diff --git a/classification/adaboost_classifier.py b/classification/adaboost_classifier.py new file mode 100644 index 0000000..e0f23f0 --- /dev/null +++ b/classification/adaboost_classifier.py @@ -0,0 +1,39 @@ +from sklearn.ensemble import AdaBoostClassifier +from sklearn.datasets import load_breast_cancer +from sklearn.model_selection import train_test_split +from sklearn.metrics import plot_confusion_matrix +from matplotlib import pyplot as plt + + +"""Adaboost classifier example""" + + +def adaboost(): + cancer_df = load_breast_cancer() + print(cancer_df.keys()) + X, y = cancer_df.data, cancer_df.target + X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) + + abc = AdaBoostClassifier(base_estimator=None, + n_estimators=300, learning_rate=1, random_state=0) + abc.fit(X_train, y_train) + y_pred = abc.predict(X_test) + print(y_pred[:20]) + # Display Confusion Matrix of Classifier + plot_confusion_matrix( + abc, + X_test, + y_test, + display_labels=cancer_df["target_names"], + cmap="Blues", + normalize="true", + ) + plt.title("Normalized Confusion Matrix - Cancer Dataset") + plt.show() + + # to see the accuracy of the model + print("Accuracy of adaboost is:", abc.score(X_test, y_test)) + + +if __name__ == "__main__": + adaboost() \ No newline at end of file diff --git a/classification/gaussian_n_bayes.py b/classification/gaussian_n_bayes.py new file mode 100644 index 0000000..8bbb146 --- /dev/null +++ b/classification/gaussian_n_bayes.py @@ -0,0 +1,32 @@ +# importing libraries +from sklearn.naive_bayes import GaussianNB +from sklearn.model_selection import train_test_split +from sklearn.datasets import load_iris +from sklearn.metrics import accuracy_score, classification_report +import pandas as pd + + +"""To implement Gaussian naves bayes for flowers clssification""" + + +def main(): + + iris = load_iris() + print(iris.keys()) + iris_df = pd.DataFrame(iris.data, columns=iris.feature_names) + iris_df['target'] = iris.target + print(iris_df.head()) + X, y = iris_df.drop('target', 1), iris_df.target + print(X.shape, y.shape) + X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) + model = GaussianNB() + model.fit(X_train, y_train) + y_pred = model.predict(X_test) + print(y_pred[:10]) + accuracy = accuracy_score(y_test, y_pred) + print("The accuracy of Gaussian naves is {}".format(accuracy)) + # classification report + print(classification_report(y_test, y_pred)) + + +main() pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy