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Abstract—Results of the assimilation of high-density data to
initialize the high-resolution meteorological model MOLOCH
(CNR-ISAC) are described. The local analysis and prediction sys-
tem (LAPS), a mesoscale data assimilation system developed at
NOAA, is applied to modeling a case study of heavy precipita-
tion that occurred over Liguria, north-western Italy, on November
4, 2011, causing severe flood in the city of Genoa. This case is
representative of some episodes that affected the region in the
last few years, where the coastal orography, besides enhancing
the convective uplift, contributed to the formation of convergence
lines over the sea, responsible for the onset of convective cells.
The present work aims at the implementation of a model-based
operational short-range prediction system, with particular focus
on quantitative precipitation forecasting in a time range up to
12–24 h. The use of LAPS analysis as initial condition for the
MOLOCH model shows a positive impact on the intensity and
distribution of the simulated precipitation with respect to the sim-
ulations where only large-scale analyses are employed as initial
conditions. Effects on the models simulations are due to the assim-
ilation of surface network data, radio-sounding profiles, radar and
satellite (SEVIRI/MSG) data.

Index Terms—Data analysis, high-resolution weather forecast,
model initialization.

I. INTRODUCTION

T HE NUMERICAL weather prediction (NWP) of intense
meteorological events is a difficult task, mainly due to the

chaotic nature of the atmosphere. Particularly in the presence
of strong small-scale instabilities, like convective instability,
which is very often responsible of local-scale severe weather
and heavy precipitation, errors in model initial conditions
may grow with time very rapidly [1]. Forecast errors origi-
nate both from uncertainties in the initial conditions, mainly
due to the lack of sufficiently dense data sources resolving
mesoscale features, and from deficiencies in NWP models,
due to the approximate numerical methods used in solving the
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equations and, in particular, to the physical parameterizations
representing sub-grid processes [2].

In spite of the above limitations, for forecasting times
exceeding a couple of hours, the prediction of atmospheric con-
vective events and of quantitative precipitation can rely almost
exclusively upon numerical models. Therefore, mesoscale data
assimilation (DA), aimed at defining suitable initial condi-
tions for high-resolution meteorological models, is an essen-
tial step to properly simulate severe weather phenomena.
Available mesoscale data from both local measurements and
high-resolution remote sensing retrievals can have an impor-
tant impact on high resolution forecasts aimed at resolving the
convective scales.

The local analysis and prediction system (LAPS,
https://laps.noaa.gov/) is a numerical tool designed at the
National Oceanic and Atmospheric Administration (NOAA,
USA) for the generation of mesoscale analyses. LAPS analy-
ses, based on the Barnes recursive approach [3], can be used
as initial conditions for limited-area meteorological models as
well as a tool to construct consistent 3-D atmospheric fields
suitable for nowcasting applications [4]–[7]. LAPS allows the
exploitation of meteorological data coming from any sort of
conventional and nonconventional sources, including remotely
sensed data.

The LAPS system has been recently implemented to initial-
ize the two meteorological models developed at CNR-ISAC
(hereafter ISAC), BOLAM and MOLOCH. BOLAM is a
hydrostatic limited area model, appropriate for grid spacing
of the order of 10 km [8], [9]. MOLOCH is a nonhydrostatic
model that allows an explicit representation of atmospheric
deep convection (“convection permitting model”) and is
appropriate for simulations with grid spacing of the order of
1 km [10]–[12]. More details on the above models are pro-
vided in Section III. In the configuration implemented at ISAC
(http://www.isac.cnr.it/dinamica/projects/forecasts/index.html),
BOLAM forecasts are used to provide initial and boundary
conditions (IC/BC) to MOLOCH, so as to bridge the gap
between coarse time-space scales of global analyses/forecasts
and a convection-resolving grid.

In this paper, LAPS analyses, exploiting mesoscale data
assimilation, are used to provide initial conditions to both
BOLAM and MOLOCH models. The assimilation and fore-
casting experiments presented here are based on a heavy rain
episode, which affected the town of Genoa and the surround-
ing area on November 4, 2011. The amount of precipitation of
this event exceeded 500 mm in 24 h. The consequent flooding
caused several casualties and widespread damages. The limited
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area models BOLAM and MOLOCH, initialized with global
model analyses (ECMWF-IFS or NOAA-GFS) in the absence
of mesoscale assimilation, underestimated the rainfall amount
for this event [12]. Thus, the use of LAPS analysis as ini-
tial conditions for both models, in particular for MOLOCH,
is expected to improve the quantitative precipitation forecast
(QPF) at convection-permitting resolution. The final purpose
of the present study is a possible operational implementation
of the modeling chain LAPS-BOLAM-MOLOCH, in order to
help releasing timely and more accurate warnings in case of
significant and severe events.

This paper is organized as follows. Section II provides a
short description of the case study and of the typical problems
associated with the numerical modeling of small-scale phe-
nomena. Sections III and IV briefly depict the tools used here,
namely the meteorological models and the LAPS system, the
software interfaces designed for coupling LAPS with BOLAM
and MOLOCH, as well as the observational data entering the
analysis/assimilation procedure. Section V describes the results
of the assimilation and forecasting exercise, evaluating the
benefits induced by the assimilation itself on the forecast, in
particular on QPF. Conclusion is drawn in Section VI.

II. GENOA FLOODING EPISODE AND ITS

METEOROLOGICAL MODELING

Precipitation in coastal areas of the Mediterranean Sea can
reach significant intensity and amounts due to a combination of
dynamical factors, ranging from cyclogenesis and cyclones to
local convection [13], [14]; which can be enhanced and main-
tained quasi-stationary by the presence of steep orography [15].
Also, particularly in the fall season, the temperature difference
between the sea surface and the atmosphere enhances sensible
and latent heat fluxes, which constitute an important source of
energy for precipitating systems [16].

Northwestern Italy is characterized by a complex topogra-
phy, as the Maritime Alps and the northern Apennines face
the Ligurian Sea and the northern Tyrrhenian Sea. Such moun-
tain chains, besides directly forcing vertical motions, possibly
triggering and maintaining deep moist convection, may also
favor the formation of mesoscale low-level flows and of con-
vergence lines between air masses of different thermodynamic
characteristics [12]. This effect can result in the development
of quasi-stationary convective cells over the Ligurian Sea. The
convective cells regenerate over the sea, migrate slowly toward
the coast and reinforce over the orographic slopes, ending up in
very intense precipitation episodes [12], [17], [18]. Thus, these
coastal areas appear particularly exposed to the risk of floods
and flash floods [17].

A typical Mediterranean episode of this kind occurred over
Genoa on November 4, 2011. Heavy precipitation caused floods
of small river basins, provoking six casualties and signifi-
cant damages to local infrastructures. A detailed description
of the meteorological and hydrological situation characteriz-
ing the episode is reported in [17] and [19]. Buzzi et al. [12]
presented a modeling-based study of this episode, showing a
comparison with observations, for different model configura-
tions and grid spacing. In particular, they showed that the use

of a horizontal grid spacing in the range between 1.0 and 1.5 km
in the numerical meteorological model MOLOCH allows sim-
ulating the rain quantity close to the observed records. Thus,
a very high-resolution of the nonhydrostatic model is required
for an accurate description of the convection dynamics and of
their feedback on the density current triggering the formation
of new cells. However, high-resolution modeling is a necessary
but not sufficient condition for an adequate QPF if the initial
state of the atmosphere does not represent the relevant small
scales of motion. Such scales can be introduced into the initial
condition only by means of a proper model initialization, i.e.,
applying a high-resolution analysis tool capable of assimilating
dense mesoscale data.

III. BOLAM AND MOLOCH MODELS

As anticipated in Section I, BOLAM and MOLOCH are
numerical meteorological models developed at ISAC. BOLAM
is a limited area hydrostatic model ([8], [9]); in the present
study, it is implemented to produce simulations for a domain
extending over the entire European continent, part of North
Africa and the Eastern Atlantic Ocean. The horizontal grid
spacing is 8.3 km (522× 394 longitude–latitude grid points),
with 50 vertical levels (plus 7 soil layers). Atmospheric con-
vection is parameterized using a modified version of the
Kain–Fritsch scheme [20]. Initial and boundary conditions are
provided by 3-h ECMWF-IFS global model analyses/forecasts
sampled at the resolution of 0.25◦ in latitude and longitude.

The BOLAM hourly forecasts are used to define the initial
and boundary conditions for the nested high-resolution model
MOLOCH [10]–[12]. MOLOCH solves explicitly the equa-
tions for a fully compressible and nonhydrostatic atmosphere,
including microphysical and soil processes. The nested domain
(see Fig. 1), centered over Liguria, covers the northwest of
Italy with a grid spacing of 1.5 km (514× 514 longitude–
latitude grid points), 50 vertical levels, and 7 soil layers. Both
BOLAM and MOLOCH use grids in a rotated coordinate sys-
tem, which assures mesh isotropy at the centre of the domain. In
the numerical experiments described here, the MOLOCH simu-
lations start at 00:00 UTC, the same initial time of the BOLAM
forecasts, and run for 24 h. This means that in practice the
MOLOCH initial condition is a higher-resolution downscaling
of the BOLAM fields. The model starting times are set coin-
cident for both models, allowing for an assessment of the net
impact of the use of the same analysis as initial condition for
each model.

IV. IMPLEMENTATION OF LAPS DATA ANALYSIS FOR THE

METEOROLOGICAL MODELS

As mentioned above, local scale information must enter the
initial conditions of nonhydrostatic, high-resolution numerical
models, such as MOLOCH, if convective scales related to QPF
in the (very) short range have to be explicitly simulated. The
local scale information can be obtained by exploiting local
meteorological data (typically surface mesoscale networks, air-
craft data, etc.) and remotely sensed data (from radars and
satellites). While surface data are available over land in highly
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Fig. 1. Domain and topography (contour interval 250 m) of the high-resolution
model MOLOCH characterized by the steep orography due to the Alps and the
Apennines. The red spot marks the position of Genoa.

populated geographical zones (at least over Europe), remotely
sensed data (in practice satellite data) may help in filling gaps
over oceans and deserts.

LAPS is a tool designed to perform meteorological data
analysis at the mesoscale. LAPS has been developed at the
Earth System Research Laboratory (ESRL) of NOAA [4]–[7],
[21], [22]. LAPS has been designed to perform 3-D analy-
ses on a limited domain by ingesting and harmonizing data
recorded by a variety of sources and platforms: surface stations,
radio-soundings, wind profilers, instrumented and commercial
aircraft, and meteorological radars and satellites.

LAPS analyses are performed by means of separated cus-
tomizable modules for winds, temperature, moisture, and cloud
content of ice and water. The modules are based on different
approaches: the interpolation method implemented in the early
versions is based on the recursive Barnes scheme [3]. However,
more recent versions are migrating toward an implementation
of the variational approach (3DVAR and 4DVAR) with the per-
spective of application to the Ensemble Kalman filter (EnKF)
[23]–[25]. The LAPS version used to produce the analyses
for the model initialization shown in this paper is the 0-46-
1, and implements a mixed approach (Barnes and 3DVAR).
Developments are due to ongoing collaboration of NOAA with
several worldwide institutions, including ISAC [26], [27].

LAPS performs analyses of data by modifying a background
field (typically a gridded coarse analysis or a model forecast) to
produce gridded analyzed fields. Backgrounds fields are created
by the LAPS ingestion module (see details in Section IV-B),
while the SEVIRI/MSG data are provided by a module devel-
oped at ISAC to ingest the European geostationary satellite data
in the LAPS analyses [26], [27]. Suitable interfaces between
the ISAC models and LAPS have been created and inserted
into the LAPS ingestion module in order to provide LAPS with

the background fields derived from model analyses or forecasts,
consistent with ISAC model grids, orography, coordinates, and
variables (see also Section IV-A).

The sequential assimilation scheme starts with the wind anal-
ysis near the surface and in the free atmosphere. Then the
surface module provides near-surface analyses of temperature
and humidity. The free atmosphere analysis of temperature,
cloud condensate, and moisture are then performed in sequence
and merged with the surface analysis. A final module processes
the analyzed fields for the interfaces constructed to return the
analyzed gridded fields to the ISAC models.

Several preliminary tests have been made to check and even-
tually modify several parameter values of the LAPS modules.
For example, some parameters have been tuned to the data
density and topographic characteristic of the area of interest.

In the present study, LAPS provides the initial conditions for
both BOLAM and MOLOCH, assimilating meteorological data
from surface observations (METAR and SYNOP), atmospheric
soundings (RAOB), meteorological radar reflectivity and radi-
ances recorded by the geostationary satellite sensor SEVIRI, on
board of the Meteosat Second Generation (MSG).

A. LAPS Interfaces With BOLAM and MOLOCH

The interfaces needed to couple LAPS with BOLAM and
MOLOCH were not available and had to be developed and
implemented at ISAC. Actually, double-directional interfaces
(one for each model) are needed to operate LAPS in combina-
tion with a meteorological prognostic model. The input inter-
face provides the suitable (model) background fields to LAPS,
as it converts the meteorological fields defined in the prognostic
model format/grid (analysis or forecast) to the LAPS format,
preserving the specific horizontal coordinates and topogra-
phy of the model but interpolating from the model vertical
coordinate to constant pressure levels required by LAPS (see
below). The output interface converts back the LAPS analysis
into the model grid and format (including vertical interpola-
tion from pressure to model hybrid coordinates), to be used as
model initial condition. For this purpose, it was necessary to
modify substantially the LAPS module that defines the horizon-
tal domain. Since ISAC models operate on latitude-longitude
rotated coordinate system, not natively available in LAPS, the
option of rotated geographical grid was coded and added to the
existing options (polar stereographic, Lambert conformal, and
Mercator). In this way, horizontal interpolation is not needed,
preventing the introduction of large errors in areas with steep
orography, as the one represented in Fig. 1.

Concerning the vertical coordinates, interpolation cannot
be avoided, since LAPS works only on pre-defined constant
pressure levels, while ISAC models use different hybrid terrain-
following vertical coordinates (BOLAM uses a scaled pressure,
while MOLOCH uses a scaled height). In the vertical inter-
polation procedures implemented in the LAPS interfaces, the
number of LAPS pressure levels has been set to 150. Such
high number of levels was necessary in order to minimize
the interpolation error in both the input and output inter-
faces. Preliminary numerical tests were performed in order
to test whether LAPS pseudo-analyses (i.e., analyses without
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Fig. 2. Map of surface meteorological stations (blue points) and radio-sounding
locations (red triangles) available inside the geographic domain used for the
present case study.

data ingestion) appreciably modified the background fields.
Actually, this test turned out to be crucial and allowed to spot
and improve several critical aspects of LAPS. Application of all
the above measures assured that the application of LAPS in the
absence of data to be assimilated did not modify appreciably
the model forecasts.

B. Data Sources

Four different kinds of data are assimilated in the present
study: surface observations, upper air soundings, satellite radi-
ances, and radar reflectivity. All assimilated data derive from
observations made in the time interval between 23:30 UTC of
November 3, 2011 and 0:30 UTC of the following day, nomi-
nally referred to 00:00 UTC of the November 4, 2011. For each
set of data, it has been necessary to implement some ad hoc
data conversion interfaces in order to adapt the individual data
formats to the LAPS ingestion modules.

1) Surface Observation Data: Surface data have been pro-
vided by the Regional Environmental Protection Agency of the
Liguria Region (ARPAL). The set of meteorological surface
data includes the METAR and SYNOP reports collected over
a large European domain (used for BOLAM) and the Liguria
Region network. Within the MOLOCH domain, the number of
surface stations is in total 124 (see Fig. 2). Surface data provide
information on pressure, wind, temperature, and humidity. The
measuring frequency of stations ranges from 15 min to 1 h. For
the surface data analysis implemented here, all data recorded
within a 60-min time window centered on the analysis instant
have been used.

2) Sounding Data: The sounding data have been provided
by ARPAL (triangles in Fig. 2). The stations used for the
analysis cover Europe and North Africa.

3) Satellite Data: The module performing the ingestion
of SEVIRI/MSG data into LAPS has been developed at
ISAC, since LAPS originally did not consider the assimila-
tion of the European geostationary satellite data [26], [27].
Five SEVIRI/MSG channels are used by LAPS analysis:
the visible VIS006, the infrared channel IR_039, the water

Fig. 3. Mosaic of radar reflectivity (dBZ) covering Italy at 1-km resolution and
2-km height at 00:00 of November 4, 2011.

vapor WV_062, and the thermal infrared IR_108 and IR_120.
Preliminary tests performed at ISAC have shown a substan-
tial impact of the satellite data on cloud and humidity analysis,
especially in the lower atmosphere (not shown). However, such
impact has a minor effect on model simulations.

Another issue concerned the analysis for large domains
extending to high latitudes. In such cases, due to the observa-
tion geometry and the low height of the sun on the horizon,
the resulting visible albedo cannot be defined (twilight effect)
and the analysis may affect negatively the cloud cover field at
high latitudes. However, this problem does not affect the present
simulations at much lower latitudes.

4) Radar Reflectivity Data: The radar reflectivity compos-
ite over Italy is provided by the National Civil Protection
Department and by the International Centre on Environmental
Monitoring (CIMA). The reflectivity data used in LAPS are at
constant altitude plan position indicator (CAPPI). The CAPPI
reflectivity at the heights of 2, 3, and 5 km all over Italy, with 1-
km horizontal resolution, is ingested into LAPS at 00:00 UTC
of November 4, 2011 (Fig. 3 shows the data at 2-km height).

V. CASE STUDY: THE GENOA FLOOD

Genoa is a densely populated town with a high anthropic
impact, being confined into a narrow coastal area comprised
between the Liguria Sea and the Apennines Mountains sur-
rounding the Gulf of Genoa (see Fig. 1). Several creeks crossing
the urban area can overflow when intense precipitation occurs
locally or in the upper portions of the catchments. Fig. 4 reports
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Fig. 4. Accumulated precipitation (kgm−2) in (a) 24 and (b) 12 h, for the period ending at 00:00 UTC of November 5, 2011.

Fig. 5. 24-h accumulated precipitation simulated by MOLOCH (a) without LAPS and (b) with LAPS assimilation. The integration ends at 00:00 UTC of November
5, 2011. (a) Ctrl MOLOCH. (b) LAPS + MOLOCH.

Fig. 6. Same as Fig. 5 but for 12-h-accumulated precipitation. Integration interval starts at 12:00 UTC of November 4, 2011. (a) Ctrl MOLOCH. (b) LAPS +
MOLOCH.
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the accumulated precipitation in 24 h (a) and in 12 h (b), end-
ing at 00:00 UTC of the 5th of November, as observed by the
local rain gauge network. The most intense spell of precipita-
tion started in the late morning over Genoa and the adjacent
hills, where small river catchments are located, and lasted for
several hours. Accumulated values locally exceeded 450 mm
in 24 h. Intense precipitation continued until the evening, but
affected an area to the west of Genoa.

With the model set up described in Sections III and IV, two
numerical experiments were performed: a preliminary run using
only the BOLAM model, in order to evaluate the impact of the
LAPS analysis at intermediate spatial scale; a second experi-
ment with the MOLOCH model, whose boundary conditions
are provided by BOLAM. In both cases, the initial condi-
tion was modified by assimilating the available observations at
00:00 UTC of the 4th of November with LAPS.

The simulations were compared with the BOLAM and
MOLOCH control runs, obtained starting from the unmodified
initial states (large scale analysis). The experiment involving
BOLAM alone exhibited a weak effect of the LAPS assim-
ilation on the precipitation forecast, in spite of the fact that
some significant but local modifications of the initial condi-
tions were introduced by LAPS, mainly into the low-level
wind and humidity fields (not shown). Fig. 5(a) and (b) shows
the MOLOCH accumulated precipitation over 24 h, obtained
without (left) and with (right) LAPS assimilation, respectively.
In contrast with the BOLAM experiment, the initialization
using the LAPS analysis determines significant differences in
the forecasts. The larger sensitivity to the initial condition of
MOLOCH is expected, due to the growth of convective insta-
bilities at the high resolution of a convection-permitting model.
The precipitation maximum changes from 326 mm [Fig. 5(a)]
to 359 mm [Fig. 5(b)], while the secondary peak to the west
of Genoa increases from 207 mm [Fig. 5(a)] to a more realistic
value of 305 mm [Fig. 5(b); also compare it with Fig. 4(a)].

The forecast improvement, especially of the western precip-
itation maximum, is also confirmed by inspection of Fig. 6,
where the accumulated precipitation in the last 12 h of the sim-
ulation is shown. The comparison with Fig. 4(b) indicates that
precipitation timing is correctly predicted for both the control
and the LAPS case, but the simulated maximum is closer to the
observations when LAPS initialization is used.

The qualitative interpretation based on the results shown in
Figs. 5 and 6 is corroborated by a “statistical” analysis, based
on contingency tables (occurrence or not of precipitation above
prescribed thresholds), aimed at comparing observations and
model simulations of precipitation. Several indices were cal-
culated by considering the observations from 1598 rain gauges
distributed over the whole MOLOCH domain and precipitation
accumulated at individual model grid points.

The bias and the root-mean-square error (RMSE) are defined
as follows:

Bias =
1

N

N∑
i=1

(
IP sim

i − IP obs
i

)

RMSE =

√√√√ 1

N

N∑
i=1

(
IP sim

i − IP obs
i

)2

Fig. 7. FB for different thresholds of accumulated precipitation.

Fig. 8. POD for different thresholds of accumulated precipitation.

where N is the total number of reports from the rain gauge
stations (1598), and IP sim

i and IP obs
i are the model simulated

and the observed time integrated precipitation, respectively. The
bias and the RMSE are shown in Table I for both the time
integration periods of 12 and 24 h ending at 00:00 UTC of
November 5, 2011. Although such indices have a statistical sig-
nificance only if applied to a sufficiently long time interval or to
many episodes, a non-negligible improvement due to the LAPS
assimilation can be deduced for both time windows. In addi-
tion, for the 24-h-integrated precipitation, Figs. 7 and 8 show
the frequency bias (FB) and the probability of detection (POD)
indices versus the threshold of accumulated precipitation [28].
In practice:

FB =
A+ C

A+B

POD =
A

A+B

for each threshold of accumulated precipitation, A is the hit
rate, B is the miss rate (forecast underestimation of precipita-
tion), and C is the false alarm rate (forecast overestimation of
the precipitation).

Figs. 7 and 8 show that the MOLOCH simulation initialized
by the LAPS analysis exhibits both FB and POD values closer
to the ideal unity value for rain thresholds higher than 100 mm.
For lower precipitation thresholds, the impact of LAPS initial-
ization seems still relevant until 50 mm, while it is negligible
for smaller thresholds. Such results confirm that the improve-
ment of the high-resolution forecast in case of assimilation is
related to the simulation of convective precipitation, which is
associated with high precipitation rates. Of course, drawing
more general conclusion requires the application of the above
evaluation methods to a larger number of cases.
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TABLE I
BIAS AND RMSE OF THE INTEGRATED PRECIPITATION, COMPUTED OVER 1598 RAIN GAUGE STATIONS

DISTRIBUTED OVER THE WHOLE MOLOCH DOMAIN

VI. CONCLUSION

The implementation of the LAPS system for initializing the
ISAC meteorological models has been presented. Such imple-
mentation required the development of new interfaces, capable
of handling rotated latitudinal–longitudinal coordinates, as well
as the development of a specific module for the ingestion of
radar data.

Preliminary application of the LAPS analysis to the
BOLAM-MOLOCH modeling chain indicates a significant
impact on the quantitative precipitation forecast at high res-
olution. The case study considered here (the Genoa flood of
November 2011) highlights the effect of local data assimilation
when convective scales are involved. The low-level temperature
and wind fields, as well as the humidity distribution in the entire
troposphere, appear to be mostly affected by the high-resolution
data assimilation allowed by the LAPS system.

Preliminary sensitivity experiments, not discussed in detail
here, have shown the effect of including a single data source
at a time. In particular, the assimilation of surface stations
introduces changes in the low-level wind, temperature, and
humidity that can directly affect the onset of convection and its
location, by changing the characteristics of a moist and warm
low-level jet, interacting with the orography, which is often
responsible for the triggering of convection in this kind of
events. Sensitivity simulations show also that the assimilation
of SEVIRI/MSG satellite data can play a key role in filling
conventional data void regions, especially over the sea, thus
having an important impact on the humidity and condensate
distribution, especially where clouds are detected.

Finally, in the particular case considered here, meteorologi-
cal radar data, though entering the assimilation, exhibit a small
impact, probably due to the limited number of levels ingested
and to the low values of reflectivity at the time of model ini-
tialization, since at that time convective activity over the area
monitored by the Italian radar network was weak.

The accumulated precipitation simulated when the LAPS
analysis is applied to the MOLOCH initial condition shows a
better agreement with rain gauge observations, as shown by pre-
cipitation maps and by various “statistical” indices base on con-
tingency tables. However, a statistically significant approach
based on the simulation of many cases is a necessary step
in order to confirm the promising results presented in this
work, which should be regarded as a demonstration of the
feasibility of data assimilation of a variety of meteorological
data platforms with LAPS.
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