Integrated Management and Visualization of Animal Telemetry Observations

MTS/IEEE Washington DC, Oct 20-22

Name: Dr. Hassan Moustahfid

Institution: US IOOS®

Contact info. Hassan.Moustahfid@noaa.gov

EYES ON THE OCEAN

Outline

- Opening Remarks
 - o AT data applications
 - Complexity (different type of telemetry tags and many needs)
 - IOOS ATN Data Flow vision
- IOOS ATN DAC
- Closing remarks and next steps
- Wrap up, Q/A

Many tag types

Receiver

Image Credit: POST

Challenges of Animal Telemetry Data e.g. Acoustic Telemetry Data

- Three interlocking parts (Receiver Metadata, Tag Metadata, and Detections) must be assembled to recreate an animal track
- Must keep track of Receiver Histories
- Metadata may be fairly complex:
 - Instrument attributes (e.g. tag and receiver programming)
 - Positions and position errors
 - Time (tracks)
 - Quality control
 - Attribution for objects served
 - Some of the receivers are carried by other large animals and Gliders.

Procedures of collecting oceanographic data (Hydrographic profiles) from CTD SRDL tags on e-seals or Sharks

Entity Relationship Diagram Metadata convention for animal acoustic telemetry data exchange

- datacenter_attribute
- 2. project_attributes
- 3. manmade_platforms
- 4. receivers
- 5. recover_offloads
- 6. tag_releases
- 7. animals
- 8. detections
- 9. tracks

AAT Observations System Design – Service Connections. Access to all data via ERDDAP:

RDBMS > netCDF files (CDM) > ERDDAP. Consumers & Applications Participating Resources From Animal Acoustic Telemetry Data Web Services Originators (AAT) **Human User Interactions** Download. *Manual transfer to MS Access. Parallel Excel, GIS, Matlab, Google Earth. Web Services: Browser Integration OTN-POST *Browser-based Discovery, 1. ERDDAP Database Display, Mapping, Analysis. (PostgreSQL) Plug into web UI 2. GeoServer Direct Analytical Integration *Matlab. R. NetCDF tools *EDC ArcGIS Plugin Data & Metadata Standards, Practices ISO, CF/netcdf, DwC,

> ERDDAP TableDap database & netCDF Connectors. Mappings.

Data Web Service Requests or Connectors (Ascii, kml, netcdf, xml, matlab files, etc.)

What is ERDDAP?

Solves problem of different communities using different services.

get the data you want, in the format you want, including: csv, netCDF, kml, mat

ERDDAP > tabledap > Make A Graph

ERDDAP > List of All Datasets

Also web accessible (WAF) ISO 9115-2 and FDGC .xml discovery metadata files

Ħ

IOOS ATN Data Assembly Center (DAC)

http://oceanview.pfeg.noaa.g ov/ATN/

- 48 different species (sharks, sea turtles, seals, whales, tuna, squid and other taxa)
- Years: 2000-2015
- 7 tag types or platforms
- Real time reporting e-seals and sharks.
- Data in GTS -- WMO code-Q9900....

Quick Info 2 Comments/Questions?

Quick Info 2 Comments/Questions?

Quick Info 2

Quick Info 2 Comments/Questions?

Atlantic Bluefin Tuna: Where they go?

Reduce Bycatch of Loggerhead Turtles in Hawaii in Longline Fishery

avoid fishing between solid blacer. 5°F and 65.5°F lines to reduce turtle interactions

PACIFIC ISLANDS FISHERIES SCIENCE CENTER ECOSYSTEMS AND OCEANOGRAPHY DIVISION 2570 Dole Street, Honolulu, HI 96822

http://www.pifsc.noaa.gov/eod/turtlewatch.php contact: Evan.Howell@noaa.gov

Data provided by Central Pacific CoastWatch node

http://sos.noaa.gov/Datasets/dataset.php?id=181#

Closing Remarks

Backwards

Defining the specifications was hardest part. Creating and refining a specific data feed was relatively easy. The demonstration services have been implemented and appear useful.

Forwards ...

- Continue integrating ATN data and explore ways to visualize complex data.
- Develop work plan for further collaboration to fully operationalize the system.
- Expand user hase ocean

Acknowledgment

Dr. Randall Kochevar, Stanford
University, Hopkins Marine Station
Michael Weise, US NAVY/ONR
Barbara Block, Stanford University,
Hopkins Marine Station
Lynn Dewitt, NOAA SWFSC

O NATIONAL OCEAN

DEPARTMENT OF

THANK YOU

https://code.google.com/p/ioostech/wiki/AnimalAcousticTelDatahttp://ioos.github.io/animal-telemetry/passive-acoustic/

http://oceanview.pfeg.noaa.gov/ATN/ http://www.ioos.noaa.gov/observing/animal_telemetry/welcome.html

