diff --git a/src/algebra/fibonacci-numbers.md b/src/algebra/fibonacci-numbers.md index e63e52081..dd8e1bd1a 100644 --- a/src/algebra/fibonacci-numbers.md +++ b/src/algebra/fibonacci-numbers.md @@ -157,7 +157,20 @@ F_{n} \end{pmatrix} $$ -where $F_1 = 1, F_0 = 0$. +where $F_1 = 1, F_0 = 0$. +In fact, since + +$$ +\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} += \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix} +$$ + +we can use the matrix directly: + +$$ +\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n += \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} +$$ Thus, in order to find $F_n$ in $O(\log n)$ time, we must raise the matrix to n. (See [Binary exponentiation](binary-exp.md))
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: