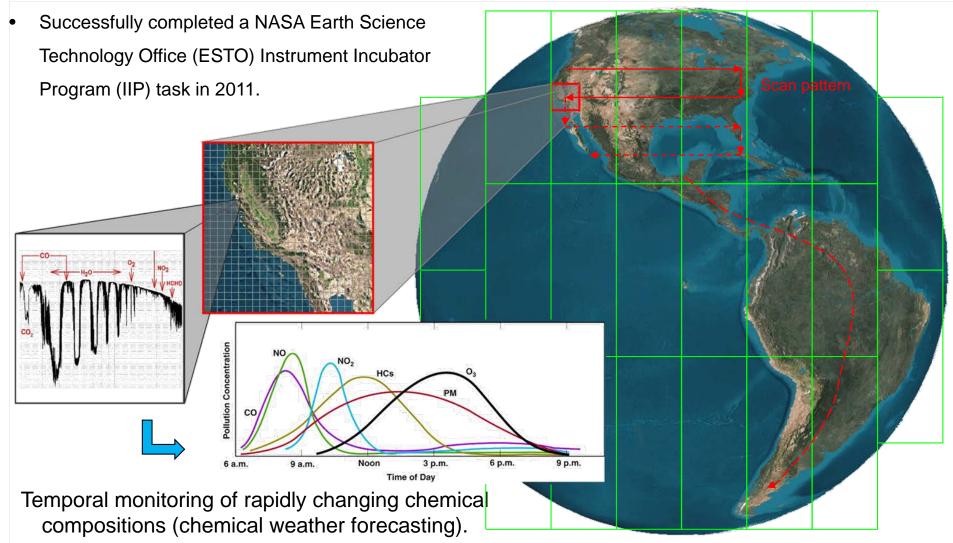


μPanFTS – a GEO Hosted Instrument for Weather Forecasting

JPL: Yen-Hung (James) Wu NOAA: Denis Tremblay

Yen-Hung (James) Wu, james.wu@jpl.nasa.gov, 818-393-5466 Denis Tremblay, denis.tremblay@noaa.gov, 301-683-3563

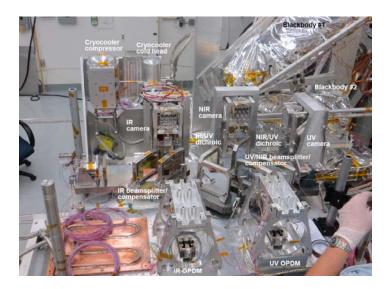
© 2019. All rights reserved



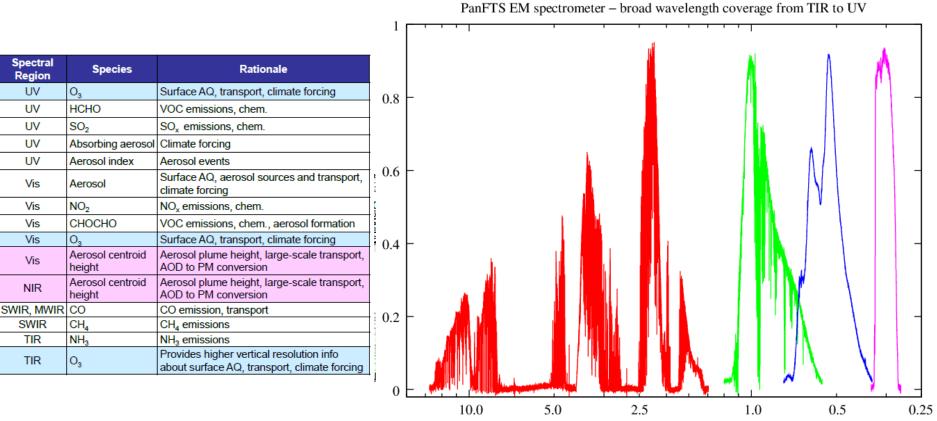
NESDIS NSOSA Study 80-Series Architecture

Page 26, "Hybrid architectures support their GEO instruments as a mixture of commercially hosted payloads and traditional US Government satellites... significant cost advantages to using commercial hosting when the instruments are designed to be hostable and a wide range of hosting opportunities are available."

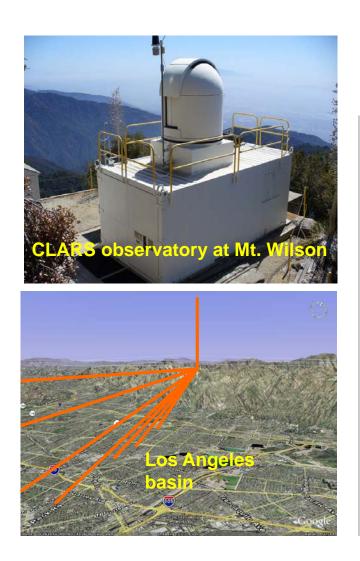
JPL Panchromatic imaging Jet Propulsion Laboratory Fourier Transform Spectrometer (PanFTS)

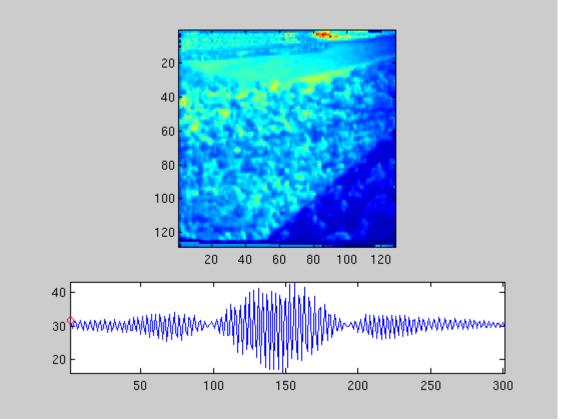

• Designed as a hosted payload on GEO commsats.

© 2019. All rights reserved



PanFTS Engineering Model (EM) validated at -100°C in thermal vacuum, reviewed by Aerospace Corp in 2011.


PanFTS – EM demonstrated TIR-to-UV coverage and 0.06 cm⁻¹ spectral resolution at 2260 cm⁻¹ wavenumber.


Wavelength [micrometers]

PanFTS-EM Observation from CLARS on Mt Wilson

A treetop scenery recorded with an early PanFTS FPA. Fourier transform of the recorded interferogram (lower time series plot) is the spectra in a pixel.

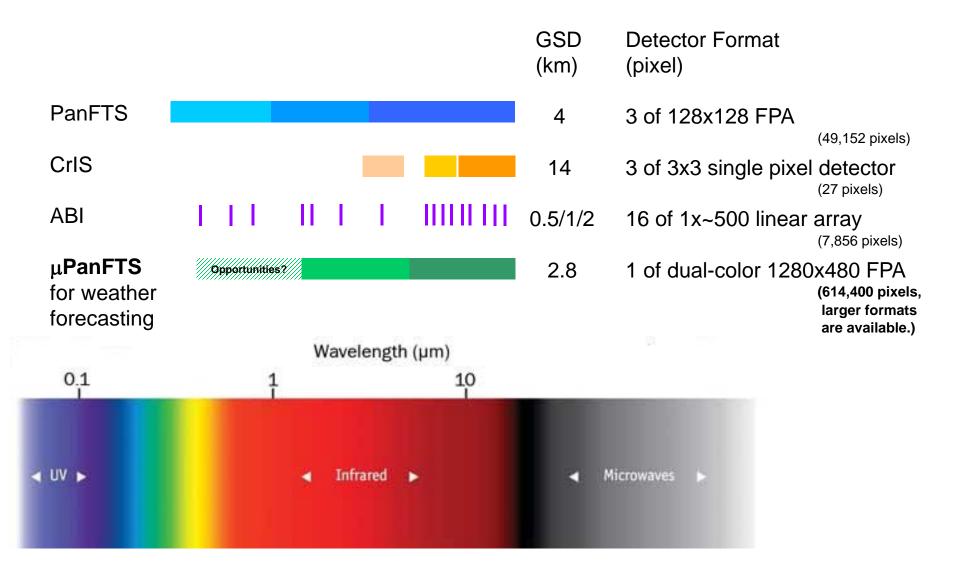
Miniaturizing PanFTS (µPanFTS) for SWaP at JPL

Design approach:

- PanFTS-EM had a series of dichroic beam splitters, 2 interferometers, 3 camera optics, 3 FPA's, and 3 FPA readout electronics.
- μPanFTS has 1 interferometer, 1 camera optics, 1 FPA, and 1 FPA readout electronics. The large-format 2-color FPA is the enabling element.
- JPL Planetary Sciences Program Office funded task, FY19, to miniaturize the front end.
 - < 12U cubesat volume (design target)</p>
 - < 15 kg mass (design target)</p>
 - < 60 W power (design target)</p>
- JPL Earth Sciences Program Office funded task, FY19-21, back end onboard data processing.
 - ~20x data compression

• Aligned with NOAA's next generation weather satellite concept.

- GEO and LEO satellite systems
- Design for SWaP and agility



FTS Payloads around the Globe...

Weather Payload	IRS	GIIRS	CrIS	mPanFTS
Status	2021 launch	In space	In space	Proposed here
Provider	EU	China	NOAA	NOAA/JPL
Orbit	GEO	GEO	Polar	GEO
Spacecraft	Dedicated	Dedicated	Dedicated	Hosted payload
GSD (km)	4 (and bin to 12)	16	14	3.5 (and bin to 7)
Spectral range (cm-1)	700 – 1210 1600 – 2175	650 – 1136 1210 – 1750 2155 – 2250	650 – 1095 1210 – 1750 2155 – 2550	650 - 8000
Resolution (cm-1)	0.625	0.625	0.625	0.625
Full Disk Revisit Time (hr)	1	2-3	12	0.2
Mass (kg)	460	315	146	< 15 (design target)
Power (W)	736	not available	105	< 60 (design target)
Detector Format (pixel)	2 of 160x160	12 of 32x4	3 of 3x3	1 of dual-color 1280x480 FPA
Detector temp (K)	56	has a cryo cooler	81	55

Comparison of Spectral and Spatial Coverages

Earth Science Decadal Survey

	Science and Applications Area	Science and Applications Questions Addressed by Most Important Objectives		
	Coupling of the Water and Energy Cycles	(H-1) How is the water cycle changing? Are changes in evapotranspiration and precipitation accelerating, with greater rates of evapotranspiration and thereby precipitation, and how are these changes expressed in the space-time distribution of rainfall, snowfall, evapotranspiration, and the frequency and magnitude of extremes such as droughts and floods? (H-2) How do anthropogenic changes in climate, land use, water use, and water storage interact and modify the water and energy cycles locally, regionally, and globally, and what are the short- and long-term consequences?		
PanFTS is designed	Ecosystem Change	 (E-1) What are the structure, function, and biodiversity of Earth's ecosystems, and how and why are they changing in time and space? (E-2) What are the fluxes (of carbon, water, nutrients, and energy) <i>between</i> ecosystems and the atmosphere, the ocean, and the solid Earth, and how and why are they changing? (E-3) What are the fluxes (of carbon, water, nutrients, and energy) <i>within</i> ecosystems, and how are they have been been been been been been been be		
to address these two science and	Extending and Improving Weather and Air Quality Forecasts	and why are they changing? (W-1) What planetary boundary layer (PBL) processes are integral to the air-surface (land, ocean, and sea ice) exchanges of energy, momentum, and mass, and how do these impact weather forecasts and air quality simulations?		
application areas.		 (W-2) How can environmental predictions of weather and air quality be extended to seamlessly forecast Earth system conditions at lead times of 1 week to 2 months? (W-4) Why do convective storms, heavy precipitation, and clouds occur exactly when and where they do? 		
Let's leverage on the		(W-5) What processes determine the spatiotemporal structure of important air pollutants and their concomitant adverse impact on human health, agriculture, and ecosystems?		
NASA's investments,	Reducing Climate Uncertainty and Informing Societal Response	(C-2) How can we reduce the uncertainty in the amount of future warming of the Earth as a function of fossil fuel emissions, improve our ability to predict local and regional climate response to natural and anthropogenic forcings, and reduce the uncertainty in global climate		
tailor it to μ PanFTS,		sensitivity that drives uncertainty in future economic impacts and mitigation/adaptation strategies?		
and advance NOAA's	Sea-Level Rise	(C-1) How much will sea level rise, globally and regionally, over the next decade and beyond, and what will be the role of ice sheets and ocean heat storage?		
mission.		(S-3) How will local sea level change along coastlines around the world in the next decade to century?		
	Surface Dynamics, Geological Hazards, and Disasters	 (S-1) How can large-scale geological hazards be accurately forecasted in a socially relevant time frame? (S-2) How do geological disasters directly impact the Earth system and society following an event? (S-4) What processes and interactions determine the rates of landscape change? 		

Questions?

Yen-Hung (James) Wu, james.wu@jpl.nasa.gov, 818-393-5466 Denis Tremblay, <u>denis.tremblay@noaa.gov</u>, 301-683-3563

© 2019. All rights reserved