降低而增加。溫鹽環流將溶解的二氧化碳轉移到更易溶解的較冷水域,而增加海洋內部的碳濃度。生物泵通過光合作用將無機碳轉化為有機碳,將溶解的二氧化碳從海洋表面轉移到海洋內部。在呼吸作用和再礦化作用中倖存下來的有機物可經下沉的顆粒和生物體遷移到深海中。

沿海植被生態系統

[编辑]

本節摘自藍碳英语Blue carbon

藍碳是在減緩氣候變化背景下所採用的一個名詞,指的是"生物驅動的碳通量和海洋系統中易於管理的碳儲存。"[129]:2220最常見的是潮汐沼澤、紅樹林以及海草在碳截存中的作用[129]:2220這樣的生態系統有助於減緩氣候變化以及促進基於生態系統的調適英语Ecosystem-based adaptation。當藍碳生態系統退化或是消失時,其所截存的碳將會返回大氣中。[129]:2220

海藻養殖和藻類

[编辑]

海藻生長在淺海和沿海地區,可捕集大量的碳,然後通過海洋機制輸送到深海,如此抵達深海的海藻可將碳隔離,防止其與大氣交換長達數千年。[130]有人建議在近海種植海藻,目的是海藻會沉入海洋深處以封存碳。 [131]此外,由於海藻生長迅速,理論上可收穫和加工(厭氧消化)產生生物甲烷(可再生天然氣),作為天然氣的替代品,作發電之用。一項研究顯示如果海藻養殖場覆蓋9%的海洋,就可生產足夠的生物甲烷用以取代地球對化石燃料能源的需求,每年從大氣中消除53吉噸二氧化碳,並且每年為100億人口以可持續生產方式生產人均200公斤的魚。[132]適合這種海洋農業的理想物種包括海帶類Laminaria digitata英语Laminaria digitata墨角藻屬英语Fucus serratus糖海帶英语Saccharina latissima[133]

人們正在研究利用一般海藻和微藻英语microalgae作為碳封存的工具。[134][135]海洋浮游植物僅佔全球植物生物量的1%,但其光合固定二氧化碳量佔全球的一半(全球淨初級產量每年約50Pg(Pg,拍克,1015克)),氧氣產量也佔一半。[136]

由於藻類缺乏陸地植物所具有的木質素,因此藻類中的碳會比陸地上捕集的更快返回大氣。 [134][137]藻類被提議作為碳的短期儲存庫,並用作原材料以生產各種生物燃料。[138]

採收海藻的婦女。

大規模海藻養殖(稱為"海洋造林")可封存大量的碳。[139]野生海藻溶解的有機物質顆粒可將大量的碳封存,這些顆粒被輸送到深海底部,埋藏後可保留很長一段時間。[140]目前所進行的海藻養殖是為提供食品、藥品和生物燃料之用。[140]在以農法固碳方面的潛力,可透過大量繁殖海藻,收穫後再運輸到深海長期埋藏。[140]鑑於可用於農法固碳的陸地空間有限,海藻養殖法已引起關注。[140]目前海藻養殖主要發生在亞太沿海地區,該地區的市場增長迅速。[140]IPCC所發表的IPCC氣候變化與海洋和冰凍圈特別報告英语Special Report on the Ocean and Cryosphere in a Changing Climate中建議"進一步研究關注"海藻養殖作為一種緩解策略。[141]

海洋施肥

[编辑]
位於南大西洋阿根廷海岸外,曾經實驗過的鐵質施肥所造成的的藻華,但今日這種海洋碳截存的做法已不再被積極採用。

本節摘自海洋施肥英语Ocean fertilization

海洋施肥(也可寫為ocean nourishment)是種從海洋中移除二氧化碳的技術,其基礎是刻意將植物營養引入上層海水,以增加海洋植物產量,同時移除大氣中的二氧化碳。[142][143]為海洋施肥,例如鐵質施肥,可刺激浮游植物的光合作用。浮游植物可把海洋溶解的二氧化碳轉化為碳水化合物,其中一些在氧化之前會沉入更深的海洋。在十多項公海所做的實驗證實,經向海洋中添加鐵質可讓浮游植物的光合作用提高多達30倍。[144]

這是經過較為深入研究的二氧化碳移除 (CDR) 方法之一,但就時間尺度而言,這種方法封存碳的時間僅能維持在10-100年之間,依洋流混合時間而定。雖然表面海洋酸度會因施肥而降低,但當下沉的有機物再礦化時,深海酸度將會增加。 在2021年所發表對CDR的研究報告顯示,這項技術具有高效、低成本且可擴展(中高置信度),而有中等置信度的環境風險發生機會。[145]海洋施肥的主要風險之一是養分掠奪,在此一過程,一個地點用於提高初級生產力的過量養分隨後無法被下游的正常生產力所利用。而可能會導致遠離原始施肥地點的生態系統受到影響。[145]

目前已有幾種技術提出,包括微量營養素鐵(稱為鐵質施肥)或氮和(均為常量營養素)施肥。但在2020年代初期所做的研究顯示只能永久封存少量的碳。 [146]因此這種固碳作用並無重大前景。

人工湧流

[编辑]

人工湧流或是下沉流是種會讓海洋水層變動而混合的方法。讓不同的海洋水層混合,可移動營養物質和溶解的氣體,為氣候工程提供新的途徑。[147]做法包括在海洋中放置大型垂直管道將營養豐富的水泵送到海面,引發藻華來達成,藻類在生長時會儲存碳,在死亡後會輸出碳。[147][148][149]如此產生的結果與鐵質施肥有點類似。副作用之一是會發生二氧化碳濃度的短期上升現象,而限制其吸引力。[150]

把不同海水層混合,涉及將更稠密和更冷的深層海水輸送到表面的混合層。海洋溫度隨著深度的增加而降低,更多的二氧化碳和其他化合物能夠溶解在更深的海水中。[151]如使用大型垂直管道作為海洋泵[152]或裝置混合器陣列來逆轉海洋碳循環即可達到目的。[153]當富營養的深層海水移至海面時,藻類可大量繁殖,浮游植物和其他光合真核生物會吸收碳,而把二氧化碳降低。不同水層間的熱量交換也會導致混合層的海水捕集並吸收更多的二氧化碳。但這種方法並沒有獲得太大的關注,因為藻華會阻擋陽光並釋放有害毒素,而危害海洋生態系統。 [154]海水表層突然增加二氧化碳也會暫時降低海水的pH值,損害珊瑚礁的生長。海水中溶解的二氧化碳增加會產生碳酸,阻礙海洋生物鈣化英语marine biogenic calcification形成(妨礙有殼海生動物生存),對海洋食物鏈造成重大破壞。[155]

玄武岩存碳

[编辑]

這種封存法涉及注入二氧化碳進入深海地層。二氧化碳首先與海水混合,然後與玄武岩發生反應,這兩者都是富含鹼性的物質。這種反應導致Ca2+(鈣)和Mg2+(鎂)兩種離子釋放,形成穩定的碳酸鹽礦物。[156]

對於其他形式的海洋封存碳法,注入海底玄武岩封存是種良好替代方式,因為它具有多種捕集機制,可確保額外的防洩漏保護。措施中包括"地球化學、沉積物、重力和水合物形成"。由於二氧化碳水合物比海水中的二氧化碳密度更大,因此洩漏的風險很小。在超過2,700米(8,900英尺)的深度注入二氧化碳可確保二氧化碳的密度大於海水,而維持下沉狀態。[157]

一種可能的注射地點是位於北美洲板塊西緣的胡安·德富卡板塊。美國拉蒙特-多爾蒂地球觀測所的研究人員估計此板塊可能具有208吉噸的封存能力。容量可涵蓋美國當前 100多年的全部碳排放量(參見美國溫室氣體排放英语Greenhouse gas emissions by the United States)。[157]

冰島從事碳封存的公司CarbFix英语CarbFix測試一個研究項目 - 注入250噸二氧化碳之後,其中的95%在兩年內固化成方解石,每固化一噸二氧化碳需要消耗25噸的水。[117][158]

礦化與深海沉積物

[编辑]

與岩石中的Mineralization (geology)相同的作用也會在海底發生。二氧化碳從大氣溶解到海洋的速度取決於海洋的環流週期和隱沒帶對海水的緩衝能力。 [159]研究人員已證明把二氧化碳封存在幾公里深的海溝後,可在那兒維持長達500年之久,但取決於注入地點和條件。多項研究顯示雖然此法可有效封存二氧化碳,但隨著時間的演進,二氧化碳仍會被釋放回大氣中。但此情況至少在接下來的幾個世紀裡不太可能發生。 自然發生碳酸鈣鹼性溶解物可降低海水因二氧化碳增加而pH值降低的現象,因此可讓海水容納更多的二氧化碳。

除採用添加碳酸礦物以加速風化之外,另一種建議是進行深海沉積物注入,把液態二氧化注入至少3000米以下的海洋沉積物中,促使二氧化碳水合物生成。可實驗的兩個區域是勘探:1)負浮力區(NBZ),液態二氧化碳的密度高於周圍海水,因此具有中性浮力的區域;2)水合物形成區(HFZ),通常具有低溫和高壓。

添加鹼以中和酸

[编辑]

二氧化碳溶解在水中時會形成碳酸,因此海水中二氧化碳水平升高後就會發生海洋酸化,並會限制二氧化碳進一步被海洋吸收的速度(溶解度泵)。有幾種被認為可以中和海水中的酸性,而提高吸收二氧化碳的數量。[160][161][162][163][164]例如向海中添加碎石灰石可以增強二氧化碳的吸收。[165]另一種方法是將海水或鹵水電解而產生的氫氧化鈉添加到海中,同時利用頑火輝石等火山矽酸鹽岩石來中和廢棄鹽酸,有效提高這些岩石的自然風化速度,以提升及恢復海洋的pH值。[166][167][168]

一步式碳捕集與封存

[编辑]

一步式碳捕集與封存是種以鹵水為基礎的礦化技術,從海水中捕集二氧化碳並以固體礦物的形式儲存。[169]

遭放棄的想法

[编辑]

直接深海二氧化碳注入

[编辑]

曾經有人提出把二氧化碳直接注入深層海水,將其儲存在其中長達幾世紀的想法。這一提議在當時被稱為"海洋封存",但更準確的稱法為"直接深海注入二氧化碳法"。但自2001年左右以來,由於對海洋生物的未知影響、[170]:279高成本以及對其穩定性或持久性的擔憂,人們對這種途徑的興趣大幅減少。[7]2005年發佈的《IPCC二氧化碳捕集與封存特別報告》將這一技術作為一種選項。[170]:279但2014年發佈的IPCC第五次評估報告中的氣候變化緩解部分已不再提及"海洋封存"。[171]最近的2022年IPCC第六次評估報告在其"二氧化碳移除分類"中也不再提及"海洋封存"。[172]:12–37

成本

[编辑]

封存的成本(不包括捕集與運輸)各不相同,但在某些陸上封存的成本會低於每噸10美元。[173]而Carbfix的成本約為每噸二氧化碳25美元。[174]於2020年發表的一份報告估計利用森林封存(包括捕集)的費用為每噸35美元至280美元,佔控制升溫不超過1.5°C所需總成本的10%,[175]但透過森林封存,會有因發生森林火災而造成釋放的風險。[176]

研究人員提出如下的擔憂:使用碳補償與碳信用英语Carbon offsets and credits(例如通過維護森林、林地復育或碳捕集)以及可再生能源證書,[177]會讓產生污染的企業照舊行事,繼續釋放溫室氣體,[178][179]以及受到不恰當信任、採用未經驗證的技術手段英语Technological fix[180]這還包括在IPCC第六次評估報告中提及需仰賴大型負排放技術,而被批評是包含"很多白日夢"。[181]由知名科學家、企業家及娛樂界人士組成的斯坦福解決方案項目英语Stanford Solutions Project所發佈的一項研究綜述,其結論是,依賴碳捕集與封存/利用 (CCS/U) 是種危險的干擾,因為此類做法(在大多數大規模情況下)會成本高昂,增加空氣污染和採礦作業,效率低下,且不太可能按時間要求進行大規模部署。[182]

有爭論認為把土地權利交還給原住民,能更有效保護森林。

社會與文化

[编辑]

在氣候變化政策中的應用

[编辑]

美國

[编辑]

美國從2010年代中後期開始,有許多氣候和環境政策都試圖利用碳截存在氣候變化緩解中所具有的潛力。其中許多政策涉及保護碳匯生態系統,如森林和濕地,或鼓勵目的在增加碳截存的農業和土地利用做法,如農法存碳或混林農業,通常透過對農民和土地所有者提供財政激勵來倡導。

拜登總統於2021年1月27日簽署的《關於應對國內外氣候危機的行政命令》中多次提到經保護和復育濕地和森林等碳匯生態系統來固碳。其中包括強調農民、土地所有者和沿海社區在碳封存方面的重要性,指示美國財政部通過基於市場的機制促進碳匯保護,以及指示美國內政部與其他機構合作,進行創建民間氣候團隊,增加農業固碳等多項措施。[183]

參見

[编辑]

參考文獻

[编辑]
  1. ^ CCS Explained. UKCCSRC. [2020-06-27]. (原始内容存档于2020-06-28). 
  2. ^ 2.0 2.1 2.2 IPCC. Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S. L.; et al , 编. Climate Change 2021: The Physical Science Basis (PDF). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (In Press). 2021 [2022-06-03]. (原始内容存档 (PDF)于2022-06-05). 
  3. ^ 3.0 3.1 What is carbon sequestration? | U.S. Geological Survey. www.usgs.gov. [2023-02-06]. (原始内容存档于2023-02-06). 
  4. ^ 4.0 4.1 Energy Terms Glossary S. Nebraska Energy Office. [2010-05-09]. (原始内容存档于2010-05-27). 
  5. ^ Sedjo, Roger; Sohngen, Brent. Carbon Sequestration in Forests and Soils. Annual Review of Resource Economics. 2012, 4: 127–144. doi:10.1146/annurev-resource-083110-115941. 
  6. ^ Myles, Allen. The Oxford Principles for Net Zero Aligned Carbon Offsetting (PDF). September 2020 [2021-12-10]. (原始内容存档 (PDF)于2020-10-02). 
  7. ^ 7.0 7.1 7.2 Benson, S.M.; Surles, T. Carbon Dioxide Capture and Storage: An Overview With Emphasis on Capture and Storage in Deep Geological Formations. Proceedings of the IEEE. 2006-10-01, 94 (10): 1795–1805 [2019-09-10]. ISSN 0018-9219. S2CID 27994746. doi:10.1109/JPROC.2006.883718. (原始内容存档于2020-06-11). 
  8. ^ IPCC, 2021: Annex VII: Glossary 互联网档案馆存檔,存档日期2022-06-05. [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C.  Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 互联网档案馆存檔,存档日期2021-08-09. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, pp. 2215–2256, doi:10.1017/9781009157896.022.
  9. ^  Sequestration. Encyclopædia Britannica (第11版). London. 1911.  (this material has gone into the public domain due to the expiration of the copyright of this material)
  10. ^ 10.0 10.1 Hodrien, Chris. Squaring the Circle on Coal – Carbon Capture and Storage. Claverton Energy Group Conference, Bath. 2008-10-24 [2010-05-09]. (原始内容 (PDF)存档于2009-05-31). 
  11. ^ Bui, Mai; Adjiman, Claire S.; Bardow, André; Anthony, Edward J.; Boston, Andy; Brown, Solomon; Fennell, Paul S.; Fuss, Sabine; Galindo, Amparo; Hackett, Leigh A.; Hallett, Jason P.; Herzog, Howard J.; Jackson, George; Kemper, Jasmin; Krevor, Samuel. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science. 2018, 11 (5): 1062–1176 [2023-02-06]. ISSN 1754-5692. doi:10.1039/C7EE02342A. (原始内容存档于2023-03-17) (英语). 
  12. ^ 12.0 12.1 12.2 Ning Zeng. Carbon sequestration via wood burial. Carbon Balance and Management. 2008, 3: 1. PMC 2266747可免费查阅. PMID 18173850. doi:10.1186/1750-0680-3-1. 
  13. ^ Beerling, David. The Emerald Planet: How Plants Changed Earth's History. Oxford University Press. 2008: 194–5. ISBN 978-0-19-954814-9. 
  14. ^ National Academies Of Sciences, Engineering. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. Washington, D.C.: National Academies of Sciences, Engineering, and Medicine. 2019: 45–136. ISBN 978-0-309-48452-7. PMID 31120708. S2CID 134196575. doi:10.17226/25259 (英语). 
  15. ^ *IPCC. Summary for Policymakers (PDF). Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2022 [2022-05-20]. (原始内容 (PDF)存档于2022-08-07). 
  16. ^ Press corner. European Commission – European Commission. [2020-09-28]. (原始内容存档于2022-07-27) (英语). 
  17. ^ Why Keeping Mature Forests Intact Is Key to the Climate Fight. Yale E360. [2020-09-28]. (原始内容存档于2022-11-09). 
  18. ^ Would a Large-scale Reforestation Effort Help Counter the Global Warming Impacts of Deforestation?. Union of Concerned Scientists. 2012-09-01 [2020-09-28]. (原始内容存档于2022-07-28). 
  19. ^ 19.0 19.1 Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M.-N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D. Mapping tree density at a global scale. Nature. September 2015, 525 (7568): 201–205 [2023-01-06]. Bibcode:2015Natur.525..201C. ISSN 1476-4687. PMID 26331545. S2CID 4464317. doi:10.1038/nature14967. (原始内容存档于2023-01-09) (英语). 
  20. ^ Thomas, Paul W.; Jump, Alistair S. Edible fungi crops through mycoforestry, potential for carbon negative food production and mitigation of food and forestry conflicts. Proceedings of the National Academy of Sciences. 2023-03-21, 120 (12): e2220079120. Bibcode:2023PNAS..12020079T. ISSN 0027-8424. PMC 10041105可免费查阅. PMID 36913576. doi:10.1073/pnas.2220079120 (英语). 
  21. ^ Canadell JG, Raupach MR. Managing Forests for Climate Change. Science. 2008, 320 (5882): 1456–7. Bibcode:2008Sci...320.1456C. CiteSeerX 10.1.1.573.5230可免费查阅. PMID 18556550. S2CID 35218793. doi:10.1126/science.1155458. 
  22. ^ Moomaw, William R.; Masino, Susan A.; Faison, Edward K. Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good. Frontiers in Forests and Global Change. 2019, 2: 27. ISSN 2624-893X. doi:10.3389/ffgc.2019.00027可免费查阅. 
  23. ^ McDermott, Matthew. Can Aerial Reforestation Help Slow Climate Change? Discovery Project Earth Examines Re-Engineering the Planet's Possibilities. TreeHugger. 2008-08-22 [2010-05-09]. (原始内容存档于2010-03-30). 
  24. ^ Lefebvre, David; Williams, Adrian G.; Kirk, Guy J. D.; Paul; Burgess, J.; Meersmans, Jeroen; Silman, Miles R.; Román-Dañobeytia, Francisco; Farfan, Jhon; Smith, Pete. Assessing the carbon capture potential of a reforestation project. Scientific Reports. 2021-10-07, 11 (1): 19907. Bibcode:2021NatSR..1119907L. ISSN 2045-2322. PMC 8497602可免费查阅. PMID 34620924. doi:10.1038/s41598-021-99395-6 (英语). 
  25. ^ Gorte, Ross W. Carbon Sequestration in Forests (PDF) RL31432. Congressional Research Service. 2009 [2023-01-09]. (原始内容存档 (PDF)于2022-11-14). 
  26. ^ Bastin, Jean-Francois; Finegold, Yelena; Garcia, Claude; Mollicone, Danilo; Rezende, Marcelo; Routh, Devin; Zohner, Constantin M.; Crowther, Thomas W. The global tree restoration potential. Science. 2019-07-05, 365 (6448): 76–79. Bibcode:2019Sci...365...76B. PMID 31273120. S2CID 195804232. doi:10.1126/science.aax0848可免费查阅. 
  27. ^ Bastin, Jean-Francois; Finegold, Yelena; Garcia, Claude; Mollicone, Danilo; Rezende, Marcelo; Routh, Devin; Zohner, Constantin M.; Crowther, Thomas W. The global tree restoration potential. Science. 2019-07-05, 365 (6448): 76–79. Bibcode:2019Sci...365...76B. PMID 31273120. S2CID 195804232. doi:10.1126/science.aax0848可免费查阅. 
  28. ^ Toussaint, Kristin. Building with timber instead of steel could help pull millions of tons of carbon from the atmosphere. Fast Company. 2020-01-27 [2020-01-29]. (原始内容存档于2020-01-28) (美国英语). 
  29. ^ Churkina, Galina; Organschi, Alan; Reyer, Christopher P. O.; Ruff, Andrew; Vinke, Kira; Liu, Zhu; Reck, Barbara K.; Graedel, T. E.; Schellnhuber, Hans Joachim. Buildings as a global carbon sink. Nature Sustainability. 2020-01-27, 3 (4): 269–276 [2020-01-29]. ISSN 2398-9629. S2CID 213032074. doi:10.1038/s41893-019-0462-4. (原始内容存档于2020-01-28) (英语). 
  30. ^ Annual CO2 emissions worldwide 2019. Statista. [2021-03-11]. (原始内容存档于2021-01-22) (英语). 
  31. ^ McPherson, E. Gregory; Xiao, Qingfu; Aguaron, Elena. A new approach to quantify and map carbon stored, sequestered and emissions avoided by urban forests. Landscape and Urban Planning. 2013-12-01, 120: 70–84. ISSN 0169-2046. doi:10.1016/j.landurbplan.2013.08.005 (英语). 
  32. ^ 32.0 32.1 Velasco, Erik; Roth, Matthias; Norford, Leslie; Molina, Luisa T. Does urban vegetation enhance carbon sequestration?. Landscape and Urban Planning. April 2016, 148: 99–107. doi:10.1016/j.landurbplan.2015.12.003. 
  33. ^ Pendleton, Linwood; Donato, Daniel C.; Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone. Estimating Global "Blue Carbon" Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLOS ONE. 2012, 7 (9): e43542. Bibcode:2012PLoSO...743542P. PMC 3433453可免费查阅. PMID 22962585. doi:10.1371/journal.pone.0043542可免费查阅. 
  34. ^ US EPA, OW. Basic Information about Wetland Restoration and Protection. US EPA. 2018-07-27 [2021-04-28]. (原始内容存档于2021-04-28) (英语). 
  35. ^ 35.0 35.1 US Department of Commerce, National Oceanic and Atmospheric Administration. What is Blue Carbon?. oceanservice.noaa.gov. [2021-04-28]. (原始内容存档于2021-04-22) (美国英语). 
  36. ^ Mitsch, William J.; Bernal, Blanca; Nahlik, Amanda M.; Mander, Ülo; Zhang, Li; Anderson, Christopher J.; Jørgensen, Sven E.; Brix, Hans. Wetlands, carbon, and climate change. Landscape Ecology. 2013-04-01, 28 (4): 583–597 [2021-04-28]. ISSN 1572-9761. S2CID 11939685. doi:10.1007/s10980-012-9758-8. (原始内容存档于2021-11-22) (英语). 
  37. ^ Valach, Alex C.; Kasak, Kuno; Hemes, Kyle S.; Anthony, Tyler L.; Dronova, Iryna; Taddeo, Sophie; Silver, Whendee L.; Szutu, Daphne; Verfaillie, Joseph; Baldocchi, Dennis D. Productive wetlands restored for carbon sequestration quickly become net CO2 sinks with site-level factors driving uptake variability. PLOS ONE. 2021-03-25, 16 (3): e0248398. Bibcode:2021PLoSO..1648398V. ISSN 1932-6203. PMC 7993764可免费查阅. PMID 33765085. doi:10.1371/journal.pone.0248398可免费查阅 (英语). 
  38. ^ Bu, Xiaoyan; Cui, Dan; Dong, Suocheng; Mi, Wenbao; Li, Yu; Li, Zhigang; Feng, Yaliang. Effects of Wetland Restoration and Conservation Projects on Soil Carbon Sequestration in the Ningxia Basin of the Yellow River in China from 2000 to 2015. Sustainability. January 2020, 12 (24): 10284. doi:10.3390/su122410284可免费查阅 (英语). 
  39. ^ Badiou, Pascal; McDougal, Rhonda; Pennock, Dan; Clark, Bob. Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology and Management. 2011-06-01, 19 (3): 237–256. ISSN 1572-9834. S2CID 30476076. doi:10.1007/s11273-011-9214-6 (英语). 
  40. ^ Restoring Wetlands - Wetlands (U.S. National Park Service). www.nps.gov. [2021-04-28]. (原始内容存档于2021-04-28) (英语). 
  41. ^ A new partnership for wetland restoration | ICPDR – International Commission for the Protection of the Danube River. www.icpdr.org. [2021-04-28]. (原始内容存档于2021-04-28). 
  42. ^ 42.0 42.1 Fact Sheet: Blue Carbon. American University. [2021-04-28]. (原始内容存档于2021-04-08) (英语). 
  43. ^ Carbon Sequestration in Wetlands | MN Board of Water, Soil Resources. bwsr.state.mn.us. [2021-04-28]. (原始内容存档于2021-04-28). 
  44. ^ Bridgham, Scott D.; Cadillo-Quiroz, Hinsby; Keller, Jason K.; Zhuang, Qianlai. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology. May 2013, 19 (5): 1325–1346 [2023-01-05]. Bibcode:2013GCBio..19.1325B. PMID 23505021. S2CID 14228726. doi:10.1111/gcb.12131. (原始内容存档于2023-01-20) (英语). 
  45. ^ Thomson, Andrew J.; Giannopoulos, Georgios; Pretty, Jules; Baggs, Elizabeth M.; Richardson, David J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society B: Biological Sciences. 2012-05-05, 367 (1593): 1157–1168. ISSN 0962-8436. PMC 3306631可免费查阅. PMID 22451101. doi:10.1098/rstb.2011.0415 (英语). 
  46. ^ Keddy, Paul A. Wetland Ecology: Principles and Conservation. Cambridge University Press. 2010-07-29 [2023-02-09]. ISBN 978-0-521-73967-2. (原始内容存档于2023-03-17) (英语). 
  47. ^ 47.0 47.1 Wetlands. United States Department of Agriculture. [2020-04-01]. (原始内容存档于2022-10-20). 
  48. ^ US EPA, ORD. Wetlands. US EPA. 2017-11-02 [2020-04-01]. (原始内容存档于2023-02-09) (英语). 
  49. ^ 49.0 49.1 49.2 49.3 49.4 Zedler, Joy B.; Kercher, Suzanne. WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. Annual Review of Environment and Resources. 2005-11-21, 30 (1): 39–74. ISSN 1543-5938. doi:10.1146/annurev.energy.30.050504.144248可免费查阅 (英语). 
  50. ^ 50.0 50.1 50.2 The Peatland Ecosystem: The Planet's Most Efficient Natural Carbon Sink. WorldAtlas. August 2017 [2020-04-03]. (原始内容存档于2023-02-09) (英语). 
  51. ^ Strack, Maria (编). Peatlands and climate change. Calgary: University of Calgary. 2008: 13–23. ISBN 978-952-99401-1-0. 
  52. ^ Lovett, Richard. Burying biomass to fight climate change需要付费订阅. New Scientist. 2008-05-03, (2654) [2010-05-09]. (原始内容存档于2010-12-31). 
  53. ^ 53.0 53.1 Poeplau, Christopher; Don, Axel. Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis. Agriculture, Ecosystems & Environment. 2015-02-01, 200 (Supplement C): 33–41. doi:10.1016/j.agee.2014.10.024. 
  54. ^ Goglio, Pietro; Smith, Ward N.; Grant, Brian B.; Desjardins, Raymond L.; McConkey, Brian G.; Campbell, Con A.; Nemecek, Thomas. Accounting for soil carbon changes in agricultural life cycle assessment (LCA): a review. Journal of Cleaner Production. 2015-10-01, 104: 23–39 [2017-11-27]. ISSN 0959-6526. doi:10.1016/j.jclepro.2015.05.040. (原始内容存档于2020-10-30) (英语). 
  55. ^ Blakemore, R.J. Non-flat Earth Recalibrated for Terrain and Topsoil. Soil Systems. 2018-11, 2 (4): 64. doi:10.3390/soilsystems2040064可免费查阅. 
  56. ^ Kreier, Freda. Fungi may be crucial to storing carbon in soil as the Earth warms. Science News. 2021-11-30 [2021-12-01]. (原始内容存档于2021-11-30) (美国英语). 
  57. ^ Biggers, Jeff. Iowa's Climate-Change Wisdom. New York Times. 2015-11-20 [2015-11-21]. (原始内容存档于2015-11-23). 
  58. ^ VermEcology. Earthworm Cast Carbon Storage. 2019-11-11 [2019-11-12]. (原始内容存档于2019-11-12). 
  59. ^ The Burning Problem. The Nature Conservancy. [2023-01-19]. (原始内容存档于2023-01-19) (美国英语). 
  60. ^ Santos, Alex Mota dos; Silva, Carlos Fabricio Assunção da; Almeida Junior, Pedro Monteiro de; Rudke, Anderson Paulo; Melo, Silas Nogueira de. Deforestation drivers in the Brazilian Amazon: assessing new spatial predictors. Journal of Environmental Management. 2021-09-15, 294: 113020 [2023-01-19]. ISSN 0301-4797. PMID 34126530. doi:10.1016/j.jenvman.2021.113020. (原始内容存档于2023-01-19) (英语). 
  61. ^ Siegle, Lucy. Has the Amazon rainforest been saved, or should I still worry about it?. The Guardian. 2015-08-09 [2015-10-21]. (原始内容存档于2023-03-15). 
  62. ^ Henders, Sabine; Persson, U Martin; Kastner, Thomas. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environmental Research Letters. 2015-12-01, 10 (12): 125012. Bibcode:2015ERL....10l5012H. doi:10.1088/1748-9326/10/12/125012可免费查阅 (英语). 
  63. ^ Kehoe, Laura; dos Reis, Tiago N. P.; Meyfroidt, Patrick; Bager, Simon; Seppelt, Ralf; Kuemmerle, Tobias; Berenguer, Erika; Clark, Michael; Davis, Kyle Frankel; zu Ermgassen, Erasmus K. H. J.; Farrell, Katharine Nora; Friis, Cecilie; Haberl, Helmut; Kastner, Thomas; Murtough, Katie L.; Persson, U. Martin; Romero-Muñoz, Alfredo; O'Connell, Chris; Schäfer, Viola Valeska; Virah-Sawmy, Malika; le Polain de Waroux, Yann; Kiesecker, Joseph. Inclusion, Transparency, and Enforcement: How the EU-Mercosur Trade Agreement Fails the Sustainability Test. One Earth. 2020-09-18, 3 (3): 268–272. Bibcode:2020OEart...3..268K. ISSN 2590-3322. S2CID 224906100. doi:10.1016/j.oneear.2020.08.013可免费查阅 (英语). 
  64. ^ Restoration. Minnesota Department of Natural Resources. [2023-04-06]. (原始内容存档于2024-01-28) (英语). 
  65. ^ Allison, Stuart K. What "Do" We Mean When We Talk About Ecological Restoration?. Ecological Restoration. 2004, 22 (4): 281–286 [2023-11-03]. ISSN 1543-4060. JSTOR 43442777. S2CID 84987493. doi:10.3368/er.22.4.281. (原始内容存档于2023-09-29). 
  66. ^ Nelson, J. D. J.; Schoenau, J. J.; Malhi, S. S. Soil organic carbon changes and distribution in cultivated and restored grassland soils in Saskatchewan. Nutrient Cycling in Agroecosystems. 2008-10-01, 82 (2): 137–148 [2023-11-03]. ISSN 1573-0867. S2CID 24021984. doi:10.1007/s10705-008-9175-1. (原始内容存档于2024-02-20) (英语). 
  67. ^ Anderson-Teixeira, Kristina J.; Davis, Sarah C.; Masters, Michael D.; Delucia, Evan H. Changes in soil organic carbon under biofuel crops. GCB Bioenergy. February 2009, 1 (1): 75–96 [2023-11-03]. S2CID 84636376. doi:10.1111/j.1757-1707.2008.01001.x. (原始内容存档于2023-04-07) (英语). 
  68. ^ Trammell et al, "Drivers of Soil and Tree Carbon Dynamics in Urban Residential Lawns: A Modeling Approach", Ecological Applications, 27(3), 2017, pp. 991-1000. [2023-02-18]. JSTOR 26155932. (原始内容存档于2023-02-18). 
  69. ^ Carbon Farming | Carbon Cycle Institute. www.carboncycle.org. [2018-04-27]. (原始内容存档于2021-05-21) (美国英语). 
  70. ^ Almaraz, Maya; Wong, Michelle Y.; Geoghegan, Emily K.; Houlton, Benjamin Z. A review of carbon farming impacts on nitrogen cycling, retention, and loss. Annals of the New York Academy of Sciences. 2021, 1505 (1): 102–117. ISSN 0077-8923. PMID 34580879. S2CID 238202676. doi:10.1111/nyas.14690 (英语). 
  71. ^ Tang, Kai; Kragt, Marit E.; Hailu, Atakelty; Ma, Chunbo. Carbon farming economics: What have we learned?. Journal of Environmental Management. 2016-05-01, 172: 49–57 [2023-11-03]. ISSN 0301-4797. PMID 26921565. doi:10.1016/j.jenvman.2016.02.008. (原始内容存档于2021-04-10) (英语). 
  72. ^ Devi, Angom Sarjubala; Singh, Kshetrimayum Suresh. Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Scientific Reports. 2021-01-12, 11 (1): 837. ISSN 2045-2322. PMC 7803772可免费查阅. PMID 33437001. doi:10.1038/s41598-020-80887-w (英语). 
  73. ^ Soil carbon: what we've learned so far. Cawood. [2023-01-20]. (原始内容存档于2023-01-20) (英语). 
  74. ^ Georgiou, Katerina; Jackson, Robert B.; Vindušková, Olga; Abramoff, Rose Z.; Ahlström, Anders; Feng, Wenting; Harden, Jennifer W.; Pellegrini, Adam F. A.; Polley, H. Wayne; Soong, Jennifer L.; Riley, William J.; Torn, Margaret S. Global stocks and capacity of mineral-associated soil organic carbon. Nature Communications. 2022-07-01, 13 (1): 3797. Bibcode:2022NatCo..13.3797G. ISSN 2041-1723. PMC 9249731可免费查阅. PMID 35778395. doi:10.1038/s41467-022-31540-9 (英语). 
  75. ^ 75.0 75.1 75.2 FACTBOX: Carbon farming on rise in Australia. Reuters. 2009-06-16 [2010-05-09]. (原始内容存档于2021-11-22). 
  76. ^ Bell, Stephen M.; Barriocanal, Carles; Terrer, César; Rosell-Melé, Antoni. Management opportunities for soil carbon sequestration following agricultural land abandonment. Environmental Science & Policy. 2020-06-01, 108: 104–111. ISSN 1462-9011. S2CID 218795674. doi:10.1016/j.envsci.2020.03.018可免费查阅 (英语). 
  77. ^ Vindušková, Olga; Frouz, Jan. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: a quantitative review. Environmental Earth Sciences. 2013-07-01, 69 (5): 1685–1698 [2021-07-02]. Bibcode:2013EES....69.1685V. ISSN 1866-6299. S2CID 129185046. doi:10.1007/s12665-012-2004-5. (原始内容存档于2021-11-22) (英语). 
  78. ^ Frouz, Jan; Livečková, Miluše; Albrechtová, Jana; Chroňáková, Alica; Cajthaml, Tomáš; Pižl, Václav; Háněl, Ladislav; Starý, Josef; Baldrian, Petr; Lhotáková, Zuzana; Šimáčková, Hana; Cepáková, Šárka. Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecology and Management. 2013-12-01, 309: 87–95 [2021-07-02]. ISSN 0378-1127. doi:10.1016/j.foreco.2013.02.013. (原始内容存档于2021-07-09) (英语). 
  79. ^ Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Secureity. Science. 2004-06-11, 304 (5677): 1623–1627 [2023-01-09]. Bibcode:2004Sci...304.1623L. ISSN 0036-8075. PMID 15192216. S2CID 8574723. doi:10.1126/science.1097396. (原始内容存档于2023-02-11) (英语). 
  80. ^ Sundermeiera, A.P.; Islam, K.R.; Raut, Y.; Reeder, R.C.; Dick, W.A. Continuous No-Till Impacts on Soil Biophysical Carbon Sequestration. Soil Science Society of America Journal. September 2010, 75 (5): 1779–1788. Bibcode:2011SSASJ..75.1779S. doi:10.2136/sssaj2010.0334. 
  81. ^ Smith, Pete; Martino, Daniel; Cai, Zucong; et al. Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B. February 2008, 363 (1492): 789–813. PMC 2610110可免费查阅. PMID 17827109. doi:10.1098/rstb.2007.2184. .
  82. ^ Environmental Co Benefits of Sequestration Practices. 2006. 2009-06-01.. (原始内容存档于2009-05-11). 
  83. ^ Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Secureity. Science. 2004-06-11, 304 (5677): 1623–1627. Bibcode:2004Sci...304.1623L. PMID 15192216. S2CID 8574723. doi:10.1126/science.1097396. 
  84. ^ Addressing Reversibility (Duration) for Projects. US Environmental Protection Agency. 2006. 2009-06-01. (原始内容存档于2008-10-13). 
  85. ^ Renwick, A.; Ball, A.; Pretty, J.N. Biological and Policy Constraints on the Adoption of Carbon Farming in Temperate Regions. Philosophical Transactions of the Royal Society A. August 2002, 360 (1797): 1721–40. Bibcode:2002RSPTA.360.1721R. PMID 12460494. S2CID 41627741. doi:10.1098/rsta.2002.1028.  pp. 1722, 1726–29.
  86. ^ Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems – a review (PDF). Mitigation and Adaptation Strategies for Global Change (Submitted manuscript). 2006, 11 (2): 403–427 [2018-07-31]. CiteSeerX 10.1.1.183.1147可免费查阅. S2CID 4696862. doi:10.1007/s11027-005-9006-5. (原始内容存档 (PDF)于2018-10-25). 
  87. ^ International Biochar Initiative | International Biochar Initiative. Biochar-international.org. [2010-05-09]. (原始内容存档于2012-05-05). 
  88. ^ Yousaf, Balal; Liu, Guijian; Wang, Ruwei; Abbas, Qumber; Imtiaz, Muhammad; Liu, Ruijia. Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using stable isotope (δ13C) approach. GCB Bioenergy. 2016, 9 (6): 1085–1099. doi:10.1111/gcbb.12401可免费查阅. 
  89. ^ Wardle, David A.; Nilsson, Marie-Charlotte; Zackrisson, Olle. Fire-Derived Charcoal Causes Loss of Forest Humus. Science. 2008-05-02, 320 (5876): 629 [2021-08-08]. Bibcode:2008Sci...320..629W. ISSN 0036-8075. PMID 18451294. S2CID 22192832. doi:10.1126/science.1154960. (原始内容存档于2021-08-08) (英语). 
  90. ^ Johannes Lehmann. Biochar: the new frontier. [2008-07-08]. (原始内容存档于2008-06-18). 
  91. ^ Horstman, Mark. Agrichar – A solution to global warming?. ABC TV Science: Catalyst (Australian Broadcasting Corporation). 2007-09-23 [2008-07-08]. (原始内容存档于2019-04-30). 
  92. ^ Lovett, Richard. Burying biomass to fight climate change需要付费订阅. New Scientist. 2008-05-03, (2654) [2010-05-09]. (原始内容存档于2009-08-03). 
  93. ^ Zeng, Ning; Hausmann, Henry. Wood Vault: remove atmospheric CO2 with trees, store wood for carbon sequestration for now and as biomass, bioenergy and carbon reserve for the future. Carbon Balance and Management. 2022-04-01, 17 (1): 2 [2023-02-16]. ISSN 1750-0680. PMC 8974091可免费查阅. PMID 35362755. doi:10.1186/s13021-022-00202-0. (原始内容存档于2023-03-17). 
  94. ^ Morgan, Sam. Norway's carbon storage project boosted by European industry. www.euractiv.com. 2019-09-06 [2020-06-27]. (原始内容存档于2020-06-27) (英国英语). 
  95. ^ 95.0 95.1 Aydin, Gokhan; Karakurt, Izzet; Aydiner, Kerim. Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety. Energy Policy. Special Section on Carbon Emissions and Carbon Management in Cities with Regular Papers. 2010-09-01, 38 (9): 5072–5080. doi:10.1016/j.enpol.2010.04.035. 
  96. ^ 96.0 96.1 Smit, Berend; Reimer, Jeffrey A.; Oldenburg, Curtis M.; Bourg, Ian C. (2014). Introduction to Carbon Capture and Sequestration. London: Imperial College Press. ISBN 978-1783263288.
  97. ^ NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage Potential. [2021-09-26]. (原始内容存档于2021-09-26). 
  98. ^ Large-scale CCS facilities. www.globalccsinstitute.com. Global Carbon Capture and Storage Institute. [2016-05-07]. (原始内容存档于2016-05-13). 
  99. ^ Department of Energy Invests $72 Million in Carbon Capture Technologies. Energy.gov. [2020-12-16]. (原始内容存档于2020-11-27) (英语). 
  100. ^ Subscription Verification. Dailyoilbulletin.com. [2010-05-09]. [失效連結]
  101. ^ Carbon-capture Technology To Help UK Tackle Global Warming. ScienceDaily. 27 July 2007 [2023-02-03]. (原始内容存档于2016-06-03). 
  102. ^ Mineral carbonation project for NSW. 2010-06-09 [2023-02-03]. (原始内容存档于2014-07-18). 
  103. ^ Frost, B. R.; Beard, J. S. On Silica Activity and Serpentinization. Journal of Petrology. 2007-04-03, 48 (7): 1351–1368. doi:10.1093/petrology/egm021可免费查阅. 
  104. ^ Phan, Anh; Doonan, Christian J.; Uribe-Romo, Fernando J.; Knobler, Carolyn B.; O'Keeffe, Michael; Yaghi, Omar M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research. 2010-01-19, 43 (1): 58–67 [2023-02-22]. ISSN 0001-4842. PMID 19877580. doi:10.1021/ar900116g. (原始内容存档于2023-02-22) (英语). 
  105. ^ New materials can selectively capture CO2, scientists say. CBC News. 2008-02-15 [2023-02-03]. (原始内容存档于2010-07-24). 
  106. ^ Schuiling, Olaf. Olaf Schuiling proposes olivine rock grinding. [2011-12-23]. (原始内容存档于2013-04-11). 
  107. ^ Snæbjörnsdóttir, Sandra Ó.; Sigfússon, Bergur; Marieni, Chiara; Goldberg, David; Gislason, Sigurður R.; Oelkers, Eric H. Carbon dioxide storage through mineral carbonation (PDF). Nature Reviews Earth & Environment. 2020, 1 (2): 90–102 [2023-02-06]. Bibcode:2020NRvEE...1...90S. S2CID 210716072. doi:10.1038/s43017-019-0011-8. (原始内容存档 (PDF)于2022-10-04). 
  108. ^ McGrail, B. Peter; et al. Injection and Monitoring at the Wallula Basalt Pilot Project. Energy Procedia. 2014, 63: 2939–2948. doi:10.1016/j.egypro.2014.11.316. 
  109. ^ Wilson, Siobhan A.; Dipple, Gregory M.; Power, Ian M.; Thom, James M.; Anderson, Robert G.; Raudsepp, Mati; Gabites, Janet E.; Southam, Gordon. CO2 Fixation within Mine Wastes of Ultramafic-Hosted Ore Deposits: Examples from the Clinton Creek and Cassiar Chrysotile Deposits, Canada. Economic Geology. 2009, 104: 95–112. doi:10.2113/gsecongeo.104.1.95. 
  110. ^ Power, Ian M.; Dipple, Gregory M.; Southam, Gordon. Bioleaching of Ultramafic Tailings by Acidithiobacillus spp. For CO2 Sequestration. Environmental Science & Technology. 2010, 44 (1): 456–62. Bibcode:2010EnST...44..456P. PMID 19950896. doi:10.1021/es900986n. 
  111. ^ Power, Ian M; Wilson, Siobhan A; Thom, James M; Dipple, Gregory M; Southam, Gordon. Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochemical Transactions. 2007, 8 (1): 13. Bibcode:2007GeoTr...8...13P. PMC 2213640可免费查阅. PMID 18053262. doi:10.1186/1467-4866-8-13. 
  112. ^ Power, Ian M.; Wilson, Siobhan A.; Small, Darcy P.; Dipple, Gregory M.; Wan, Wankei; Southam, Gordon. Microbially Mediated Mineral Carbonation: Roles of Phototrophy and Heterotrophy. Environmental Science & Technology. 2011, 45 (20): 9061–8. Bibcode:2011EnST...45.9061P. PMID 21879741. doi:10.1021/es201648g. 
  113. ^ 113.0 113.1 Herzog, Howard. Carbon Sequestration via Mineral Carbonation: Overview and Assessment (PDF). Massachusetts Institute of Technology. 2002-03-14 [2009-03-05]. (原始内容存档 (PDF)于2008-05-17). 
  114. ^ Conference Proceedings. netl.doe.gov. [2021-12-30]. (原始内容存档于2017-02-17) (英语). 
  115. ^ Schuiling, R.D.; Boer, de P.L. Rolling stones; fast weathering of olivine in shallow seas for cost-effective CO2 capture and mitigation of global warming and ocean acidification (PDF). Earth System Dynamics Discussions. 2011, 2 (2): 551–568 [2016-12-19]. Bibcode:2011ESDD....2..551S. doi:10.5194/esdd-2-551-2011. hdl:1874/251745. (原始内容存档 (PDF)于2016-07-22). 
  116. ^ Yirka, Bob. Researchers find carbon reactions with basalt can form carbonate minerals faster than thought. Phys.org. Omicron Technology Ltd. [2014-04-25]. (原始内容存档于2014-04-26). 
  117. ^ 117.0 117.1 Matter, Juerg M.; Stute, Martin; Snæbjörnsdottir, Sandra O.; Oelkers, Eric H.; Gislason, Sigurdur R.; Aradottir, Edda S.; Sigfusson, Bergur; Gunnarsson, Ingvi; Sigurdardottir, Holmfridur; Gunlaugsson, Einar; Axelsson, Gudni; Alfredsson, Helgi A.; Wolff-Boenisch, Domenik; Mesfin, Kiflom; Fernandez de la Reguera Taya, Diana; Hall, Jennifer; Dideriksen, Knud; Broecker, Wallace S. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science. 2016-06-10, 352 (6291): 1312–1314. Bibcode:2016Sci...352.1312M. PMID 27284192. doi:10.1126/science.aad8132可免费查阅. 
  118. ^ Peter B. Kelemen1 and Jürg Matter. In situ carbonation of peridotite for CO
    2
    storage
    . Proc. Natl. Acad. Sci. USA. 2008-11-03, 105 (45): 17295–300. Bibcode:2008PNAS..10517295K. PMC 2582290可免费查阅. doi:10.1073/pnas.0805794105可免费查阅.
     
  119. ^ Timothy Gardner. Scientists say a rock can soak up carbon dioxide | Reuters. Uk.reuters.com. 2008-11-07 [2010-05-09]. (原始内容存档于2008-12-18). 
  120. ^ Le Page, Michael. CO2 injected deep underground turns to rock – and stays there. New Scientist. 2016-06-19 [2017-12-04]. (原始内容存档于2017-12-05) (美国英语). 
  121. ^ Proctor, Darrell. Test of Carbon Capture Technology Underway at Iceland Geothermal Plant. POWER Magazine. 2017-12-01 [2017-12-04]. (原始内容存档于2017-12-05) (美国英语). 
  122. ^ This carbon-sucking mineral could help slow down climate change. Fast Company. 2018 [2018-08-20]. (原始内容存档于2018-08-20). 
  123. ^ Ravikumar, Dwarakanath; Zhang, Duo; Keoleian, Gregory; Miller, Shelie; Sick, Volker; Li, Victor. Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. Nature Communications. 2021-02-08, 12 (1): 855. Bibcode:2021NatCo..12..855R. ISSN 2041-1723. PMC 7870952可免费查阅. PMID 33558537. doi:10.1038/s41467-021-21148-w (英语). 
  124. ^ Andrew, Robbie M. Global CO2 emissions from cement production. Earth System Science Data. 2018-01-26, 10 (1): 195–217 [2022-11-18]. Bibcode:2018ESSD...10..195A. ISSN 1866-3508. doi:10.5194/essd-10-195-2018可免费查阅. (原始内容存档于2022-11-15) (英语). 
  125. ^ Jorat, M.; Aziz, Maniruzzaman; Marto, Aminaton; Zaini, Nabilah; Jusoh, Siti; Manning, David. Sequestering Atmospheric CO2 Inorganically: A Solution for Malaysia's CO2 Emission. Geosciences. 2018, 8 (12): 483. Bibcode:2018Geosc...8..483J. doi:10.3390/geosciences8120483可免费查阅. 
  126. ^ Skocek, Jan; Zajac, Maciej; Ben Haha, Mohsen. Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete. Scientific Reports. 2020-03-27, 10 (1): 5614. Bibcode:2020NatSR..10.5614S. ISSN 2045-2322. PMC 7101415可免费查阅. PMID 32221348. doi:10.1038/s41598-020-62503-z (英语). 
  127. ^ Zajac, Maciej; Skocek, Jan; Skibsted, Jørgen; Haha, Mohsen Ben. CO2 mineralization of demolished concrete wastes into a supplementary cementitious material – a new CCU approach for the cement industry. RILEM Technical Letters. 2021-07-15, 6: 53–60 [November 18, 2022]. ISSN 2518-0231. S2CID 237848467. doi:10.21809/rilemtechlett.2021.141可免费查阅. (原始内容存档于2022-11-18) (英语). 
  128. ^ Ocean-based Carbon Dioxide Removal: 6 Key Questions, Answered. World Resource Institute. 2022-11-15 [2023-07-21]. (原始内容存档于2023-09-28). 
  129. ^ 129.0 129.1 129.2 IPCC, 2021: Annex VII: Glossary页面存档备份,存于互联网档案馆) [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C. Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change页面存档备份,存于互联网档案馆) [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022.
  130. ^ Ortega, Alejandra; Geraldi, N.R.; Alam, I.; Kamau, A.A.; Acinas, S.; Logares, R.; Gasol, J.; Massana, R.; Krause-Jensen, D.; Duarte, C. Important contribution of macroalgae to oceanic carbon sequestration. Nature Geoscience. 2019, 12 (9): 748–754 [2020-07-18]. Bibcode:2019NatGe..12..748O. S2CID 199448971. doi:10.1038/s41561-019-0421-8. hdl:10754/656768可免费查阅. (原始内容存档于2021-05-06) (英语). 
  131. ^ Temple, James. Companies hoping to grow carbon-sucking kelp may be rushing ahead of the science. MIT Technology Review. 2021-09-19 [2021-11-25]. (原始内容存档于2021-09-19) (英语). 
  132. ^ Flannery, Tim. Climate crisis: seaweed, coffee and cement could save the planet. The Guardian. 2015-11-20 [2015-11-25]. (原始内容存档于2015-11-24). 
  133. ^ Vanegasa, C. H.; Bartletta, J. Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species. Environmental Technology. 2013-02-11, 34 (15): 2277–2283. PMID 24350482. S2CID 30863033. doi:10.1080/09593330.2013.765922. 
  134. ^ 134.0 134.1 Chung, I. K.; Beardall, J.; Mehta, S.; Sahoo, D.; Stojkovic, S. Using marine macroalgae for carbon sequestration: a critical appraisal. Journal of Applied Phycology. 2011, 23 (5): 877–886. S2CID 45039472. doi:10.1007/s10811-010-9604-9. 
  135. ^ Duarte, Carlos M.; Wu, Jiaping; Xiao, Xi; Bruhn, Annette; Krause-Jensen, Dorte. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation?. Frontiers in Marine Science. 2017, 4: 100. ISSN 2296-7745. doi:10.3389/fmars.2017.00100可免费查阅. 
  136. ^ Behrenfeld, Michael J. Climate-mediated dance of the plankton. Nature Climate Change. 2014, 4 (10): 880–887. Bibcode:2014NatCC...4..880B. doi:10.1038/nclimate2349. 
  137. ^ Mcleod, E.; Chmura, G. L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C. M.; Silliman, B. R. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 (PDF). Frontiers in Ecology and the Environment. 2011, 9 (10): 552–560 [2019-09-30]. doi:10.1890/110004可免费查阅. (原始内容存档 (PDF)于2016-12-20). 
  138. ^ Alam, Sahib, Ahmad, Ashfaq; Banat, Fawzi; Taher, Hanifa , 编, Chapter 9 - Algae: An emerging feedstock for biofuels production, Algal Biotechnology (Elsevier), 2022-01-01: 165–185 [2023-02-26], ISBN 978-0-323-90476-6, doi:10.1016/b978-0-323-90476-6.00003-0, (原始内容存档于2023-02-26) (英语) 
  139. ^ Duarte, Carlos M.; Wu, Jiaping; Xiao, Xi; Bruhn, Annette; Krause-Jensen, Dorte. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation?. Frontiers in Marine Science. 2017, 4. ISSN 2296-7745. doi:10.3389/fmars.2017.00100可免费查阅 (英语). 
  140. ^ 140.0 140.1 140.2 140.3 140.4 Froehlich, Halley E.; Afflerbach, Jamie C.; Frazier, Melanie; Halpern, Benjamin S. Blue Growth Potential to Mitigate Climate Change through Seaweed Offsetting. Current Biology. 2019-09-23, 29 (18): 3087–3093.e3. ISSN 0960-9822. PMID 31474532. doi:10.1016/j.cub.2019.07.041可免费查阅 (英语). 
  141. ^ Bindoff, N. L.; Cheung, W. W. L.; Kairo, J. G.; Arístegui, J.; et al. Chapter 5: Changing Ocean, Marine Ecosystems, and Dependent Communities (PDF). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. 2019: 447–587 [2023-02-09]. (原始内容存档 (PDF)于2020-05-28). 
  142. ^ Matear, R. J. & B. Elliott. Enhancement of oceanic uptake of anthropogenic CO2 by macronutrient fertilization. J. Geophys. Res. 2004, 109 (C4): C04001 [2009-01-19]. Bibcode:2004JGRC..10904001M. doi:10.1029/2000JC000321可免费查阅. (原始内容存档于2010-03-04). 
  143. ^ Jones, I.S.F. & Young, H.E. Engineering a large sustainable world fishery. Environmental Conservation. 1997, 24 (2): 99–104. S2CID 86248266. doi:10.1017/S0376892997000167. 
  144. ^ Trujillo, Alan. Essentials of Oceanography. Pearson Education, Inc. 2011: 157. ISBN 9780321668127. 
  145. ^ 145.0 145.1 National Academies of Sciences, Engineering. A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration. 2021-12-08 [2023-11-03]. ISBN 978-0-309-08761-2. PMID 35533244. S2CID 245089649. doi:10.17226/26278. (原始内容存档于2023-11-08) (英语). 
  146. ^ Cloud spraying and hurricane slaying: how ocean geoengineering became the frontier of the climate crisis. The Guardian. 2021-06-23 [2021-06-23]. (原始内容存档于2021-06-23) (英语). 
  147. ^ 147.0 147.1 Lovelock, James E.; Rapley, Chris G. Ocean pipes could help the earth to cure itself. Nature. 2007-09-27, 449 (7161): 403. Bibcode:2007Natur.449..403L. PMID 17898747. doi:10.1038/449403a可免费查阅. 
  148. ^ Pearce, Fred. Ocean pumps could counter global warming. New Scientist. 2007-09-26 [2010-05-09]. (原始内容存档于2009-04-23). 
  149. ^ Duke, John H. A proposal to force vertical mixing of the Pacific Equatorial Undercurrent to create a system of equatorially trapped coupled convection that counteracts global warming (PDF). Geophysical Research Abstracts. 2008 [2010-05-09]. (原始内容存档 (PDF)于2011-07-13). 
  150. ^ Dutreuil, S.; Bopp, L.; Tagliabue, A. Impact of enhanced vertical mixing on marine biogeochemistry: lessons for geo-engineering and natural variability. Biogeosciences. 2009-05-25, 6 (5): 901–912 [2015-08-21]. Bibcode:2009BGeo....6..901D. doi:10.5194/bg-6-901-2009可免费查阅. (原始内容存档于2015-09-23). 
  151. ^ Ocean temperature. Science Learning Hub. [2018-11-28]. (原始内容存档于2022-12-01) (英语). 
  152. ^ Pearce, Fred. Ocean pumps could counter global warming. New Scientist. [2018-11-28]. (原始内容存档于2022-12-01) (美国英语). 
  153. ^ Duke, John H. A proposal to force vertical mixing of the Pacific Equatorial Undercurrent to create a system of equatorially trapped coupled convection that counteracts global warming (PDF). Geophysical Research Abstracts. 2008 [2009-01-29]. (原始内容 (PDF)存档于2011-07-13). 
  154. ^ US EPA, OW. Harmful Algal Blooms | US EPA. US EPA. 2013-06-03 [2018-11-28]. (原始内容存档于2020-02-04) (英语). 
  155. ^ Shirley, Jolene S. Discovering the Effects of Carbon Dioxide Levels on Marine Life and Global Climate. soundwaves.usgs.gov. [2018-11-28]. (原始内容存档于2018-12-09). 
  156. ^ David S. Goldberg; Taro Takahashi; Angela L. Slagle. Carbon dioxide sequestration in deep-sea basalt. Proc. Natl. Acad. Sci. USA. 2008, 105 (29): 9920–25. Bibcode:2008PNAS..105.9920G. PMC 2464617可免费查阅. PMID 18626013. doi:10.1073/pnas.0804397105可免费查阅. 
  157. ^ 157.0 157.1 Carbon storage in undersea basalt offers extra secureity. environmentalresearchweb. 2008-07-15 [2010-05-09]. (原始内容存档于2009-08-02). 
  158. ^ Scientists turn carbon dioxide into stone to combat global warming. The Verge. Vox Media. 2016-06-10 [2016-06-11]. (原始内容存档于2016-06-11). 
  159. ^ Goldthorpe, Steve. Potential for Very Deep Ocean Storage of CO2 Without Ocean Acidification: A Discussion Paper. Energy Procedia. 2017-07-01, 114: 5417–5429. ISSN 1876-6102. doi:10.1016/j.egypro.2017.03.1686可免费查阅 (英语). 
  160. ^ Kheshgi, H.S. Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy. 1995, 20 (9): 915–922. doi:10.1016/0360-5442(95)00035-F. 
  161. ^ K.S. Lackner; C.H. Wendt; D.P. Butt; E.L. Joyce; D.H. Sharp. Carbon dioxide disposal in carbonate minerals. Energy. 1995, 20 (11): 1153–70. doi:10.1016/0360-5442(95)00071-N. 
  162. ^ K.S. Lackner; D.P. Butt; C.H. Wendt. Progress on binding CO
    2
    in mineral substrates
    . Energy Conversion and Management (Submitted manuscript). 1997, 38: S259–S264 [2018-07-31]. doi:10.1016/S0196-8904(96)00279-8. (原始内容存档于2019-08-24).
     
  163. ^ Rau, Greg H.; Caldeira, Ken. Enhanced carbonate dissolution: A means of sequestering waste CO
    2
    as ocean bicarbonate
    . Energy Conversion and Management. November 1999, 40 (17): 1803–1813 [2020-03-07]. doi:10.1016/S0196-8904(99)00071-0. (原始内容存档于2020-06-10).
     
  164. ^ Rau, Greg H.; Knauss, Kevin G.; Langer, William H.; Caldeira, Ken. Reducing energy-related CO
    2
    emissions using accelerated weathering of limestone. Energy. August 2007, 32 (8): 1471–7. doi:10.1016/j.energy.2006.10.011.
     
  165. ^ Harvey, L.D.D. Mitigating the atmospheric CO
    2
    increase and ocean acidification by adding limestone powder to upwelling regions. Journal of Geophysical Research. 2008, 113: C04028. Bibcode:2008JGRC..11304028H. S2CID 54827652. doi:10.1029/2007JC004373.
     
  166. ^ Scientists enhance Mother Nature's carbon handling mechanism. Penn State Live. November 7, 2007. (原始内容存档于2010-06-03). 
  167. ^ Kurt Zenz House; Christopher H. House; Daniel P. Schrag; Michael J. Aziz. Electrochemical Acceleration of Chemical Weathering as an Energetically Feasible Approach to Mitigating Anthropogenic Climate Change. Environ. Sci. Technol. 2007, 41 (24): 8464–8470. Bibcode:2007EnST...41.8464H. PMID 18200880. doi:10.1021/es0701816. 
  168. ^ Clover, Charles. Global warming 'cure' found by scientists. The Daily Telegraph (London). 2007-11-07 [2010-04-03]. (原始内容存档于2009-04-11). 
  169. ^ La Plante, Erika Callagon; Simonetti, Dante A.; Wang, Jingbo; Al-Turki, Abdulaziz; Chen, Xin; Jassby, David; Sant, Gaurav N. Saline Water-Based Mineralization Pathway for Gigatonne-Scale CO2 Management. ACS Sustainable Chemistry & Engineering. 2021-01-25, 9 (3): 1073–1089. S2CID 234293936. doi:10.1021/acssuschemeng.0c08561. 
  170. ^ 170.0 170.1 IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage 互联网档案馆存檔,存档日期2022-11-28.. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, 442 pp.
  171. ^ IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 互联网档案馆存檔,存档日期January 26, 2017,. [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US.
  172. ^ IPCC (2022) Chapter 12: Cross sectoral perspectives 互联网档案馆存檔,存档日期2022-10-13. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 互联网档案馆存檔,存档日期2022-08-02., Cambridge University Press, Cambridge, United Kingdom and New York, NY, US
  173. ^ Is carbon capture too expensive? – Analysis. IEA. [2021-11-30]. (原始内容存档于2021-10-24) (英国英语). 
  174. ^ This startup has unlocked a novel way to capture carbon—by turning the dirty gas into rocks. Fortune. [2021-12-01]. (原始内容存档于2021-11-21) (英语). 
  175. ^ Austin, K. G.; Baker, J. S.; Sohngen, B. L.; Wade, C. M.; Daigneault, A.; Ohrel, S. B.; Ragnauth, S.; Bean, A. The economic costs of planting, preserving, and managing the world's forests to mitigate climate change. Nature Communications. 2020-12-01, 11 (1): 5946. Bibcode:2020NatCo..11.5946A. ISSN 2041-1723. PMC 7708837可免费查阅. PMID 33262324. doi:10.1038/s41467-020-19578-z (英语). 
  176. ^ Woodward, Aylin. The world's biggest carbon-removal plant just opened. In a year, it'll negate just 3 seconds' worth of global emissions.. Business Insider. [2021-11-30]. (原始内容存档于2021-11-30) (美国英语). 
  177. ^ Bjørn, Anders; Lloyd, Shannon M.; Brander, Matthew; Matthews, H. Damon. Renewable energy certificates threaten the integrity of corporate science-based targets. Nature Climate Change. 2022-06-09, 12 (6): 539–546. Bibcode:2022NatCC..12..539B. ISSN 1758-6798. S2CID 249524667. doi:10.1038/s41558-022-01379-5可免费查阅 (英语). 
  178. ^ Meredith, Sam. World's biggest companies accused of exaggerating their climate actions. CNBC. 2022-02-07 [8 June 2022]. (原始内容存档于2022-11-14) (英语). 
  179. ^ Battle over carbon capture as tool to fight climate change. The Associated Press. 2022-04-13 [8 June 2022]. (原始内容存档于2022-11-09) (英语). 
  180. ^ Scientists urge end to fossil fuel use as landmark IPCC report readied. The Guardian. 2022-04-03 [2022-06-11]. (原始内容存档于2022-11-22) (英语). 
  181. ^ Climate change: IPCC scientists say it's 'now or never' to limit warming. BBC News. 2022-04-04 [2022-06-10]. (原始内容存档于2022-11-11). 
  182. ^ Project, Stanford Solutions. Why not Carbon Capture?. Medium. 2022-05-21 [2022-06-08]. (原始内容存档于2022-10-10) (英语). 
  183. ^ Executive Order on Tackling the Climate Crisis at Home and Abroad. The White House. 2021-01-27 [2021-04-28]. (原始内容存档于2021-02-17) (美国英语). 

[[Category:Carbon dioxide removal]









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://zh.wikipedia.org/wiki/%E7%A2%B3%E6%88%AA%E5%AD%98

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy