
Machine Learning for Forecasting and
Data Assimilation

Troy Arcomano, Sarthak Chandra, Rebeckah Fussell,
Michelle Girvan, Brian Hunt, Daniel Lathrop,

Zhixin Lu, Edward Ott, Jaideep Pathak,
Artur Perevalov, Ruben Rojas, Itamar Shani,

Istvan Szunyogh, Alexander Wikner
University of Maryland and Texas A&M

Partially funded by ARO, DARPA, and LTS



Machine Learning

� Machine-learning algorithms are trained with data to
perform a particular task, such as classification.

� Starting from generic input-output equations, training
means choosing parameter values that minimize the
difference between the actual outputs and the
desired outputs (“supervised” learning).

� In most applications, the task is static; training data is
a set of input-output pairs.

� Reservoir computing is a type of machine learning
well suited to dynamic tasks, mapping an input time
series to an output time series.



Forecasting and Attractor Reconstruction

� We seek to use reservoir computing to create an ad
hoc forecast model, based only on a finite-time
sample (training data) from a dynamical system.

� We are interested in two tasks for our forecast model:

� Forecast “weather”: Predict future measurements
(only feasible in short-term for chaotic systems).

� Learn “climate”: Reproduce long-term properties of a
chaotic attractor, such as Lyapunov exponents.



Reservoir Computing

� A reservoir is a driven dynamical system whose
internal parameters are not adjusted to fit the training
data; only a linear post-processor is trained.

� Train the reservoir by driving it with an input time
series u(t) and fitting a linear function of the reservoir
state r(t) to a desired output time series v(t).

� This approach was proposed as Echo State
Networks (Jaeger 2001) and Liquid State Machines
(Maass, Natschlaeger, Markram 2002); see http:

//www.scholarpedia.org/article/Echo_state_network

� A reservoir can be a (super-fast) hardware device.

http://www.scholarpedia.org/article/Echo_state_network
http://www.scholarpedia.org/article/Echo_state_network


Reservoir During Training
reservoir state r(t)

Win M Wout

input output
u(t) v̂(t)

Matrices Win and M are chosen randomly in advance



Continuous-Time Jaeger ESN

� Listen: βdr/dt = �r(t) + tanh[Mr(t) + Winu(t) + c]
(in software, solve with Euler time step τ).

� We choose M and Win at random, scaling M to have
spectral radius close to 1 and scaling Win so that
Winu is of order 1.

� We choose β commensurate with the input time
scale and we listen for 0 � t � T , where T is the
duration of the training time series u(t).

� Fit: Find the matrix Wout such that v̂(t) = Woutr(t)
least-squares minimizes the residuals v̂(t)� v(t) for
0 � t � T .



Inference Task (DA w/o Model)

� Suppose that we can inexpensively measure some
state variables of a dynamical system, but other
variables of interest are difficult to measure.

� Let u(t) consist of state variables that can be
measured for all time, and v(t) consists of state
variables that are only measured for 0 � t � T .

� After training, we continue to evolve the listening
equation for t � T , attempting to infer v(t) from u(t).

� The estimated value of v(t) is v̂(t) = Woutr(t).



Example: Lorenz System

� We ran the Lorenz system with time step τ = 0.05:
dx
dt

= 10(y�x),
dy
dt

= x(28�z)�y ,
dz
dt

= xy+8z/3.

� For training, we used u(t) = [x(t)] and
v(t) = [y(t), z(t)]T .

� We trained a 400-node reservoir (meaning that the
dimension of r(t) is 400) for training time T = 200.

� Details are in (Lu et al., Chaos, 2017).



Inferring Lorenz y(t) and z(t) from x(t)



Forecasting with Feedback

� Suppose training data is sampled at time interval τ,
but we want to forecast farther than τ into the future.

� One option is to train with lead time n τ [that is, set
v(t) = u(t + n τ)] for the value(s) of n of interest.

� We’ve gotten better results by training with lead time
τ and iterating the trained time-τ forecast n times.

� We train with desired output v(t) = u(t + τ) and then
forecast with u(t) replaced with û(t).

� This feedback approach (Jaeger & Haas 2004) can
be used with other machine-learning methods.



Forecast Model for t > T
Predict: βdr/dt = �r(t) + tanh[Mr(t) + Winû(t)]

û(t) = Woutr(t � τ)

input output
û(t) û(t + τ)



Lorenz system: Actual and Predicted z(t)

0 5 10 15 20
0

10

20

30

40

t � T

z



Actual and Predicted Attractors

0

10

20

30

40

50

-20
0

3020 20100-10-20-30

0

10

20

30

40

50

-20
0

3020 20100-10-20-30

z

y

x



Poincaré Section of Successive z(t) Maxima

25 30 35 40 45 50
25

30

35

40

45

50

zmax
n

Actual Predicted

zmax
n+1



Questions Raised

� How can a reservoir “learn” these dynamics? Is there
an approximate copy of the Lorenz attractor in the
high-dimensional r(t) system that we chose
independently of the training data?

� No – the feedback term in our forecast model
depends on the matrix Wout determined from training.

� We have found an approximation to the Lorenz
system in a family parametrized by Wout , which has
more than 1000 entries.

� But how is it feasible to find appropriate parameter
values in practice? Partial theory to follow.



Theoretical Framework

� During training/listening, the reservoir and its input
form a “skew product” or “drive-response” system:

� Input Dynamics (Drive): u(t + τ) = f[u(t)]

� Listening (Response): r(t + τ) = g[r(t),u(t)]

� Assume that f and g are continuous on Euclidean
spaces, that f is invertible, and that u lies in a
compact attracting set A.

� If g is uniformly contracting w.r.t. r, then as t !1,
the reservoir state r(t) becomes independent of its
initial state (roughly, Jaeger’s “echo state property”).



Generalized Synchronization

� Furthermore, we get generalized synchronization:
there is a continuous function φ on A such that
r(t)�φ(u(t))! 0 as t !1 [short proof in (Stark
1997)].

� Asymptotically, the reservoir state r(t) is a function of
the current input u(t) only, not the entire history of u.
However, we don’t know the function φ in practice.

� Uniform contraction can be guaranteed by choice of
g, but strong contraction may inhibit extraction of u
from r [extreme case: if g is identically 0, then so is r].



Inverting the Synchronization Function
� If r is much higher-dimensional than the attractor A,

then embedding theory (Sauer-Yorke-Casdagli 1991)
suggests that φ is likely to be one-to-one on A.

� If so, the inverse of φ on the set φ(A) can be
extended to r-space in many ways.

� Fitting: In training, we attempt to find a linear function
Wout that approximately inverts φ on φ(A):

u(t) �Woutr(t) �Woutφ(u(t)).

� This does not require φ to be approximately linear. It
requires only that we can approximate the nonlinear
function φ−1 on a low-dimensional set by a linear
function on a high-dimensional space.



Attractor Reconstruction and Stability

� If training is successful, then our forecast model

r(t + τ) = g[r(t),Woutr(t)] (1)

approximates [on φ(A)] the idealized model

r(t + τ) = g[r(t),φ−1(r(t))]. (2)

� Generalized synchronization implies that system (2)
is conjugate to true dynamics u(t + τ) = f(u(t)) on A.

� To reproduce the climate of A in practice, we need
system (1) to approximate an extension of system (2)
that makes φ(A) attracting.

� More “theory” in (Lu et al., Chaos 2018).



Kuramoto-Sivashinsky PDE

� We tested our methods on the spatiotemporally
chaotic KS system

ut = �uux � uxx � uxxxx

with periodic boundary condition u(x + L, t) = u(x , t).

� With system size L = 60, we trained a 9000-node
reservoir for time T = 20000 to predict the
(numerical) KS solution.

� The largest Lyapunov exponent is Λmax � 0.1, so we
trained for roughly 2000 Lyapunov times.

� Details are in (Pathak et al., Chaos 2017).



Kuramoto-Sivashinsky Forecast
Top: “Truth” Middle: Reservoir Bottom: Error



Estimation of Lyapunov Exponents

Actual exponents Reservoir exponents



Hybrid Forecasting

� Suppose we have an imperfect knowledge-based
forecast model for a physical system.

� A hybrid method uses machine learning to improve
(rather than replace) the model.

� We train by feeding the same input to the model and
the reservoir, and optimize a linear combination of
the model output and the reservoir output.

� We tested on the KS system with L = 35, using an
imperfect model that replaces uxx with (1 + ε)uxx .

� Details in (Pathak et al., Chaos 2018).



Hybrid Architecture



Forecast Errors: 8000 nodes, ε = 0.01
Top: Model Middle: Reservoir Bottom: Hybrid

Lyapunov times

x



Forecast Errors: 500 nodes, ε = 0.1
Top: Model Middle: Reservoir Bottom: Hybrid

Lyapunov times

x



Parallel Reservoir Architecture

� We developed a method for forecasting
high-dimensional, spatially extended systems with
multiple reservoirs that can process in parallel
(Pathak et al., PRL 2018).

� Each reservoir forecasts on a local region based on
input from its own and neighboring regions.



Preliminary Results with a GCM

� We are currently developing with T. Arcomano and I.
Szunyogh (Texas A&M) a parallel hybrid code for the
SPEEDY model (Molteni 2003) from ICTP.

� Model grid is T30 (96� 48) with 8 vertical levels.

� We interpolated the ERA5 reanalysis (ECMWF) to
the SPEEDY grid for training and verification data.

� Preliminary results are from a parallel-only code (no
hybrid yet) using 9 years of hourly data for training.

� We added noise to the reservoir input during training
to improve stability.



Parallel Regions on SPEEDY Grid

Red: Input Region Blue: Output Region



Comparison with Persistence Forecast



48-hour Machine-Learning Forecast



72-hour Machine-Learning Forecast



24-hour Forecasts: Tropics



24-hour Forecasts: SH



24-hour Forecasts: NH



Further directions

� We are developing and testing various approaches to
combine our hybrid method with data assimilation.

� Training directly on observations rather than on
reanalysis is a challenge.

� One goal is to perform adaptive (“online”) training
of the machine-learning component as part of
the data assimilation cycle.

� Our colleagues Dan Gauthier (Ohio State) and Dan
Lathrop (Maryland) are using FPGAs and ASICs to
create hardware reservoirs that are vastly faster than
software implementations.



Concluding Remarks
� Reservoir forecasting with a feedback loop is

relatively simple to implement and capable of
learning the dynamics behind chaotic time series
from a modest amount of training data.

� Hybrid approach uses machine learning to improve
(not replace) an imperfect knowledge-based model.

� Parallel method scales to high-dimensional
spatiotemporal systems by considering only local
interactions.

� Simplified training relative to other machine-learning
methods makes reservoir computing attractive for
hardware implementations.



Data from Magnetohydrodynamic Experiment

� Dan Lathrop’s lab at U.Md. has a 3-meter diameter
rotating sphere filled with liquid sodium, with an
internal counter-rotating sphere and an externally
applied magnetic field.

� We attempted to predict time series data from 33
sensors, 31 of which are on the outer sphere.

� The duration of the training data was about 150
rotations of the sphere.



Prediction of Experimental Data


