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Machine Learning

� Machine-learning algorithms are trained with data to
perform a particular task, such as classification.

� Starting from generic input-output equations, training
means choosing parameter values that minimize the
difference between the actual outputs and the
desired outputs (“supervised” learning).

� In most applications, the task is static; training data is
a set of input-output pairs.

� Reservoir computing is a type of machine learning
well suited to dynamic tasks, mapping an input time
series to an output time series.



Forecasting and Attractor Reconstruction

� We seek to use reservoir computing to create an ad
hoc forecast model, based only on a finite-time
sample (training data) from a dynamical system.

� We are interested in two tasks for our forecast model:

� Forecast “weather”: Predict future measurements
(only feasible in short-term for chaotic systems).

� Learn “climate”: Reproduce long-term properties of a
chaotic attractor, such as Lyapunov exponents.



Reservoir Computing

� A reservoir is a driven dynamical system whose
internal parameters are not adjusted to fit the training
data; only a linear post-processor is trained.

� Train the reservoir by driving it with an input time
series u(t) and fitting a linear function of the reservoir
state r(t) to a desired output time series v(t).

� This approach was proposed as Echo State
Networks (Jaeger 2001) and Liquid State Machines
(Maass, Natschlaeger, Markram 2002); see http:

//www.scholarpedia.org/article/Echo_state_network

� A reservoir can be a (super-fast) hardware device.

http://www.scholarpedia.org/article/Echo_state_network
http://www.scholarpedia.org/article/Echo_state_network


Reservoir During Training
reservoir state r(t)

Win M Wout

input output
u(t) v̂(t)

Matrices Win and M are chosen randomly in advance



Continuous-Time Jaeger ESN

� Listen: βdr/dt = �r(t) + tanh[Mr(t) + Winu(t) + c]
(in software, solve with Euler time step τ).

� We choose M and Win at random, scaling M to have
spectral radius close to 1 and scaling Win so that
Winu is of order 1.

� We choose β commensurate with the input time
scale and we listen for 0 � t � T , where T is the
duration of the training time series u(t).

� Fit: Find the matrix Wout such that v̂(t) = Woutr(t)
least-squares minimizes the residuals v̂(t)� v(t) for
0 � t � T .



Inference Task (DA w/o Model)

� Suppose that we can inexpensively measure some
state variables of a dynamical system, but other
variables of interest are difficult to measure.

� Let u(t) consist of state variables that can be
measured for all time, and v(t) consists of state
variables that are only measured for 0 � t � T .

� After training, we continue to evolve the listening
equation for t � T , attempting to infer v(t) from u(t).

� The estimated value of v(t) is v̂(t) = Woutr(t).



Example: Lorenz System

� We ran the Lorenz system with time step τ = 0.05:
dx
dt

= 10(y�x),
dy
dt

= x(28�z)�y ,
dz
dt

= xy+8z/3.

� For training, we used u(t) = [x(t)] and
v(t) = [y(t), z(t)]T .

� We trained a 400-node reservoir (meaning that the
dimension of r(t) is 400) for training time T = 200.

� Details are in (Lu et al., Chaos, 2017).



Inferring Lorenz y(t) and z(t) from x(t)



Forecasting with Feedback

� Suppose training data is sampled at time interval τ,
but we want to forecast farther than τ into the future.

� One option is to train with lead time n τ [that is, set
v(t) = u(t + n τ)] for the value(s) of n of interest.

� We’ve gotten better results by training with lead time
τ and iterating the trained time-τ forecast n times.

� We train with desired output v(t) = u(t + τ) and then
forecast with u(t) replaced with û(t).

� This feedback approach (Jaeger & Haas 2004) can
be used with other machine-learning methods.



Forecast Model for t > T
Predict: βdr/dt = �r(t) + tanh[Mr(t) + Winû(t)]

û(t) = Woutr(t � τ)

input output
û(t) û(t + τ)



Lorenz system: Actual and Predicted z(t)
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Actual and Predicted Attractors
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Poincaré Section of Successive z(t) Maxima
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Questions Raised

� How can a reservoir “learn” these dynamics? Is there
an approximate copy of the Lorenz attractor in the
high-dimensional r(t) system that we chose
independently of the training data?

� No – the feedback term in our forecast model
depends on the matrix Wout determined from training.

� We have found an approximation to the Lorenz
system in a family parametrized by Wout , which has
more than 1000 entries.

� But how is it feasible to find appropriate parameter
values in practice? Partial theory to follow.



Theoretical Framework

� During training/listening, the reservoir and its input
form a “skew product” or “drive-response” system:

� Input Dynamics (Drive): u(t + τ) = f[u(t)]

� Listening (Response): r(t + τ) = g[r(t),u(t)]

� Assume that f and g are continuous on Euclidean
spaces, that f is invertible, and that u lies in a
compact attracting set A.

� If g is uniformly contracting w.r.t. r, then as t !1,
the reservoir state r(t) becomes independent of its
initial state (roughly, Jaeger’s “echo state property”).



Generalized Synchronization

� Furthermore, we get generalized synchronization:
there is a continuous function φ on A such that
r(t)�φ(u(t))! 0 as t !1 [short proof in (Stark
1997)].

� Asymptotically, the reservoir state r(t) is a function of
the current input u(t) only, not the entire history of u.
However, we don’t know the function φ in practice.

� Uniform contraction can be guaranteed by choice of
g, but strong contraction may inhibit extraction of u
from r [extreme case: if g is identically 0, then so is r].



Inverting the Synchronization Function
� If r is much higher-dimensional than the attractor A,

then embedding theory (Sauer-Yorke-Casdagli 1991)
suggests that φ is likely to be one-to-one on A.

� If so, the inverse of φ on the set φ(A) can be
extended to r-space in many ways.

� Fitting: In training, we attempt to find a linear function
Wout that approximately inverts φ on φ(A):

u(t) �Woutr(t) �Woutφ(u(t)).

� This does not require φ to be approximately linear. It
requires only that we can approximate the nonlinear
function φ−1 on a low-dimensional set by a linear
function on a high-dimensional space.



Attractor Reconstruction and Stability

� If training is successful, then our forecast model

r(t + τ) = g[r(t),Woutr(t)] (1)

approximates [on φ(A)] the idealized model

r(t + τ) = g[r(t),φ−1(r(t))]. (2)

� Generalized synchronization implies that system (2)
is conjugate to true dynamics u(t + τ) = f(u(t)) on A.

� To reproduce the climate of A in practice, we need
system (1) to approximate an extension of system (2)
that makes φ(A) attracting.

� More “theory” in (Lu et al., Chaos 2018).



Kuramoto-Sivashinsky PDE

� We tested our methods on the spatiotemporally
chaotic KS system

ut = �uux � uxx � uxxxx

with periodic boundary condition u(x + L, t) = u(x , t).

� With system size L = 60, we trained a 9000-node
reservoir for time T = 20000 to predict the
(numerical) KS solution.

� The largest Lyapunov exponent is Λmax � 0.1, so we
trained for roughly 2000 Lyapunov times.

� Details are in (Pathak et al., Chaos 2017).



Kuramoto-Sivashinsky Forecast
Top: “Truth” Middle: Reservoir Bottom: Error



Estimation of Lyapunov Exponents

Actual exponents Reservoir exponents



Hybrid Forecasting

� Suppose we have an imperfect knowledge-based
forecast model for a physical system.

� A hybrid method uses machine learning to improve
(rather than replace) the model.

� We train by feeding the same input to the model and
the reservoir, and optimize a linear combination of
the model output and the reservoir output.

� We tested on the KS system with L = 35, using an
imperfect model that replaces uxx with (1 + ε)uxx .

� Details in (Pathak et al., Chaos 2018).



Hybrid Architecture



Forecast Errors: 8000 nodes, ε = 0.01
Top: Model Middle: Reservoir Bottom: Hybrid

Lyapunov times
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Forecast Errors: 500 nodes, ε = 0.1
Top: Model Middle: Reservoir Bottom: Hybrid

Lyapunov times

x



Parallel Reservoir Architecture

� We developed a method for forecasting
high-dimensional, spatially extended systems with
multiple reservoirs that can process in parallel
(Pathak et al., PRL 2018).

� Each reservoir forecasts on a local region based on
input from its own and neighboring regions.



Preliminary Results with a GCM

� We are currently developing with T. Arcomano and I.
Szunyogh (Texas A&M) a parallel hybrid code for the
SPEEDY model (Molteni 2003) from ICTP.

� Model grid is T30 (96� 48) with 8 vertical levels.

� We interpolated the ERA5 reanalysis (ECMWF) to
the SPEEDY grid for training and verification data.

� Preliminary results are from a parallel-only code (no
hybrid yet) using 9 years of hourly data for training.

� We added noise to the reservoir input during training
to improve stability.



Parallel Regions on SPEEDY Grid

Red: Input Region Blue: Output Region



Comparison with Persistence Forecast



48-hour Machine-Learning Forecast



72-hour Machine-Learning Forecast



24-hour Forecasts: Tropics



24-hour Forecasts: SH



24-hour Forecasts: NH



Further directions

� We are developing and testing various approaches to
combine our hybrid method with data assimilation.

� Training directly on observations rather than on
reanalysis is a challenge.

� One goal is to perform adaptive (“online”) training
of the machine-learning component as part of
the data assimilation cycle.

� Our colleagues Dan Gauthier (Ohio State) and Dan
Lathrop (Maryland) are using FPGAs and ASICs to
create hardware reservoirs that are vastly faster than
software implementations.



Concluding Remarks
� Reservoir forecasting with a feedback loop is

relatively simple to implement and capable of
learning the dynamics behind chaotic time series
from a modest amount of training data.

� Hybrid approach uses machine learning to improve
(not replace) an imperfect knowledge-based model.

� Parallel method scales to high-dimensional
spatiotemporal systems by considering only local
interactions.

� Simplified training relative to other machine-learning
methods makes reservoir computing attractive for
hardware implementations.



Data from Magnetohydrodynamic Experiment

� Dan Lathrop’s lab at U.Md. has a 3-meter diameter
rotating sphere filled with liquid sodium, with an
internal counter-rotating sphere and an externally
applied magnetic field.

� We attempted to predict time series data from 33
sensors, 31 of which are on the outer sphere.

� The duration of the training data was about 150
rotations of the sphere.



Prediction of Experimental Data


