GLM Product Evaluation and Highlights of My Research at CICS

Ryo Yoshida Satellite Program Division, Observation Department Japan Meteorological Agency (JMA) STAR Seminar, October 24, 2019

Overview of my research visit

- "Japanese Government Short-Term Overseas Fellowship Program" sponsored by the National Personnel Authority of Japan
 - Period: Nov. 5, 2018 Nov. 3, 2019
- NESDIS accepted me at CICS, based on the framework of the NESDIS-JMA high-level letter exchange on information exchange regarding GOES-R Series & Himawari-8/9
- Research topics: GLM & NOAA's advanced efforts on satellites

I deeply appreciate NESDIS's giving me this great opportunity

- 1. Overview of JMA and Himawari satellites
- 2. Highlights of my research at CICS
- 3. GLM product evaluation

1. Overview of JMA and Himawari satellites

What JMA is

Japan's national meteorological service, whose ultimate goals are

Japan Meteorological Agency prescribed by the Meteorological Service Act.

What JMA does

• Weather observations

Japan Meteorological Agency

- Weather forecasts and warnings
- Aviation & marine weather services
- Climate & global environment services
- Monitoring seismic & volcanic activity & tsunamis

JMA's weather observation systems

Geostationary satellites

Observations for Aviation

JMA's weather prediction system

https://www.top500.org/lists/2019/06/

JMA's world-class operational supercomputer system runs global & regional models.

Himawari series satellites

		Satellite
		GMS (Himawar
		GMS-2 (Himaw
		GMS-3 (Himaw
	Martin Carlos and	GMS-4 (Himaw
		GMS-5 (Himaw
		GOES-9
		MTSAT-1R (Hin
		MTSAT-2 (Hima
		Himawari-8
April 6, 1978	July 14, 1977	Himawari-9

Satellite	Obs period
GMS (Himawari)	1978 – 1981
GMS-2 (Himawari-2)	1981 – 1984
GMS-3 (Himawari-3)	1984 – 1989
GMS-4 (Himawari-4)	1989 – 1995
GMS-5 (Himawari-5)	1995 – 2003
GOES-9	2003 – 2005
MTSAT-1R (Himawari-6)	2005 – 2010
MTSAT-2 (Himawari-7)	2010 – 2015
Himawari-8	2015 – (2022)
Himawari-9	(2022) – (2029)

Covering the Asia-Pacific region for over 40 years

Japan Meteorological Agency

The latest generation of Himawari series satellites.

- Himawari-8 in operation since 2015.
- Himawari-9 on standby in orbit, and scheduled to be operational in 2022.
- Compose a twin satellite system until 2029.

AHI aboard Himawari-8/9

Himawari-8/9 each carry the Advanced Himawari Imager (AHI), an ABI-class 16-spectral-band imaging instrument.

	ľimawari-8∕AHI		GOES-R/ABI		MTSAT-2/IMAGER		
Band	Wave	Spatial	Dit donth	Wave	Spatial	Wave	Spatial
	length	resolution	bit depth	length	resolution	length	resolution
1	0.47 µm	1km	11	0.47 µm	1km		
2	0.51 µm	1km	11				
3	0.64 µm	0.5km	11	0.64 µm	0.5km	0.68 µm	1km
4	0.86 µm	1km	11	0.86 µm	1km		
				1.38 µm	2km		
5	1.6 µm	2km	11	1.61 µm	1km		
6	2.3 µm	2km	11	2.26 µm	2km		
7	3.9 µm	2km	14	3.90 µm	2km	3.7 µm	4km
8	6.2 µm	2km	11	6.15 µm	2km	6.8 µm	4km
9	6.9 µm	2km	11	7.00 µm	2km		
10	7.3 µm	2km	12	7.40 µm	2km		
11	8.6 µm	2km	12	8.50 µm	2km		
12	9.6 µm	2km	12	9.70 µm	2km		
13	10.4 µm	2km	12	10.3 µm	2km	10.8 µm	4km
14	11.2 µm	2km	12	11.2 µm	2km		
15	12.4 µm	2km	12	12.3 µm	2km	12.0 µm	4km
16	13.3 µm	2km	11	13.3 µm	2km		

AHI frequent observations

AHI generates a full disk image every 10 minutes, while providing regional observations with 2.5 min and 30 sec intervals.

1000 km x 2000 km 1000 km x 1000 km 500 km x 1000 km

National weather services using Himawari-8

Himawari-8 products for NWP centers

The Himawari-8 AMV & CSR products are provided to NWP centers via the WMO Global Telecommunication System (GTS).

AMV and CSR data used in ECMWF's assimilation system

ECMWF Website: https://www.ecmwf.int/en/forecasts/quality-our-forecasts/monitoring-observing-system#Satellite

Next Himawari planning

- Himawari-8/9 will complete the observation operation in 2029.
- JMA has undertaken feasibility studies of their follow-on satellites.

(Geostationary core instruments)	USA	Europe	China	Korea			
Multi-spectral VIS/IR imagery with rapid repeat cycles	GOES-R series/ ABI	MTG I series [2021 ²]/ FCI	FY-4 series/ AGRI	GK-2A/AMI			
IR hyperspectral sounders		MTG S series [2023 ²]/ IRS	FY-4 series/ GIIRS				
Lightning mappers	GOES-R series/ GLM	MTG I series [2021 ²]/ LI	FY-4 series/ LMI				
UV/VIS/NIR sounders	TEMPO [2022 ¹]	MTG S series [2023 ²]/ UVN (Sentinel-4)		GK-2B [2020 ³]/ GEMS			

Missions (to be) implemented by satellite operators

[] indicate planned launch year based on:

¹ NASA's press release (July 22, 2019)

² EUMETSAT's website (as of July 2019)

³ CGMS-47 KMA-WP-01 (May 2019)

Japan Meteorological Agency

Vision for MICOC 2040

2. Highlights of my research at CICS

Highlights of my research at CICS

• Study on GLM

- Space system & data processing (with GOES-R Data Book)
- Product evaluation
- Data use in NOAA
- Study on cost benefit analysis (CBA) of weather satellites
 - Existing Metop-SG CBA & JPSS CBA
 - Trial CBA for a hypothetical IR sounder on Himawari

Study on NOAA's approach for commercial satellites

- Commercial Weather Data Pilot (with NOAA's report to the Congress)
- Weather Research and Forecasting Innovation Act of 2017
- Study on NOAA's Cooperative Institutes
 - General framework (with CI Handbook)
 - Research activities (with CICS annual report)

Metop-SG CBA

- Socio-economic benefits of weather information in Europe was assessed for three benefit areas:
 - Protection of Property and Infrastructure
 - Added Value to the European Economy
 - Private Use by European citizens
- Socio-economic benefits of Metop-SG was estimated by prorating the weather information benefits based on Metop contribution to forecast skill

Metop-SG benefit assessment

Japan Meteorological Agency

-ECONOMIC BENEFITS OF EPS/METOP-SG OBSERVATIONS DUE TABLE 2: ESTIMATED SOCI ON FORECASTING TO THEIR POSITIVE IMPACT

JPSS benefit assessment

- Benefit of weather information was assessed by top down analysis using GDP and assumed parameters
- JPSS contribution to weather forecasts assessed by the WMO OSCAR database

CBA for a "hypothetical" IR sounder on Himawari

- Socio-economic benefits of weather information in Japan was estimated by scaling those of Europe:
 - Protection of Property and Infrastructure -> proportional to GDP
 - Added Value to the European Economy -> proportional to GDP
 - Private Use by European citizens -> proportional to # of households
- B/C is derived as a function of a hypothetical IR sounder contribution to forecast skill.
 - Life time and life cycle cost of the hypothetical IR sounder were assumed to be the same with the Himawari-8/9 system

Benefit analysis in Japan

Annual benefit of weather information

Benefit area		Minimum	Likely	Derivation
Protection of Property and Infrastructure	B _a	58.2	246.4	=[Value in EU27]x[GDP ratio JP/EU27]
Added Value to the European Economy	B _b	448.0	1836.7	=[Value in EU27]x[GDP ratio JP/EU27]
Private Use by European citizens	B _c	133.6	501.1	=[Value in EU27]x[# household ratio JP/EU27]x[exchange ratio ¥/€]
Total		639	2584	Unit: billion JPY/Year

• Benefit of the hypothetical sounder for a 15-year mission life cycle

$$= f \sum_{t=1}^{15} \frac{\{ \boldsymbol{B}_{a} (1+g)^{t-1} + \boldsymbol{B}_{b} (1+g)^{t-1} + \boldsymbol{B}_{c} \}}{(1+r)^{t-1}}$$

f: contribution to forecast skill g: Annual GDP increase rate (1%) r: Annual discount rate (4%)

CBA result of the hypothetical IR sounder

- $B/C = 4.6 \sim 18.5$, for a contribution of 5%
- A reasonable contribution can be determined by OSSE

For refining this CBA

- More realistic benefit assessment
 - Benefits of weather information must be dependent on countries
 - Benefits in Japan would not be derived correctly by scaling European result. (e.g. Typhoons need to be considered for Japan)
 - Bottom-up approach is required
 - Contribution to forecast skill is determined by numerical experiments (e.g. OSSE)
- More realistic cost assessment

3. GLM product evaluation

This work was conducted in coordination with the GLM science team at CICS led by Dr. Scott Rudlosky

Geostationary Lightning Mapper (GLM)

- Optical lightning sensor aboard GOES-R Serie satellites
- Continuous & hemispherical coverage (up to 54 deg N/S)
- Detection of both intra-cloud (IC) and cloud-to-ground (CG) lightning
 - No discrimination between IC & CG

GLM sensor design parameters			
# of CCD pixels	1372 x 1300		
Frame rate	2 ms		
Ground sample distance	8 km (Nadir) 14 km (FOV edge)		
Wavelength	777.4 nm		

Image: GOES-R Series Data Book

GLM Level 2 product

- Event: Pixel-level detection exceeding the threshold in one frame
- **Group:** 1 or more events in adjacent pixels in one frame
- Flash: 1 or more groups separated by less than 330 ms and 16.5 km

GLM Level 2 product maturity				
Status	GOES-16	GOES-17		
Launch	Nov 19, 2016	Mar 1, 2018		
Beta	June 9, 2017	Oct 3, 2018		
Provisional	Jan 19, 2018	Dec 20, 2018		
Full	Nov 1, 2018			

Image: GLM Definitions and Detection Method Quick Guide

A: Flash geographical distribution

B: Flash detection efficiency B-1: GLM vs GLD360 B-2: GLM vs ENTLN

C: Group timing & location

A: Flash geographical distribution

Flash density maps (MAM 2019)

- Generally consistent with each other
- GLM false detections (e.g. GLM16's Bahama bars)

GLM false flashes (MAM 2019)

- Bahama bars (daytime), Solar intrusions (midnight), Solar glints (morning/evening)
- Westward moving daytime artifacts (GLM17 > GLM16)

Flash density maps (JJA 2019)

- False detections reduced by updating ground processing for G16 & G17
 - Contrast Leakage Algorithm activated (Apr. 30) to reduce jitter noise
 - 2nd-level Threshold Algorithm updated (Apr. 30) to reduce Bahama bars
 - Blooming Filter activated (Jul 25) to reduce solar glints and intrusions

Before Blooming Filter activated (Jul. 2019)

Solar glints are apparent

Japan Meteorological Agency

After Blooming Filter activated (Aug. 2019)

Solar glints are mitigated by Blooming Filter

Japan Meteorological Agency

B: Flash detection efficiency

Flash detection efficiency

- Flash detection efficiency (DE) indicates the ability to detect flashes
- GLM DE relative to a ground-based network (GN)

 $GLM DE = \frac{\# GN \text{ flashes detected by GLM}}{\text{Total } \# GN \text{ flashes}}$

• Detection criteria: flash separation less than 25 km and 0.1 s.

B-1: GLM DE relative to GLD360

- GLM16 & GLM17 DE for overall FOV were examined using GLD360
- GLD360 is designed to globally detect >80 % CG with VLF sensors

Acknowledgement:

GLD360 used in this study were provided by Vaisala.

GLD360 stroke density for May 2011 to May 2015 (Vaisala, 2015)

GLM DE relative to GLD360 (Mar-Aug, 2019)

- GLM DEs are maximized over the oceans and the South America
- GLM DE depression over high-boresight-angle CONUS (GLM16: NW, GLM17: NE)
- GLD360 pixels with DE < ~30% generally coincide with GLM false detections

DE Monthly variation

- GLM16/17 DE decreases in spring & summer, when lightning activity increases over CONUS.
- Note: DE is dependent on matching criteria (larger criteria, larger DE)
- Need to focus on variance/difference rather than absolute values
 Japan Meteorological Agency

B-2: GLM DE relative to ENTLN

- GLM16 DE variance was examined using ENTLN flashes.
 - IC/CG difference & diurnal variation
- ENTLN is
 - Earth Networks Total Lightning Network
 - Designed to detect both IC & CG with wideband (1Hz to 12MHz) sensors
 - High IC detection efficiency over CONUS.

Acknowledgement:

ENTLN data used in this study were provided by Earth Networks, Inc.

GLM16 DE for ENTLN IC & CG (Dec-Aug, 2019)

- DE depression over NW CONUS is more clear for IC
- DE_{IC} < DE_{CG} over CONUS

Diurnal variation over CONUS

- GLM and ENTLN flashes are maximized in the late afternoon (17-18 local time), associated with day-time thermal convections.
- GLM DE decreases during the daytime
 - Peak-to-peak diurnal variation of GLM DE is larger for IC (0.18) than CG (0.13)

Cloud light blockage effect

Summer Thunderstorm Light Blockage Case

Anvil Cirrus Potentially Starting to block light from developing storm

Dr. Stano's report at the 2019 AMS annual meeting: https://ams.confex.com/ams/2019Annual/meetingapp.cgi/Person/88040

HUNTSVILLE ALABAI

- GLM's flash underestimation due to cloud light blockage was reported in evaluation efforts.
- GLM DE dependence on cloud development was examined using the ABI cloud top temperature product (CTT_{ABI}).

Dependence on cloud top temperature

Local analysis over CONUS

- GLM DE decreases as CTT_{ABI} decreases to ~0.2 (A) & ~0.1 (B)
- DE difference between IC and CG becomes small as CTT_{ABI} decreases

C: Group timing & geolocation

Group timing and geolocation accuracy

- Peak timing difference (-0.7 ms) is less than the GLM flame rate (2.0 ms).
- Peak distance (3.25 km) is less than the GLM ground sample distance (8~14 km).

New parallax correction

- Parallax in the GLM L2 product is corrected by ground processing using a static height model (lightning ellipsoid).
- A new correction method using the ABI cloud top height product (CTH_{ABI}) was developed.

Parallax correction by ABI cloud top height

- Peak error: CTH_{ABI} (2.75 km) < Lightning Ellipsoid (3.25 km)
- Lightning Ellipsoid is a reasonable way for parallax correction

Parallax correction by ABI cloud top height

CTH_{ABI} reduces parallax location errors near the edge of FOV

Japan Meteorological Agency

Summary of GLM L2 product evaluation

A: Flash distribution analysis

- GLM flash distributions were consistent with GLD360
- Mitigation efforts significantly reduced GLM false detections

B: Flash detection efficiency (DE) analysis

- GLM's high & broad detection capability
- DE depression over high-boresight-angle CONUS
- $DE_{IC} < DE_{GC} \& DE_{Day} < DE_{Night}$ over CONUS
- DE decreases as CTT_{ABI} decreases

C: Group timing & location validation

- Peak errors not exceeding GLM's sampling rate & distance
- Further improvement of parallax correction provided by CTH_{ABI}

Thank you for your attention!

GOES-16

Himawari-8

GOES-17

Images created by RAMMB/CIRA SLIDER