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1. Proxy database

1.1 Database

The database used in this study is composed of 80 published high-resolution temperature records derived from alkenones
(n=32), planktic foraminiferal Mg/Ca (n=26), microfossil assemblages (n=6), ice-core stable isotopes (n=6), pollen (n=4), TEX3s
(n=4), and MBT/CBT (n=2) (Table S1). Only records of reasonably high resolution (generally < 500 years) and firm chronological
control (generally > 4 radiocarbon dates) were included. Sixty-seven records are dated by radiocarbon, six are ice cores dated by layer
counting and/or glaciological modeling, four are dated by a combination of radiocarbon and tuning to layer-counted records, two are
entirely tuned to other radiometric chronologies, and one is dated by biostratigraphy.

Table S1. The deglacial proxy temperature database used in this study.

Lat Lon Elev/Depth Resolution
# Location Core Proxy Reference ©) ©) (m) Chronology (yr)
Cuffey and Clow, 1997";
ice core 8'%0 and Andersen et al., 20062,
1 NGRIP, Greenland - borehole temp Rasmussen et al., 2006° 75.1 -42.3 2917 layer counted 20
Cuffey and Clow, 1997";
ice core 3'°0 and Rasmussen et al., 2006°,
2 GRIP, Greenland - borehole temp 2007* 72.6 -37.6 3200 layer counted 20
3 Burial Lake, Alaska - chironomids Kurek et al., 2009° 68.4 -159.2 460 e 352
4 Eastern Beringia (A) - pollen Viau et al., 2008° 67.5 -165 - c 101
5 Eastern Beringia (B) - pollen Viau et al., 2008° 67.5 -137.5 - c 101
6 Eastern Beringia (C) - pollen Viau et al., 2008° 62.5 -165 - c 124
7 Eastern Beringia (D) - pollen Viau et al., 2008° 62.5 -137.5 - c 101
C and SST tuned
8 Northeast Atlantic NA 87-22 foram assemblages Waelbroeck et al., 20017 55.5 -14.7 -2161 to Greenland 246
C and N.
9 Northeast Atlantic MDO01-2461 Mg/Ca Peck et al., 2008" 51.8 -12.9 -1153 pachyderma (s.) % 116
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1.2 Data density

A total of ~8400 proxy temperature measurements and 636 radiocarbon dates
among the 80 records lie within the interval 22-6.5 ka (Figure Sla,b). The median
resolution of the records is 200 years (Figure S2). All 80 records span 18-11 ka and

~85% span 22-6.5 ka (Figure Slc).

7]

-
c
{

Figure S1: Data density. Distribution of (a) proxy tematre measurements, (b)
radiocarbon dates, and (¢) proxy records through time.

18
16—-
14
12—-

10

Number of records

s =

Figure S2: Histogram of the mean resolution of the roxy records from 22-6.5 ka.
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2. Age control

The three most common types of age control used in this synthesis are
radiocarbon ages, Greenland layer counts, and Antarctic timescales. We discuss each and
their uncertainties here.
2.1 Radiocarbon ages

Most of the non-ice core records are either directly or indirectly tied into
radiocarbon chronologies. Radiocarbon-based age models have three main sources of
uncertainty: (1) marine reservoir correction uncertainties, (2) errors on calibrated
radiocarbon dates, and (3) interpolating age models between dates. The latter two were
explicitly accounted for in our Monte Carlo simulations.

(1) We applied the reservoir corrections used by the original authors, which
average 463 years over the 19-6 '*C ka interval (Figure S3). Reservoir corrections were
assumed to be 400 years if not otherwise stated in the original publications. Assuming

larger (smaller) reservoir corrections would shift the temperature stack younger (older).

70N = -
WX & xx x xxXK x x x 0ok & Xx
=~ s
o B EE x xxxx g 8007 RXXRKXX XK,
X XX X X X X X .g X X X
He JAT A S R S TR e o E} ]L\;\’ NN A

Figure S3: Radiocarbon reservoir corrections for all dates from the 62 radiocarbon-dated
marine records in the database, as suggested by the original authors.
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One way to check the reasonableness of the applied reservoir corrections is to
compare climate signals in marine and terrestrial records, since terrestrial archives
generally do not suffer from radiocarbon reservoir issues. Clark et al.%’ recently
calculated the two leading modes of deglacial temperature variability from a global proxy
dataset using empirical orthogonal function analysis. Dividing the dataset into land
(n=53) and ocean (n=74) records yields similar leading modes of variability (r*=0.98 and
0.80 for principal components 1 and 2), suggesting that the two realms record the same
climate signals (Figure S4). Lag correlations suggest the ocean modes are 300 years older
than the land modes, however, which may imply reservoir corrections have been
underestimated. Similar logic can be applied to upwelling versus non-upwelling regions
in the ocean to investigate reservoir corrections, since reservoir ages are expected to be
more variable at upwelling sites. The two leading modes of variability for calibrated sea
surface temperature records from upwelling (n=19) and non-upwelling (n=50) areas
appear to be reversed, such that non-upwelling PC1 correlates with upwelling PC2
(*=0.93) and non-upwelling PC2 correlates with upwelling PC1 (1*=0.81), indicating that
the millennial variability mode is more important at upwelling sites while the overall
deglacial warming mode dominates at non-upwelling sites (Figure S4). Nonetheless, the
strong correlations of these climate modes suggest that the two domains may record the
same signals. Lag correlations suggest the upwelling modes are older than the non-
upwelling modes by 300 and 200 years, which again may imply underestimated marine
reservoir corrections. These observations therefore imply that, if anything, errors in
reservoir corrections might shift the global temperature stack slightly younger, increasing

its lag behind atmospheric CO,.

6 | WWW.NATURE.COM/NATURE
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Figure S4: Leading principal components (PC) of deglacial temperatures variability.
(a,b) land and ocean sites. (¢,d) upwelling and non-upwelling sites in the ocean. The
fraction of variance explained by the modes and their relative timing as determined from
lag correlations are given. (adapted from Clark et al.®”)

(2) All dates were recalibrated with Calib 6.0.1 using the IntCal04 calibration. To
simplify the often non-Gaussian errors on calibrated radiocarbon dates, we treated the
upper and lower 2c calibrated ages as a Gaussian 26 uncertainty about a centered mean
age in the Monte Carlo simulations. Age models were then allowed to vary within these
uncertainties at the depths of the radiocarbon dates.

(3) Between radiocarbon dates, we used a random walk model®® that allows age
models to “jitter” more the further they are from a radiocarbon date. To determine a
reasonable jitter value (J) we used the existing radiocarbon dates in the database between
10 and 20 ka and calculated the deviation of a date from its expected (i.e., linear) age
between two bounding dates. This procedure was repeated for all possible permutations

of dates, yielding 3769 values of J (Figure S5). We used the median J value (J = 188) to

WWW.NATURE.COM/NATURE | 7
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perturb the radiocarbon-based age models with autocorrelated errors in our Monte Carlo

analysis. Age models and their estimated uncertainties are shown in Appendix S1.

# of 14C dates

Jitter

Figure S5: Histogram of 3769 age model jitter values calculated from radiocarbon data
from 20-10 ka, as described in the text. The median jitter value is 188.

A final uncertainty related to radiocarbon dating is the calibration, which is
discussed below in Section 5.5.
2.2 Greenland layer counting

The NGRIP and GRIP ice cores are anchored by the layer-counted GICC05
timescale, and four other marine records are tuned to earlier layer-counted Greenland
timescales. GICCOS5 appears to be fairly well linked into the radiocarbon timescale during
the deglaciation®. Maximum counting errors for GICCO05 suggest that absolute age
uncertainty (1o) increases from approximately 10 to 265 years over our 6.5-22 ka study
interval (< 1.2% errors) (refs. 3,70). Our Monte Carlo simulations used these time-
varying uncertainties for the NGRIP and GRIP ice cores, and assumed 2% uncertainties

for the records tuned to Greenland.

8 | WWW.NATURE.COM/NATURE
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2.3 Antarctic timescales
The EDC and EDML ice cores have been synchronized with Greenland by

Lemieux-Dudon et al.**

, and we use their time-varying error estimates, which approach
nearly 400 years (20) at the onset of deglaciation. Pedro et al.”! suggest a similar
uncertainty for their composite Antarctic record based on five ice cores at the onset of
deglaciation. The age models of the Dome F and Vostok ice cores are based on
glaciological flow models, and we assume 2% (10) errors.

Critical to our analysis is the age model and uncertainty for the atmospheric CO,
record. We used EDC CO,, which was recently placed on an improved timescale based
on a best compromise between glaciological modeling and ice and gas stratigraphic
constraints among several Antarctic and Greenland ice cores by Lemieux-Dudeon et al.®*.
Because Lemieux-Dudon et al.* did not quantify gas age uncertainties, however, we
estimated chronological uncertainties for the CO; record based on the errors associated
with CH4 synchronization of EDC with Greenland. There are three sources of uncertainty
in this process that we account for. First, the Greenland ice-age timescale (GICCO5) is
derived from annual layer counting of the NGRIP ice core. Andersen et al.”’ and
Rasmussen et al.’ provide “maximum counting errors” associated with this process,
which Andersen et al. suggest regarding as 2¢ uncertainties. Second, transferring the
GICCO5 ice age timescale to the Greenland composite CHy4 record’ requires knowledge
of Greenland ice age-gas age differences, or delta ages. A rigorous assessment of delta
age uncertainty does not exist in the literature. We therefore considered delta age

uncertainty to be 20% of delta age itself, an estimate that we regard as conservative. In

actuality, delta age is precisely known during the abrupt onsets of the Bolling, Younger

WWW.NATURE.COM/NATURE | 9
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Dryas, and Holocene periods, when nitrogen and argon isotopes indicate CH4 and
Greenland ice 8'®0 variations were nearly synchronous’. Third, CH, concentration
errors introduce uncertainty during tuning of EDC CHy to the Greenland composite CHy4
record. We estimated this uncertainty with 1000 Monte Carlo simulations in which the
two CHy4 records were randomly perturbed with 10 ppbv errors (10) and tuned using the
program XCM®. To provide a conservative estimate of the combined uncertainty due to

these three sources of error, we added them arithmetically (Figure S6).

1000

.~

16 uncerte

Greenlang delta age

10 8

Figure S6: CO; age-model uncertainty. Total age uncertainty in the EDC CO, record
over the last deglaciation associated with methane-synchronization to Greenland (black),
which reflects the sum of uncertainties associated with Greenland ice ages (blue),
Greenland ice age-gas age differences (red), and tuning EDC and Greenland CH4

To further examine the robustness of the Lemieux-Dudon et al.** EDC gas
chronology, we compared it to GICC05. EDC CHy tuned to GICCOS5 is generally older
than on the Lemieux-Dudon et al.** timescale, and this offset is particularly evident at the

Bolling onset (Figure S7b). Greenland composite CH, and NGRIP §'®0 on Lemieux-

10 | WWW.NATURE.COM/NATURE
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1.* exhibit a similar offset at the Bolling onset (Figure S7a). Since abrupt

Dudon et a
Greenland warmings are known to be synchronous with CH, jumps”, this offset likely
reflects an error in the Lemieux-Dudon et al.** gas chronology, which if corrected would
shift the EDC CO; record a couple centuries older at the Bolling (Figure S7c). A similar
though smaller offset seems to occur at the Younger Dryas while no offset exists at the
Holocene onset (Figure S7d). The lack of structure in the CH, record at the onset of

deglaciation makes it difficult to precisely determine the timing of the initial CO; rise,

which is reflected in the larger error bars at this time (Figure S6).

-34 800
| Greenland composite CH, on Lemieux et al., 2010 L
-36 | NGRIP §'®0 on Lemieux et al., 2010 L 700
-38 i (9]
o - 600 T
e -40 =
»© °
42 - - 500%
-44 800 - 400
700 5 Greenland composite on GICC05 i
= 1 EDC on Lemieux et al., 2010
.g_ 600 4| EDC on GICC05
& 4
T 500
(8] r 280
400 - L 260
] r o
300 - - 240.0
EDC on Lemieux et al., 2010 | 6
EDC on GICC05 °
220 3
=
- 200
5 200 J GIccos - Lemieux et al., 2010 L 180
[
2 100
<
k] [ e i i
=
Q -100 T T T T 1

20 18 16 14 12 10
Age (kyr before 1950AD)

Figure S7: Ice core age models. (a) Greenland composite CH; and NGRIP §'*0 on the
Lemieux-Dudon et al.** timescale. (b) Greenland composite CH, on the GICCO05
timescale and EDC CH,4 on the Lemieux-Dudon et al.** and GICCO05 timescales. (¢) EDC
CO, on the Lemieux-Dudon et al.** and GICCO05 timescales. (d) Difference between the
Lemieux-Dudon et al.** and GICC05 gas timescales.
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3. Monte Carlo simulations

We used Monte Carlo simulations to generate 1000 realizations of each proxy
temperature record, and the global temperature stack in turn. An example record is shown
in Figure S8. First, continuous age-model uncertainty estimates were calculated for each
record as explained above in Section 2.1 (Figure S8a). 1000 age models were then
generated for each record by perturbing its chronology with autocorrelated errors using
these uncertainty estimates (Figure S8b). Age models were linearly extrapolated beyond
the top and bottommost dates in a core using the mean sedimentation rate over the dated
interval of the core. Next, the proxy values were converted to temperature 1000 times,
perturbing the temperature calibration with the errors given in the Methods section of the
paper (Figure S8c); temperature errors were assumed to be random in time and space.
These perturbed proxy temperature records were then linearly interpolated onto the
perturbed age models at 100-year resolution and converted to anomalies from the early
Holocene (11.5-6.5 ka) mean to yield 1000 realizations of each record (Figure S8d).
Lastly, the first realizations of the 80 records were stacked, followed by the second, third,
fourth, etc., generating 1000 realizations of the global temperature stack (Figure S9). The
temperature stack and error bars shown in the main paper are the mean and standard
deviation of these 1000 realizations. Temperature records and their estimated
uncertainties are shown in Appendix S2. The analytical code used in this study will be

published in Marcott et al.”,
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ann — __ N N

..............

—
je (ka) Depth (cm) Ac¢

Figure S8: Example of five Monte Carlo simulations with the Visser et al.* West Pacific
Warm Pool Mg/Ca record. (a) Estimated age model error. Black dots show the locations
of radiocarbon dates. (b) Perturbed age models. Black dots and error bars show
radiocarbon dates. (¢) Perturbed temperature records. (d) Perturbed temperature records
linearly interpolated onto the perturbed age models at 100-year resolution and referenced
as anomalies from the early Holocene (11.5-6.5 ka) mean.

Temperature (
)

Figure S9: Five realizations of the global temperature stack, derived from perturbing the
proxy records with chronological and temperature calibration errors.
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The standard deviation of the 1000 global temperature stacks provides a measure
of the propagated error due to chronological and temperature uncertainties in the
individual records (Figure S10). We performed this Monte Carlo procedure including
only temperature uncertainties, only chronological uncertainties, and both temperature
and chronological uncertainties. We find that error in the temperature stack due to
chronological uncertainties generally increases with age, as expected, though there are
local maxima in error at times of large temperature shifts, such as the onsets of the
deglaciation, Belling/Allerad, Younger Dryas, and Holocene. Errors associated with
temperature uncertainties are constant through time, as would also be expected.
Temperature uncertainties generally contribute substantially more error to the
temperature stack than chronological uncertainties. Tests indicate that errors are

proportional to n”*, where n is the number of proxy records.

0.16
{ Age model
) & Proxy
< 0.12 AT
é ‘ \P(N V‘o
o - P
roxy
()
§ 0.08
o .
2
Age model
€ 0.04 9
|_
0 — 1 + 1 rr r +r 1 + 1 r T ' T T
22 20 18 16 14 12 10 8

Age (ka)

Figure S10: Global temperature stack uncertainties. 16 error on the global proxy
temperature stack due to uncertainties in the age models of the records (blue), the
conversion of proxy values to temperature (red), and both (green).
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4. How well do the proxy sites represent the globe?

An important assumption of our study is that the 80 proxy records used provide a
reasonable representation of global temperature variability. We evaluated this assumption
using the instrumental temperature record as well as output from our transient modeling
of the last deglaciation.

4.1 Instrumental record

We sampled the 5x5-degree NCDC instrumental blended land and ocean surface
temperature dataset from 1880-2007 A.D.” at 80 random locations 1000 times to
generate 1000 realizations of global mean temperature. The standard deviation of these
realizations is 4.5 times smaller than the standard deviation of 20™ century global
temperature suggesting 80 random points represents the globe reasonably well (Figure
S11a). In addition, the mean at the locations of the deglacial proxy records is similar to
the true global mean (r*=0.83), indicating these particular locations faithfully capture the
global signal. Repeating this procedure for 67 ocean-only sites (i.e., the number of ocean
proxy records) with the 1x1-degree HadISST1 dataset from 1870-2007 A.D.”® yields

similar results (Figure S11b).
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Figure S11: 20™ century temperatures at the proxy sites. (a) The mean (blue line) and
standard deviation (blue error window) of 1000 realizations of global mean temperature
based on a random sampling of 80 locations from the NCDC blended land and ocean
dataset (this is equivalent to the true global mean)”’. Mean temperature at the locations of
the 80 deglacial proxy sites (red). (b) Same as (a), except confined to the ocean and using
the HadISST1 dataset’®.
4.2 Transient deglacial model output

We also compared the mean temperature at the 80 proxy sites in our deglacial
model to the global and hemispheric means in the model. The temporal structures of the
proxy site means and full-field means are all similar, but while the glacial-interglacial

amplitude is accurately represented by the proxy sites in the Southern Hemishere, it is

underestimated by ~1°C in the Northern Hemisphere (Figure S12).
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Figure S12: Simulated temperature stacks versus full-field mean temperatures. The
mean temperatures in the model for the (top) globe, (middle) Northern Hemisphere,
(bottom) and Southern Hemisphere (black), and the area-weighted means in the model at
the 80 proxy sites (colored). Sea surface temperatures are used over ocean and surface air
temperatures are used over land.
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5. How robust is the temperature stack?

We investigate the sensitivity of the proxy temperature stack to several variables
including interpolation resolution, areal weighting, the number and type of proxy records,
missing data, and radiocarbon calibration.

5.1 Resolution

Recalculating the global temperature stack at 500-year resolution yields an
essentially identical stack and error bars, albeit at lower resolution (Figure S13). This is
because our uncertainty estimate for global temperature at any given point in time is the
standard deviation of 1000 realizations of the global temperature anomaly at that point
derived from perturbing the individual records with errors, linearly interpolating to
constant resolution, and stacking. So, for example, 500-year resolution results in 1000
global temperature estimates at 11 and 11.5 ka. 100-year resolution yields the exact same
results for 11 and 11.5 ka, as well as 1000 temperature estimates at 11.1, 11.2, 11.3, and
11.4 ka that are generally in between those at 11 and 11.5 ka due to the linear
interpolation.

We also recalculated the stack using only the records with better than 200-year
resolution (n=39; 23 in Northern Hemisphere, 16 in Southern Hemisphere). This stack is,
in general, similar, though there is greater overall warming and a larger Younger Dryas

cooling (Figure S14).
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Figure S13: The global temperature stack based on proxy records interpolated to 100-
year and 500-year resolution. Errors (10) reflect age-model and temperature calibration
uncertainty.
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Figure S14: The global temperature stack based on all records and only the records with

higher than 200-year resolution. Errors (10) reflect age-model and temperature
calibration uncertainties.
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5.2 Areal

weighting

To test the sensitivity of the global temperature stack to areal weighting we show

the results of three different schemes here: (1) the area-weighted 5° x 5° gridded average

we use in

the main paper; (2) the unweighted raw average of the records; (3) a meridional

weighting in which the records are first averaged in 10° latitude bands and then stacked

weighting by latitude-band area; latitude bands without records were represented by the

adjacent latitude band with data. These three stacks have similar temporal structures

(Figure S15), suggesting the correlation and phasing of temperature and CO, we report is

not strongly sensitive to areal weighting. The amplitudes of the stacks differ by up to

15%, however, implying the spatial bias of our dataset affects its ability to constrain the

magnitude of glacial cooling.
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Figure S15: The global temperature stack based on various area-weighting schemes of
the data. Errors (10) reflect age-model and temperature calibration uncertainties.
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5.2 Jackknifing

We used a jackknifing approach to examine the sensitivity of the temperature
stack to the number of records used. The stack was recalculated 1000 times after
randomly excluding 50% of the records each time. This procedure was also repeated
excluding 90% of the records. Note that because the records were perturbed with
chronological and proxy errors before jackknifing, the results include these sources of
uncertainty. The standard deviation of the jackknifed stacks, particularly for the 50%
case, are relatively modest in comparison to the variability in the proxy stack (Figure
S16), which suggests the stack is fairly robust and unlikely to change dramatically with

the inclusion of more records in the future.

1_

Temperature anomaly (°C)

20 18 16 14 12 10 8
Age (ka)

Figure S16: Jackknifed temperature stacks. The unweighted global proxy stack with
1o error bars derived from 1000 jackknifed stacks randomly excluding 50% (light blue
errors) and 90% (dark blue errors) of the records.
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5.3 Proxy type

To assess how our temperature reconstructions may be affected by disagreement
among the proxies we calculated separate stacks for each proxy type (Figure S17) as well
as jackknifed global and hemispheric stacks leaving out one proxy at a time (Figure S18).
Differing temperature histories are expected for each proxy type to some extent given the
large range in the number and locations of records for each proxy (Figure 1 in the main
paper). There is general consistency among the jackknifed global stacks of a two-step
deglaciation during the Oldest and Youngest Dryas intervals, with relatively stable
temperatures during the Last Glacial Maximum, Belling/Allered, and early Holocene.
Thus, the correlations between the jackknifed stacks and CO, from 22-6.5 ka are all
similar ranging from r’=0.90 to 0.95, as are the temperature lags behind CO, based on 20-
10 ka lag correlations ranging from 300 to 600 years. The timing of initial warming and
the magnitude of the glacial-interglacial change varies among the jackknifed stacks,
however. Also, excluding the Mg/Ca records yields a moderate 0.25°C global warming
during the early Holocene (Figure S17), which would increase its correlation with ice-
sheet retreat and perhaps imply a somewhat larger role for ice-sheet forcing on the
temperature stack. We evaluated whether this cooling trend in Mg/Ca is an artifact of an
early Holocene peak in carbonate preservation’’ by comparing early Holocene Mg/Ca
temperature trends with core depth, since carbonate preservation effects are expected to
exert a larger impact on deeper sites. We find little correlation between temperature trend
and depth, however, suggesting this early Holocene feature is not an artifact of carbonate

preservation (Figure S19).
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Figure S17: Unweighted temperature stacks by proxy type, with 1o errors reflecting
chronological and temperature calibration uncertainties in the records. The global
temperature stack is shown at the top for reference.
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Figure S18: Jackknifing by proxy type. Jackknifed (top) global, (middle) Northern
Hemisphere, and (bottom) Southern Hemisphere temperature stacks, leaving one proxy
type out at a time. Numbers in parentheses give global stack correlation (r*) with CO,
from 22-6.5 ka and lag behind CO, (years) determined from lag correlations over 20-10
ka. Note that these stacks are not area-weighted.
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Figure S19: Early Holocene (10-6.5 ka) temperature trends in Mg/Ca records plotted
against core depth. Errors (10) reflect age-model and temperature calibration
uncertainties.
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In Figure S20 we plot the 21.5-19 and 19-17.5 ka temperature trends by proxy

type to better diagnose the source of the early, pre-CO,-rise warming. Greenland

warming stands out during the earlier interval, with few other records outside of the

northern extratropics exhibiting temperature trends significantly different from zero.

During the later interval, the interhemispheric seesaw event is evident and seen in

multiple proxies. Nonetheless, there are some notable differences among the proxies from

19-17.5 ka. Three TEXss and one MBT/CBT record from 10-35°N warm strongly as

compared to Mg/Ca, alkenones, and forams. Also, Mg/Ca records from 30°N-30°S

generally show greater warming trends than alkenones, averaging 0.37°C/kyr versus

0.03°C/kyr. Thus, the warming of the northern tropics during this interval, and the

resulting net global warming, may be largely attributable to Mg/Ca and TEXgs.
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Figure S20: Site-by-site early deglacial temperature trends. Linear temperature trends
versus latitude from (left) 21.5-19 ka and (right) 19-17.5 ka plotted by proxy type. Errors
(1o) reflect age-model and temperature calibration uncertainties.

5.4 Missing data values

There is nearly complete data coverage of the study interval; however, ~15% of

the records do not extend entirely through the Last Glacial Maximum and early Holocene
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(Figure S1c). To address this issue, we used the Regularized Expectation Maximization
(RegEM) method’® to statistically infill missing values. This adjustment has negligible

impact on the temperature stack. We use the infilled data in the main paper.

Raw
RegEM infilled

Temperature (°C)

22 20 18 16 14 12 10 8
Age (ka)

Figure S21: Raw versus infilled temperature data. The temperature stack based on the
raw (blue) and statistically-infilled (red) datasets. Errors (10) reflect age-model and
temperature calibration uncertainties.
5.5 Radiocarbon calibration

67 of the 80 proxy records are anchored solely by radiocarbon dates. We tested
the sensitivity of the temperature stack to the choice of radiocarbon calibration by
recalibrating all dates with the two most recent calibrations, IntCal04 and IntCal09.
While these calibrations are very similar over most of their duration, they differ by up to
nearly 1-kyr during the Heinrich-1 interval (Figure S22). Accordingly, the two
calibrations yield essentially identical temperature stacks except during Heinrich 1, when

they are offset by ~350 years (Figure S23). We reason that the stack is shifted by only

350 years, rather than the full 1-kyr difference between the calibrations, because many of
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the proxy records do not have radiocarbon dates in this interval and thus are unaffected.
Nonetheless, this offset is important, especially as it occurs during the initial rise in CO».
For instance, while CO; generally leads the temperature stack from 20-10 ka regardless
of the calibration, the lead is 460 + 340 years with IntCal04 but 350 + 340 years with
IntCal09 (Figure S24).

We favor the IntCal04 calibration for the following reasons:

In the IntCal09 paper, Reimer et al.”’ wrote that “the Iberian Margin data
generally agree within 2 standard deviations with the Cariaco data and other calibration
data. The only notable discrepancy occurs between 15-17.5 cal ka, corresponding to the
Heinrich 1 climatic event. This systematic difference could be suppressed by assuming a
larger reservoir age for the Iberian Margin. However, such ad hoc corrections may not
apply since available data measured on other archives (the few corals in Figure 2 and
Bahamas speleothem by Hoffmann et al. [2010]) support the Iberian Margin record. Like
the Cariaco record, the present MD952042 [Iberian] chronology must be considered a
work in progress awaiting refinement by correlation with more independent data from
other archives (corals, speleothems,and marine cores from other oceans).”

Two recent studies have confirmed that the Iberian margin dating is indeed
correct. Specifically, climate records developed from deep-sea sediments from the
Pakistan Margin can be securely tuned to the Hulu 8'°0 record™ and a new '*C-U/Th
dataset generated with coral samples cored offshore Tahiti®' demonstrate that IntCal04
was more accurate than IntCal09 in the time range corresponding to the early
deglaciation, notably the Heinrich 1 event and Oldest Dryas period. The discrepancy can

be illustrated by calibrating a e age of 13.5 ka BP, which is about 16 cal ka BP with
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IntCal04 and 17 cal ka BP with IntCal09 (see Figure S22 that compiles the IntCal09

dataset together with some additional data from the Pakistan Margin).
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Figure $22: '“C ages plotted versus calendar ages in the interval between 13,500 and
19,000 cal yr BP. Blue diamonds, red and black triangles show the coral data from
Barbados, Tahiti, Mururoa, New Guinea and Vanuatu corals. These datasets were used to
construct the IntCal09 curve (see Reimer et al.”” and references therein for the individual
records). The light blue dots, green and purple squares show *C results on planktonic
foraminifera from marine sediments tuned to the Hulu speleothem 8'*O record
independently dated with U-Th ages (the Cariaco Basin and Iberian Margin datasets were
also used for constructing the IntCal09 curve, the new Pakistan Margin results are from
Bard et al.*%). All "*C ages are corrected for site-specific reservoir ages (see Reimer et
al.””) and errors are quoted at the 1o level. Dotted lines show the resulting calibration
curves: in light blue the IntCal09 curve’ and in orange the previous IntCal04 curve’ that

did not take into account the Cariaco data in this time range (see discussion in Reimer et
79
al.”).
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Figure S23: The proxy temperature stack based on the IntCal04 and IntCal09
radiocarbon calibrations. The inset plot shows the interval of disagreement from 18.5-15
ka. Errors (10) reflect age-model and temperature calibration uncertainties.

Figure S24: CO,-temperature phasing based on IntCal04 and IntCal09. The phasing
of CO; and the global proxy temperature stack based on the IntCal09 (red) and IntCal04
(blue) radiocarbon calibrations using lag correlations from 20-10 ka. The histograms
show the result of 1000 realizations, perturbing the proxy records with age model and
temperature uncertainties and the CO, record with age model errors. The mean and
standard deviation of the histograms are given.
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6. CO,-temperature relationship

6.1 Phasing through time

In the main text we discuss the phasing of CO, and temperature over the entire
20-10 ka interval. Here, we calculate running phase relationships between CO, and the
global temperature stack as well as EDC temperature to address how phasing may have
varied through time. Phasing is calculated using lag correlations, and we vary time
window widths from 3 to 7 kyr. The results indicate Antarctic temperature led CO, by a
small amount throughout the deglaciation (Figure S25a). The global temperature stack,
on the other hand, was synchronous with or lagged CO,, except at the onset of
deglaciation when it led (Figure S25b).

1000 Antarctic temp

500 -
] CO, leads

CO, lags

—— 3 ky window

Figure S25: Running temperature-CO; lag correlations. (a) Running phasing of CO,
and EPICA Dome C over the last deglaciation, both on the timescale from ref. 64. The

different colors indicate the window width used to compute lag correlations. (b) Same as
(a), but for CO, and the global temperature stack. (¢) The time series used in (a) and (b).
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6.2 Breakfit

While we focus on lag correlations to determine phasing in the main text, here we
include an alternative evaluation of this issue. The function Breakfit** provides an
objective identification of transition points in time series, which allows us to assess the
relative timing of changes in the CO, and global temperature records. We determine the
timing of four transition points in the records and apply the same search windows to both
time series for consistency. The same seed generator number (200) is used in each case,
200 bootstrap iterations are used to quantify errors, and standard deviations of 0.15°C and
3 ppmv are used for temperature and CO,. The results indicate that CO, was either
synchronous within error or led temperature at the starts of the deglaciation, Belling, and

Younger Dryas, and Holocene (Figure S26; Table S2).
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Figure S26: Objectively defined change-points. Breakfit* functions (colored lines)
applied to the CO; (top) and global temperature stack (bottom).
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Table S2: Breakfit*” identification of deglacial transition points. Errors are 1.

CO, Temperature
Event Search window Age (ka) Age (ka)
Deglacial onset 19-16 ka 17.40 £ 0.03 17.20 £ 0.03
Bolling 15-13 ka 14.29 + 0.06 14.10 £ 0.06
Younger Dryas 14-12 ka 12.70 + 0.06 12.50 + 0.08
Holocene 12-8 ka 11.29 £0.05 10.8 £0.04
6.3 Detrending

Tests with synthetic time series suggest that detrending records with ramp
structures can increase the resolving power of lag correlations to determine lead-lag
relationships (Figure S27). Lag correlations between CO,; and the global temperature
stack from 20-10 ka after detrending yield similar results to those for the undetrended

time series presented in Figure 1b in the main paper (Figure S28).

Time series
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Figure S27: Synthetic time series showing how detrending increases the resolving power
of lag correlations. (a) Ramped time series with a 10 unit phase offset. (b) With noise
added. (c) Linearly detrended. (d) Lag correlations between the detrended (blue) and
undetrended (red) noisy time series.
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Figure S28: CO,-temperature phasing usmg raw and detrended time series.
Histograms showing the lead-lag relationship based on lag correlations from 20-10 ka
between CO; and the proxy global (gray), Northern Hemisphere (blue), and Southern
Hemisphere (red) temperature stacks before (top) and after (bottom) detrending. The
histograms show the results of 1000 realizations after perturbing the temperature records
with age model and proxy temperature errors and the CO, record with age model errors.
The mean and standard deviation of each histogram are given.

6.4 CO, versus CO,+CH4+N,0

While we focus on CO; in the manuscript since it dominated the deglacial
greenhouse gas forcing (Figure S29), CH4 and N,O are also globally well-mixed
greenhouse gases and would be expected to affect global temperature. The correlations of

the global temperature stack with CO, forcing and combined CO,+CH4+N,O forcing are

similar (1*=0.94 and 0.93), as are the temperature lags behind each (460+340 yr and
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250+340) (Figure S29), supporting our conclusion that greenhouse gases were an

important driver of deglacial warming.
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Figure S29: Global temperature stack versus greenhouse-gas forcing. (a) The global
temperature stack (blue), and the radiative forcing from N,O (dashed green), CH4 (dotted
orange), and CO; (solid red), as well as their combined forcing (thick black) using the
simplified expressions from ref. 83. CO, age-model uncertainty (1c) is shown (see
section 2.3). (b) The phasing of the global temperature stack with CO; (red) and
combined greenhouse gas-forcing (gray) based on lag correlations from 20-10 ka. 1000
realizations are shown, perturbing the proxy records with age model and temperature
errors, and the CO, and combined greenhouse gas-forcing curves with CO, age model

errors (see Section 2.3). The mean and standard deviation of the histograms are given.
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7. Model freshwater forcing

As emphasized in the paper, several model freshwater forcing scenarios were
tested, and the scenario that produced North Atlantic climate variability in closest
agreement with proxy records was used for the final simulation (Figure S30).
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Figure S30: The freshwater flux added to the model shown as equivalent sea level (red)
and reconstructed eustatic sea level®* (black).
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8. Comparison with Schmittner et al. (2011)*

The glacial-interglacial warming in our proxy temperature stack is ~3.6°C, which
is larger than a recent estimate of 2.6°C by Schmittner et al.*>. We examine here the
reasons for this difference. Fundamentally, the data used in this study are a small subset
of the much larger LGM dataset used by Schmittner et al., which also included the
MARGO® sea-surface and Bartlein et al.*” continental temperature reconstructions (80
individual reconstructions in this study versus 1,100 in Schmittner et al.). As the
Schmittner et al. results are strongly influenced by MARGO, we compared the
consistency of our dataset with MARGO at the 35 5° x 5° grid cells where both have
data, which range from 57.5°N to 47.5°S. Of these 35 grid cells, 22 have completely
independent data (i.e., our proxy records at these locations are not included in MARGO)
while 13 have redundant data (i.e., our proxy records at these locations are included in
MARGQO, in addition to others). The area-weighted mean LGM cooling at the 22 cells
containing entirely independent data is -3.1°C for MARGO and -2.9°C for our dataset
(n=9 Mg/Ca, n=15 alkenones, n=3 foram assemblages n=3 TEXse), and -3.2°C for both
MARGO and our dataset (n=4 Mg/Ca, n=8 alkenones, n=1 foram assemblage) at the 13
cells containing redundant data (Table S3). Since MARGO has a global SST cooling of -
1.9+1.8°C, the larger cooling at our grid cells suggests that our ocean data are biased
toward more sensitive sites. In summary, where we have common ocean data coverage,
our results are in close agreement with the Schmittner et al. dataset (i.e., MARGO), but
the greater spatial data coverage in Schmittner et al. versus this study and Shakun and
Carlson® indicates that the Schmittner et al. data are more representative of the LGM to

modern temperature difference.
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Table S3: Last Glacial Maximum temperature anomalies

Model Proxy data
Schmittner et al.” This study MARGO™ | Bartlein et al.*’
-3.2°C -1.9£1.8°C
SST ocean -1.7£0.4°C * (n=53)" (n=307) -
-6.4°C -6.1°C
SAT land -4.6+0.7°C ** (n=14) " - (n=98)
SST shared ocean
grid cells -2.9°C -3.1°C
(independent data) - (n=22) ™ (n=22) -
SST shared ocean
grid cells -3.2°C -3.2°C
(redundant data) - (n=13) ™ (n=13) -
SAT global land+
SST global ocean -2.64+0.5°C *** - - -
SAT global land+
SAT global ocean | -3.3+0.5°C **** - - -

“SAT” = surface air temperature. “SST” = sea surface temperature. “n” is number of grid

cells; Schmittner et al., this study, and MARGO are based on a 5° x 5° grid, while

Bartlein et al. is on a 2° x 2° grid.

* global model mean (interpolated to median of PDF) 66% interval = [-1.3;-2.0]

** global model mean (interpolated to median of PDF) 66% interval = [-3.9:-5.2]

*#* global model mean (interpolated to median of PDF) 66% interval = [-2.0:-2.9]

*#%* global model mean (interpolated to median of PDF) 66% interval = [-2.4:-3.5]

A LGM (19-23 ka) anomalies from early Holocene (6.5-10.5 ka) mean

M LGM (19-23 ka) anomalies from late Holocene (2-0 ka) mean for proxy records that
extend to present or WOA9S (ref. 89) 10-m depth temperatures for records that end
before 2 ka.
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Appendix S1: Age models (blue) with 20 uncertainties (red lines) for all records based
on radiocarbon dating, using the IntCal04 calibration. Radiocarbon dates are shown as

black dots.
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Proxy temperature record plots: Proxy temperature records (blue) with 2¢

uncertainties (red lines) reflecting both chronological and proxy calibration uncertainties.
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