diff --git a/src/algebra/fibonacci-numbers.md b/src/algebra/fibonacci-numbers.md index e63e52081..dd8e1bd1a 100644 --- a/src/algebra/fibonacci-numbers.md +++ b/src/algebra/fibonacci-numbers.md @@ -157,7 +157,20 @@ F_{n} \end{pmatrix} $$ -where $F_1 = 1, F_0 = 0$. +where $F_1 = 1, F_0 = 0$. +In fact, since + +$$ +\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} += \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix} +$$ + +we can use the matrix directly: + +$$ +\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n += \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} +$$ Thus, in order to find $F_n$ in $O(\log n)$ time, we must raise the matrix to n. (See [Binary exponentiation](binary-exp.md)) pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy