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Toward One Symbol Network Coding Vectors
Nikolaos Thomos, Member, IEEE, and Pascal Frossard, Senior Member, IEEE

Abstract—In this paper, we propose a novel design for network
coding vectors that limits the overhead information. Network
coding vectors contain information regarding the operations the
packets have undergone in the network nodes. They are used at
the decoder side to invert coding operations and recover the data.
We propose to reduce the size of this side information with the
use of Vandermonde-like generator matrices at the sources. These
matrices permit to describe the coding operations performed on
packets with only one symbol. We analytically investigate the
limitations arising from such design constraints. Interestingly, we
find that the feasible generation size is upper bounded by log2 q in
Galois field Fq of size q as this is the maximum packet diversity
allowed by the employed generator matrices. In addition, we
show that network coding nodes should only perform addition
operations in order to maintain the properties of the coding
vectors. We finally discuss the benefits and limitations of the
proposed coding vectors in practical systems.

Index Terms—Network coding, coding vectors, header com-
pression.

I. INTRODUCTION

NETWORK coding [1], [2] has attracted a lot of attention
during the past decade since it promises improved net-

work throughput, decreased delivery delay, and decentralized
control, among other interesting properties. One of the first
attempts to make network coding practical has been presented
in [3] where Randomized Linear Network Coding (RLNC)
[4] is employed. RLNC is pretty simple and does not require
coordination between network nodes, which has made it
popular in practical systems. It however requires each packet
to be augmented with a network coding header that contains
information about the coding operations in the network. In
order to keep the size of the network coding header reasonable,
the network coding operations are limited to groups of packets
sharing similar decoding deadlines. These groups of packets
are known as generations. Then, the length of a network
coding vector is N log2 q bits, where N denotes the number
of packets in a generation and q the size of the employed
Galois field Fq where the coding operations are performed.
Although, the segmentation in generations shortens the length
of network coding vectors, the related overhead might still
affect the goodput of the system.

In this paper, we propose a design that shortens the em-
ployed network coding vectors of RLNC schemes by imposing
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a specific design of the generator matrices. Our work is
influenced by Rateless codes [5], [6] where a seed of a
pseudo-random generator is used to determine which source
symbols have been combined for the generation of a rateless
encoded symbol. Therefore, if one initializes the pseudo-
random generator with a given seed, it produces always the
same sequence of numbers. Similarly, in RLNC systems a
naive approach could be to employ a seed of a pseudo-
random generator that produces a sequence of network coding
coefficients. Although this method is efficient in terms of
compression, it necessitates all the network nodes to be
synchronized. This is a limiting factor in the deployment
of distributed RLNC systems. Another drawback of such an
approach is the need for large look-up tables which leads to
high computational complexity. Instead, we employ a form of
modified Vandermonde matrices for the generation of coding
coefficients, which could be then determined uniquely by one
single seed symbol. In addition, the coding operations in the
network nodes results in the generation of another coding
vectors that is also uniquely described by another seed symbol.
The analysis of the proposed design which applies linear cod-
ing in Fq at sources and coding operations in F2 in the network
nodes, shows that our method constitutes a tradeoff between
small header overhead, and the goodput of the network coding
system. Indeed, the set of valid packet combinations is limited
by the design of the coding coefficient vectors. This may limit
the throughput benefits in the network coding system. We also
show that the generation size should not exceed log2 q due to
the cyclic property of the Vandermonde matrices. Finally, we
discuss methods for the deployment of the proposed network
coding solution in practical settings.

The works in [7] and [8] are probably the studies that are
the closest to our proposed system. The first attempt to reduce
the size of the transmitted network coding vector without any
performance loss has been made in [7]. This design has been
proposed for RLNC [4]. The sources do not combine all the
packets and a unique vector of the form [0 0 1 . . . 0] is
appended to each packet at servers. Without loss of generality,
as the packets travel through the network, only m of them are
combined in network nodes. The resulting coding vector is
compressible to a vector of size 2m. This becomes feasible by
coding with parity check matrices like those used by channel
codes. The performance of this compression scheme has been
improved in [8]. A segment ID is added to the header in order
to record the IDs of the sources that have been combined
in a packet. The achievable compression is m + n/ log q,
where n stands for the generation size. The compression
comes arbitrarily close to m+O(logn)/ log q [8] when a list
decoding scheme is employed. In contrary to the works in [7]
and [8] we do not assume sparse coding vectors. We focus on
RLNC that operates on dense vectors, which permits to exploit
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better the network resources. It is however critical to reduce
the amount of bandwidth spent for sending the coding vectors,
as the coding vector overhead can become comparable to the
payload.

II. NETWORK CODING VECTOR DESIGN

Coding coefficient vectors employed by RLNC schemes
typically consume significant bandwidth resources. The re-
duction of the bandwidth needed for communicating the
coding vectors leads to more efficient exploitation of the
network resources. Ideally, network coding vectors should
be of minimal size, i.e., one symbol. At the same time, the
linear properties of RLNC schemes should be maintained, i.e.,
combinations of coding vectors should result in another valid
short coding vector, such that decoding can be achieved by
classical algorithms like Gaussian Elimination.

In order to achieve these properties, we propose to design
coding vectors based on Vandermonde matrices. These matri-
ces have the following structure

A
′
=

⎡
⎢⎢⎢⎣

1 a1 a21 a31 . . . an1
1 a2 a22 a32 . . . an1
...

. . .
...

1 am a2m a3m . . . anm

⎤
⎥⎥⎥⎦

Assuming that each row of A
′

represents a coding vector,
we observe that the elements in the second column of A

′

could be seen as “seeds” of a pseudo-random generator, i.e.,
one can produce all other entries of a row using only one of
these seeds. We adopt modified Vandermonde matrices that
do not contain the first column. In particular, we want that
the addition in Fq of coding vectors (rows of the matrix)
is uniquely described by a seed representing in another row
of the matrix. This is however not always true in the above
matrix, as

a1 + a2 �= ai, i ∈ [1,m] and i �= 1, 2,

where ai, a1, a2 are vectors of the form [a a2 . . . an]. But
this condition becomes true when the coding vectors are of
the form [ai a2i a2

2

i . . . a2
n

i ] except for ai = 1. This
interestingly resembles the design of parity check matrices
used for maximum rank distance (MRD) codes [9] such as
Gabidulin codes [10]. Hence, we propose to employ generator
matrices A of the form

A =

⎡
⎢⎢⎢⎢⎣

a1 a
[2]
1 a

[3]
1 . . . a

[n]
1

a2 a
[2]
2 a

[3]
2 . . . a

[n]
1

...
. . .

...

am a
[2]
m a

[3]
m . . . a

[n]
m

⎤
⎥⎥⎥⎥⎦

where a
[j]
i = a2

j

i .
Due to the cyclic property of the Galois fields, A has a

periodicity of M = log2 q symbols in every row. Thus, we
have a

[j]
i = a

[j+M ]
i . The addition of columns of A forms a

valid codeword. This can be understood from the linearity
constraint of the MRD codes, which are similar to our codes.

In RLNC based systems, the packets are also subject to
multiplication by linear combinations in the network nodes.

Under multiplication of a vector a1 with a scalar γ, we have

[a1γ a
[2]
1 γ a

[3]
1 γ . . . a

[M ]
1 γ] = [ai a

[2]
i a

[3]
i . . . a

[M ]
i ]

Thus, we have a set of equation of the form

a
[i]
1 γ = a

[i]
i , i = 1, . . . ,M

The only non-trivial scalar value that simultaneously satis-
fies all the above equalities is γ = 1. Such a choice however
results in the original coding vector. Hence, multiplication
in network nodes are not compatible with our design of the
coding coefficient vectors.

To summarize, two constraints are associated with the
design of network coding vectors: (a) the generation size
should not exceed M = log2 q because of the cyclic property
of the employed generator matrices at sources and (b) only
additions between the network coding vectors are permitted.

III. DESIGN ANALYSIS

In order to constrain the size of the coding coefficient vector,
our design limits the set of possible coding operations in the
network and hence the diversity of the packets.

Since every network coding vector is characterized by
the first element of the corresponding row of A (seed), its
choice limits the number of possible coding operations. In this
section, we focus on the probability to randomly generate at
sources an innovative packet, i.e., to produce novel information
with respect to the packets that have already been generated.
The analysis of this probability brings information about the
performance penalty induced by our constrained encoding
design.

We first examine the probability for the m-th network coded
packet to be innovative. We also determine the size of the
set of eligible seeds that permit the construction of full rank
equation systems at the decoder side. For the first packet, we
know that it is non-innovative when the seed “0” (corresponds
to all zeros coding vector) is selected as we lose all the source
information. Seed “1” (corresponds to all ones coding vector)
should also not be selected as the corresponding coding vector
does not result in a valid seed under addition. If we denote
with S(1) the set of the valid seeds when the first coding
vector is selected at sources, we have S(1) = Fq\{0, 1}. Thus,
the probability of selecting a non-innovative1 packet is

P inv(1) =
q − |S(1)|

q

Thus, it is P inv(1) = 2/q. For the second packet we have
S(2) = Fq\{0, 1, a1} as the selected seed should also differ
from that of the first packet. Trivially, it is P inv(2) = 3/q.
In similar way, for the third packet we have that S(3) =
Fq\{0, 1, a1, a2, a1+a2} as the seed of the third coding vector
should not correspond to any of the previously selected seeds
nor their addition. Similarly for the m-th coding vector, we
have

q − S(m) = 2 + (m− 1) +

m−1∑
i=2

(
m− 1

i

)

1Please note that the term non-innovative includes the vectors of the form
[1 1 . . . 1] that are described by the seed “1” as non innovative since they
do not satisfy the design constraints.
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The probability that the m-th packet is non innovative is equal
to

P inv(m) =
q − |S(m)|

q

Therefore, the probability that all the m packets that are
transmitted from the source are innovative is

Pinv =
m∏
i=1

(1− P inv(i)) (1)

Finally, the number of valid coding vectors for the selection
of the seed of the m-th coding vector is q − |S(m)|.

From the above, we can observe that, for m > q, we
have S(m) > |Fq|. Thus, we cannot employ generations of
symbols that are larger than log2 q. Moreover, for a generation
of size m < q, the probability that the randomly selected seeds
result in rank deficient system is 1 − Pinv . We should note
that in our system, the servers select the packet seeds taking
into account the previously selected seeds. Intermediate nodes
perform operations with the received packets by means of
addition. We would like to emphasize that we employ shorter
headers than [7], [8] and the length of the employed header
does not augment with the number of processing operations
(combinations) in the network, contrarily to [7], [8].

Finally, we would like to note that we focus only on the
probability of generating innovative packets at the sources,
as it is the main source of performance degradation of our
scheme. Some performance degradation is introduced by the
coding operations in the intermediate nodes. This is due to the
fact that the addition of two or more packets might result in the
same network coding header as another packet that is available
in the node’s buffer. However, the same type of problems arises
in other RLNC coding schemes, even if the actual penalty
depends on the packet types and network settings. The main
difference between our scheme and other RLNC schemes is
thus due to the coding strategy at the sources.

IV. PERFORMANCE ANALYSIS

In the previous section, we have determined the perfor-
mance limits of the proposed network coding algorithm, which
minimizes the length of the coding vectors. We now illustrate
the performance of our algorithm by simulations. First, we
investigate the probability that a randomly chosen coding
vector is innovative with respect to the number of seeds of the
coding vectors that have been already generated. We present
results coming from the evaluation of Eq. (1) for two coding
field sizes, F28 and F215 . From Fig. 1, we can observe that for
the first few selections of seeds the probability that a randomly
selected packet is innovative is approaching 1. We also see
that, as the number of packets increases, the corresponding
probability decreases sharply. As expected, the probability of
finding innovative packets decreases smoothly with the size
of the Galois field. The results are presented for a number of
packets that does not exceed M = 8 and M = 15 for F28 and
F215 respectively, as we cannot have more innovative packets,
by design.

The same conclusions can be drawn if we examine the pro-
posed scheme in terms of number of available eligible seeds
for coding vectors with respect to the number of randomly
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Fig. 1: Probability of generating an innovative coding vector at
sources with respect to the number of network coded packets
for F28 and F215 .

selected packets. The theoretical results are compared with
simulation results. From Figs. 2(a) and (b), we can see that the
simulation results match the analysis and that only marginal
differences are observed. We can also note that the number
of available seeds decreases when the number of generated
packets increases. Furthermore, it decreases fast as the number
of generated packets approaches M . It is also obvious that,
when our system employs larger finite field sizes, it has a
lower probability of generating non-innovative packets.

For the sake of completeness, we have investigated the
performance of the proposed scheme in terms of the time
required to collect enough packets for decoding. The results
are illustrated in Fig. 3. These resullts also reveal the goodput
gains, as higher goodput is associated with faster reception
of packets. We compare the proposed scheme with RLNC in
regular networks consisting of three nodes per coding stage,
where every node is connected with all nodes in the previous
stage [11].2 The number of coding stages varies from two to
four. All the links have capacity equal to 200 symbols/sec
(1 symbol = 12 bits). In our scheme, we restrict the coding
operations to pairs of symbols in order to increase the packet
diversity and to decrease the probability that some information
is eliminated due to random coding operations. The operations
are performed in F212 . From Section III, we have seen that
the generation size is limited to 12 in this case. Hence, in
order to maintain a high probability of innovative packets,
we set the generation size equal to 10. We consider packets
with small payloads (50 and 90 bytes), which are typical in
sensor networks. In the proposed setting, the sources transmit
packets until decoding is possible to all clients. We see in
Fig. 3 that larger gains are noticed for smaller payloads due
to lower overhead in this case. Under the same bandwidth
conditions, the proposed method permits to receive the packets
faster as for every packet transmission the header is nine
symbols smaller. Further, we observe that the performance

2We omit the performance comparisons with optimized routing solutions
and rather use RLNC as a baseline scheme. In general, routing solutions are
inferior to RLNC schemes operating in large Galois fields as RLNC schemes
can approach the min-cut of the underlying communication graph. However,
the gains of the network coding approaches depend on the network topology.
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Fig. 2: Number of eligible coding vectors at sources with respect to the number of network coded packets for: (a) F28 and
(b) F212 .
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Fig. 3: Decoding times with respect to the number of coding
stages. The proposed methods “Short headers” is compared
with RLNC for payloads of 50 and 90 bytes, while the
generation size is 10 and operations are performed in F212 .

difference increases with the number of coding stages. This is
due to the fact with smaller coding vectors each intermediate
node receives packets faster, thus it is able to send also faster.
However, we should note that with the proposed method we
have higher probability of receiving non-innovative packets
as coding operations in intermediate nodes are performed
between pairs of packets. This leads to performance penalty
for large networks as the probability of generating redundant
packets increases with the number of coding stages.

V. DISCUSSION

We have presented a novel design of network coding
vectors that permits their representation with one symbol.
The proposed method is particularly interesting for networks
where the communicated data has small payload and thus the
use of large coding vectors is prohibited. We find that the

employed generation size is upper bounded by M = log2 q.
Our system is also appropriate for low-cost intermediate nodes
as operations only consist of modulo-2 additions. However, for

guaranteeing the maximum packet diversity at the network,
sources should carefully select the coding vectors of the
packets. Finally, the proposed method offers gains in terms of
the time required for decoding compared to traditional RLNC
approaches that employ large coding vectors compared to the
packet payload. The proposed approach is particularly useful
in sensor networks, since sensors have readings (messages)
with small payload and thus data should be packetized in few
packets (small generations).
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