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Abstract

We survey three examples of large-scale scientific work-
flows that we are working with at Cornell: the Arecibo sky
survey, the CLEO high-energy particle physics experiment,
and the Web Lab project for enabling social science stud-
ies of the Internet. All three projects face the same general
challenges: massive amounts of raw data, expensive pro-
cessing steps, and the requirement to make raw data or data
products available to users world-wide. However, there are
several differences that prevent a one-size-fits-all approach
to handling their data flows. Instead, current implementa-
tions are heavily tuned by domain and data management
experts.

We describe the three projects, and we outline research
issues into opportunities to integrate Grid technology into
these workflows.

1 Introduction

The Grid with its associated tools holds great promise for
simplifying the development and deployment of large-scale
data-driven workflows. At Cornell, domain scientists from
astronomy and physics and computer scientists are working
together on three large-scale workflows: the Arecibo sky
survey, the CLEO high-energy particle physics experiment,
and the Web Lab project for studying the evolution of the
World Wide Web. All three projects involve with massive
amounts of data which are growing rapidly; they all have
sophisticated data processing pipelines that meld raw data
through expensive processing steps into finished data prod-
ucts. For all project, the consumers of both the raw data
and the data projects is a distributed community of scien-
tists who are located all over the globe.

However, despite these similarities, there are also strik-
ing differences between the workflows, and at this point,

each group has built its own custom solution. In this paper,
we survey the existing solutions and our experience with
the three workflows, and we outline research challenges de-
rived from these problems. In particular, it is the goal of this
paper to stimulate discussions at the workshop about novel
research directions motivated by real applications.

The remainder of this paper is organized as follows.
We first survey the workflows associated with the three
projects: The Arecibo Sky Survey (Section 2), the CLEO
High-Energy Particle Research (Section 3), and the Web
Lab (Section 4). We conclude with next steps (Section 5).

2 The Arecibo Sky Survey for Neutron Stars

This project makes use of the Arecibo Telescope in
Puerto Rico, the world’s largest radio aperture, as the source
of data for several astronomical surveys. The upgrade of
the telescope and installation of a 7-feed array mounted at
the focus (the Arecibo L-band Feed Array, ALFA), operat-
ing at 1.4 GHz makes the pulsar survey the most sensitive
ever done. The survey commenced in early 2005 and will
continue for at least five years, producing about a Petabyte
of raw data. Processing to identify pulsars and transients
yields data products about one to a few percent the size of
the raw data that, in turn, are subjected to a meta-analysis
that discriminates between and classifies terrestrial interfer-
ence and astrophysical signals.

2.1 Arecibo Data Flow and Challenges

The Arecibo data flow consists of several major data ac-
quisition, transport, and processing steps:

1. Acquisition of dynamic spectra at the telescope and
recording to local disks.

2. Initial local processing for quality monitoring and for
making preliminary discoveries.



3. Transport of raw data to the Cornell Theory Center
(CTC) for archiving, processing and dissemination to
other processing sites.

4. Further processing of the data using proprietary al-
gorithms at several member institutions of the “Pul-
sar ALFA” (PALFA) Consortium (including Cornell);
member institutions are world-wide.

5. Consolidation of processing data products at the CTC
for meta analysis.

6. Incorporation of data products into a database that fa-
cilitates the meta analysis.

7. Long term archiving of raw data and data products for
reprocessing, which is common for pulsar surveys, and
for cross wavelength studies now and in the indefinite
future. This involves connection with the National Vir-
tual Observatory.

Data are obtained in observing sessions of 3 hours, once
or twice a day for periods of one to two weeks, yielding tens
of Terabytes of raw data. To ensure data quality against
spectrometer functionality, proper signal levels, and inter-
ference that contaminates signals to highly-varying degree,
data is analyzed locally at the Arecibo Observatory. There
is some interest to perform full pulsar-search processing at
Arecibo on some of the data. Primary reasons are (a) one
or more pulsar astronomers involved with the project will
be in residence at Arecibo who have an interest in being
involved with the processing; (b) local processing reduces
demands on observatory staff to ship all data promptly and
(c) any initial pulsar candidates found could be confirmed
during the same telescope session. For the most part, how-
ever, processing of raw data will require off-island resources
primarily because the resource demands are high.

Processing consists of data unpacking, dedispersion,
Fourier analysis, harmonic summing, threshold tests to
identify candidates, reprocessing of dedispersed time series
to signal average at the spin period of a candidate signal,
and investigation of the time series for transient signals that
may be associated with astrophysical objects other than pul-
sars. In addition, interference from terrestrial sources needs
to be at least identified and most likely removed from the
data. To do so requires development of new algorithms that
simultaneously investigate dynamic spectra for each of the
7 ALFA beams and apply tests of different kinds. Overall
about 50 to 200 processors would be needed to keep up with
the flow of data. However, these numbers are only for the
basic analysis and do not include additional, possibly sub-
stantial overhead from Radio Frequency Interference (RFI)
excision. Finally, another level of complexity comes from
addressing pulsars that are in binary systems, for which an
acceleration search algorithm also needs to be applied.

To further refine pulsar candidate signals, usually about
0.1% of the raw data volume, before they are confirmed on

the telescope, a meta-analysis is needed to cull those can-
didates that appear in multiple directions on the sky. With
past experience, we find that spurious signals take a wide
range of forms, those that are obvious and easy to recognize
in the first stages of the analysis, to subtle cases that are ap-
pear very sporadically and can mimic astrophysical signals
uncannily well.

Storage requirements during the different processing
steps are even more challenging. A useful data block con-
sists of the∼ 400 telescope pointings obtained in one week,
or about 35 hours of telescope time. The corresponding raw
data require 14 Terabytes of storage. Dedispersion entails
summing over the frequency channels with about 1000 dif-
ferent trial values of the “dispersion measure,” each yielding
a time series of length equal to the original number of time
samples. These time series require storage about equal to
that of the original raw data. The processing is iterative, re-
quiring operations on both the dedispersed time series and
the raw data, so a minimum of 30 Terabytes of storage is
required instantaneously.

2.2 Current Solutions and Future Challenges

As discussed in the previous section, most of the pro-
cessing has to happen off-site. Unfortunately, because of
Arecibo’s limited network bandwidth to the outside world,
for the forseeable future, network transport of raw data is
infeasible. We therefore have developed a system based on
transport of physical ATA disks with raw data. The main is-
sues of data transport are: personnel requirements; assess-
ment and maintenance of data integrity; tracking and log-
ging of data contents; ensuring no data loss; and developing
a database of utility into the indefinite future.

The raw data disks are transported to the CTC, where
their contents are archived to a robotic tape system and
retrieved for processing. Some of the raw data and data
products are also distributed to participating PALFA mem-
ber organizations. The large number of data products (data
diagnostics and plots, test statistics, candidate lists, confir-
mation analyses, etc.) that are created for each telescope
pointing, are loaded into a MS SQLServer database system
at the CTC. The database is accessed through a Web-based
server and will provide the tools for meta-analyses. It cur-
rently supports interactive groupings of candidate signals,
tests for correlation or uniqueness of the candidates, and
generation of appropriate plots for accomplishing the com-
bination of pattern recognition and statistical analysis re-
quired. Eventually the entire processing pipeline will be
controllable from the Web-based system.

The current transport and processing pipeline, as de-
scribed above, is adequate but requires a great deal of inter-
vention by personnel at Arecibo, in the Astronomy Depart-
ment at Cornell, and at the CTC. We need to continue to au-



tomate more of the steps. The largest challenge is to evolve
the entire system into a sustainable structure that will allow
(a) room for growth when data rates using a new spectrom-
eter will increase; (b) provision of tools for the diverse anal-
yses that PALFA Consortium members will want to conduct
over the duration of the survey; and (c) development of in-
frastructure for linking the PALFA data sets to the National
Virtual Observatory (NVO). Connecting the CTC database
system with the NVO requires particular XML-based pro-
tocols that have been developed by the NVO Consortium.
We are currently developing tools that use these protocols.

The raw data and data products will be valuable for the
indefinite future, providing tremendous opportunities for
multi-disciplinary astrophysical studies that will link satel-
lite telescope data with the Arecibo data. For example,
the next generation gamma-ray telescope (the Gamma-ray
Large Aperture Space Telescope, GLAST), to be launched
in 2007, will be a discovery and analysis instrument with
direct interest for the Arecibo project. We must ensure flex-
ibility and transparency of the tools for use by a broad con-
stituency of researchers.

Another aspect of the large Arecibo data sets is the
prospect for discovering entirely new classes of signal and
thus astrophysical objects. Exotica such as evaporating
black holes, transient emissions from extrasolar planets,
and signals from other civilizations are examples of poten-
tial serendipitous discoveries that may be made if adequate
tools for exploration exist.

A key issue for these and other considerations is the
migration of the data to new storage technologies as they
emerge. Storage media costs undoubtedly will decrease, but
manpower requirements for migrating the data are signifi-
cant and care is needed to avoid loss of data.

3 The CLEO High-Energy Particle Research
Project

CLEO is a high-energy particle physics (HEP) research
experiment at Cornell University [1, 9]. The CLEO collab-
oration includes over 150 physicists from more than 20 uni-
versities, studying the production and decay of beauty and
charm quarks and tau leptons produced in the Cornell Elec-
tron Storage Ring (CESR) [2, 8]. The collaboration makes
some of the most sensitive tests of the Standard Model of
elementary particles, key to understanding the forces of na-
ture and the fundamental structure of matter [7].

The primary goal of CLEO software is to produce
physics analysis results of the electron-positron collision
events detected by the CLEO detector. Delivery of physics
analysis products follows complex work and data flows that
have evolved over the past 30 years.

3.1 CLEO Data Flow and Challenges

CLEO has accumulated more than 80 Terabytes of
data. This is a massive data collection, but nowhere near
Arecibo’s Petabyte-size storage requirements. The biggest
challenge in CLEO lies in its complex data processing
workflow, as summarized in Figure 1 (red arrows indicate
data flow). Due to space constraints, it is not possible to
explain it in detail, but we will highlight important aspects.

The current data analysis software comprises several
million lines of C++ code. The processing steps include

1. Acquisition of runs of particle collision measurements
and initial analysis.

2. Reconstruction of the runs; followed by computation
of post-reconstruction data for each run.

3. Generation of Monte-Carlo random data for each run.
4. Physics analysis, performed either locally or remotely.

These steps are explained below. They produce many dif-
ferent data products: raw data of the detector response
to electron-positron particle collisions, detector calibration
data, data from Monte Carlo simulations of the detector re-
sponse, centrally produced derived data (known as recon-
struction), and the output of the physics analysis that de-
pends on all of the other data types.

Raw data are the detector response to the particle col-
lision events measured by the CLEO detector. They are
stored in units known as runs. A run is the set of records
collected continuously over a period of time (typically be-
tween 45 and 60 minutes), under (nominally) constant de-
tector conditions. A run worth analyzing typically com-
prises between 15K and 300K particle collision events.

A reconstructed run is produced by processing the raw
data for a run. Each event in a reconstructed run comprises
many sub-objects, which may in turn have sub-sub-objects.
An atomic storage unit (ASU) is the smallest storable sub-
object of an event. An ASU will never be split into compo-
nent objects for storage purposes.

In addition to the reconstructed data files, post-
reconstruction values are also produced and stored. These
values depend on the reconstructed data, and so cannot be
calculated until after reconstruction. There are typically a
dozen ASUs per event in the post-reconstruction data. For
each version of the reconstructed data, there may be several
versions of the post-reconstruction data.

The processes for reconstruction and physics analysis re-
quire iterative refinement. With each iteration the knowl-
edge about the measured collision event increases, e.g.,
which particles were produced during the collision, and
hence another iteration might be triggered. When starting
a new analysis, a physicist normally wishes to use the most
recently produced version of the analysis software and the



Figure 1. CLEO data flow

corresponding version of the reconstructed data. For repro-
ducibility, it is critical that in each iteration, the physicist’s
analysis job makes consistent use of software versions and
accesses the same information as previous iterations (unless
explicitly told to do otherwise).

The tradition at CLEO has been to continue to use the
version of the data an analysis was started with throughout
the lifetime of that analysis, rather than periodically updat-
ing the entire analysis to newer versions (unless there is a
compelling reason to repeat the analysis with a newer ver-
sion of the reconstructed data). With multiple newer ver-
sions of the reconstructed data appearing during the life-
times of some analyses, this can impose a substantial burden
on the physicist to track which versions of of the data were
used, particularly as data collected after the analysis began
are added. Supporting provenance is challenging. The cen-
trally managed reconstruction processes always process a
run as a unit, and each processing step writes one or more
complete files per run, so all the data in a given output
file have identical provenance. This is not true of the later
physics analysis processes, which can process individual
ASUs differently. Keeping track of provenance at this level
is infeasible (see also discussion below).

Similarly, physicists need fast and reliable access not
only to provenance information, but to other metadata as
well. For instance, often a researcher is only interested in
certain types of collision events. The challenges in handling
metadata are how to efficiently manage this evolving infor-
mation and how to provide fast access to it.

In addition to these provenance and metadata manage-
ment challenges, there is a need for making each iteration of
reconstruction and analysis as fast as possible. The physi-
cists have designed sophisticated caching and partitioning
schemes to achieve this goal. For example, CLEO data are
partitioned into hot, warm and cold storage units. This is a
column-wise split of the event into groups of ASUs, based

on usage patterns. The hot data are those components of
an event most frequently accessed during physics analysis;
these ASUs are typically small compared with the less fre-
quently accessed ASUs. Discussing all these optimizations
in detail is beyond the scope of this paper. Each one is based
on a careful analysis of typical workloads and cannot be
easily achieved by general-purpose data management tools.

3.2 Current Solutions and Future Challenges

CLEO recently implemented a new data management
system, called EventStore [9]. EventStore is primarily
a metadata and provenance system, designed to simplify
many common tasks of data analysis by relieving physi-
cists of the burden of data versioning and file management,
while supporting legacy data formats. Data stored in the
various formats are managed such that physicists conduct-
ing analyses are always presented with a consistent set of
data and can recover exactly the versions of the data used
previously. EventStore is accessed via a plug-in module to
the data analysis software.

In order to support a variety of use cases, the CLEO
EventStore comes in three sizes, tailored to the scale of
the application: personal, group and collaboration. The
only user interface differences between the three sizes is
the name of the software module loaded, which is also the
first word of all EventStore commands. Provenance data
are stored in the data files using a simple extension to the
standard CLEO data storage system. Other metadata about
the data are stored in a relational database supporting the
standard SQL query language. All but the lowest layers of
the database interface code are independent of the database
implementation, allowing transparent use of an embedded
database (SQLite [11]) in the standalone versions and a
standard relational database system (currently MySQL [6]
or MS SQL Server [5]) in the larger scale systems.



The personal EventStore was originally meant to man-
age user-selected subsets of the data on a personal system
such as a laptop or desktop. It is designed to provide the
versioning and metadata query facilities of the EventStore
with minimal overhead. The relational database is imple-
mented using the embedded SQLite database, making the
personal EventStore self-contained in the EventStoreMod-
ule package and supporting completely disconnected oper-
ation. To support iterative and collaborative analyses, the
system is designed so that merging the results in a per-
sonal EventStore into one of the larger scale systems is a
quick and reliable operation. Somewhat to our surprise,
merging became the fundamental operation for adding re-
sults to the group and collaboration stores. Rather than
having long-running jobs hold lengthy open transactions on
the main data repository, it proved simpler to create a per-
sonal EventStore for the operation, which is merged into
the larger store upon successful completion of the opera-
tion. This stratagem allowed the highest degree of integrity
protection for the centrally managed data repositories with
the fewest modifications to the legacy data analysis applica-
tions.

The EventStore organizes consistent sets of data by as-
sociating a list of run ranges and a list of version identifiers
for each run range with a data grade. Assignment of data to
grades, particularly to the “physics” grade, is an administra-
tive procedure performed by the CLEO officers. The evolu-
tion of a grade over time is recorded, so a consistent set of
data is fully identified by the name of a grade and a time at
which to “snapshot” that grade. For an analysis project, a
physicist will usually specify “physics” grade data and use
the date the analysis project started (e.g., 20050501) as the
timestamp, so that the same consistent version will be used
throughout the lifetime of the project. EventStore finds the
most recent snapshot prior to the specified date, so the date
specified is not limited to a set of “magic” values.

If some of the data are reprocessed, that change will not
appear in the snapshot used by the analysis unless the physi-
cist changes to a date after that modification was made.
However, data added to the dataset for the first time, such
as data recently taken and reconstructed for the first time,
or the addition of a new object, will appear in the snapshot.
This is done so that a physicist can add data collected after
the beginning of the analysis without having to change to a
later timestamp.

EventStore records certain basic attributes of the experi-
ment conditions and data quality that are frequently used for
selecting which data to use for a particular analysis. Since
these data are independent of the processing steps in the
data provenance, they can be queried via a Web Services
interface from any of the different sizes of EventStore so
long as an Internet connection is available. This allows most
data selections to be expressed in physics terms, so for most

CLEO analyses the data set used can be fully specified by a
simple selector on experiment conditions and a datestamp,
closely matching the terms CLEO physicists use to infor-
mally describe commonly used sets of data.

To address the data versioning and other provenance
issues, EventStore attaches versioning information to the
derived data, identifying how the data were produced.
As an example, the version identifier Recon-20040312-
Feb13 04 P2 indicates that the data were produced by the
Feb13 04 P2 release of the reconstruction software, and
that March 12, 2004 was the date of the most recent change
to the software or inputs to the reconstruction (e.g., calibra-
tion data) that might affect the results. At each processing
step we record these tags. Similar tags identify later pro-
cessing steps, and these tags are accumulated at each pro-
cessing step, along with enough additional information to
fully specify the sequence of processing steps and data in-
puts.

We realized that we needed to store provenance data in
much more detail. Sometimes the inconsistent use of data
and software is too subtle for detection at the level of data
version tags. We need a reliable audit trail of an analysis
to ensure consistent and correct use of software and data
versions before publishing physics results. We also need
to find data products that may have used a particular data
object that was later found to be defective. While version
identifiers conceptually apply to individual ASUs, our cur-
rent implementation requires that all the ASUs in a data file
for a given run be derived by the same sequence of analy-
sis steps. For full functionality we needed to store prove-
nance down to the ASU level, and track exact inputs and
all software parameters. However, the effort to retrofit this
functionality would require changes to the core code of our
analysis system and so we opted for getting most of the re-
quired functionality with just a slight modification at the
data format level.

As a compromise we collect, as strings, all the software
module names, their parameters, plus all the input file infor-
mation and make an MD5 hash of the strings. The version
strings and hash are stored in the output stream of each file
written, using a simple extension to the CLEO data storage
system, so that every derived data file carries a summary of
its provenance. We can detect the majority of usage dis-
crepancies by comparing the hashes. In the event of a dis-
crepancy, the physicists can view the strings to see what has
changed. Clearly, this does not provide the full semantics of
tracking at the ASU level. Some inputs may not have been
used in the production of some parts of the data. It only tells
which ASUs might have been used in the production of this
ASU. But it provides the physicist with sufficient informa-
tion to make consistent use of the data and software.

Substantial changes to the EventStore and analysis code
will be required to accurately detect exactly which ASUs



were used in the production of an output ASU. The meta-
data volume to track at the ASU level will be large, and it
will be inappropriate to store it in the headers of the data
files. It will be stored in a metadata DB and references to it
placed in the data file. We do not expect to be able to retrofit
such a system to our running systems because most of the
data are stored in an HSM system (i.e., they are on tape),
and we cannot easily update them. Furthermore, we cannot
risk substantial changes to our large software base at this
stage of the CLEO experiment. We believe this will work
will be relevant for our involvement in the design of the
software framework for the LHC CMS experiment, which
is designed to use fine-grained provenance for data selec-
tion.

Other challenges remain. where we could use grid uti-
tlities. We generate much of the CLEO simulated data
offsite. We are currently implementing a system where
the simulated data are stored in a ”personal EventStore”
as they are produced, shipped to Cornell on USB disks,
and merged into the collaboration EventStore. This process
could be automated to a much greater extent if we could use
grid data movement utilities and web services interfaces to
EventStore. We would also like to make a fully web-based
CLEO analysis environment, for the first passes through the
data for physics analyses and for outreach purposes, and the
natural way to do that now would be via web services inter-
faces and grid tools.

4 The WebLab Project

Since 1996, the Internet Archive has been collecting a
full crawl of the Web every two months [3]. The total vol-
ume of data collected up to August 2005 is 544 Terabytes,
heavily compressed, or about 5 Petabytes uncompressed. In
summer 2005, we began work on transferring a major sub-
set of this data to Cornell and organizing it for researchers,
with a particular emphasis on supporting social science re-
search.

User studies with social science researchers have iden-
tified a number of patterns in the research that they would
like to do on the Web. A common theme is that researchers
wish to extract a portion of the Web to analyze in depth, not
the entire Web. Almost invariably they wish to have several
time slices, so that they can study how things change over
time. The criteria by which a portion of the Web is chosen
for analysis are extremely varied. Some use conventional
metadata, e.g., specific domains, file type, or date ranges.
Others are empirical. For example, one researcher has com-
bined focused Web crawling with statistical methods of in-
formation retrieval to select materials automatically for an
educational digital library. Others plan to extend research
on burst detection, which can be used to identifying emerg-
ing topics, to highlight portions of the Web that are under-

going rapid change at any point in time, and to provide a
means of structuring the content of emerging media like
Weblogs.

Of the specific tools that researchers want, full text in-
dexes are highly important, but need not cover the entire
Web. The link structure is of great interest because of
its relationship to social networking. There are ambitious
plans by computer scientists and social scientists working
together to use methods of natural language processing to
analyze the content of Web pages e.g., by extracting types
of opinions.

Many social science research groups are reasonably
strong technically, but they do not wish to program high-
performance, parallel computers. The expectation is that
most researchers will download sets of partially analyzed
data to their own computers for further analysis. There-
fore, access to the WebLab is provided via a Web Services
interface to a dedicated Web server. The underlying API
provides a generalization of the capabilities of the Google
API. General services provided include a ”Retrobrowser”
to browse the Web as it was at a certain date, a facility to
extract subsets of the collection and store them as database
views, and tools for common analyses of subsets, such as
extraction of the Web graph and calculations of graph statis-
tics.

The conventional architecture for providing heavily used
services on the Web distributes the data and processing
across a very large number of small, commodity comput-
ers. Examples include the Web search services, such as
Google and Yahoo, and the Internet Archive’s Wayback
Machine. While highly successful for production services,
large clusters of commodity computers are inconvenient for
researchers who carry out Web-scale research, either on the
Web itself or on the social phenomena that the Web pro-
vides a record of. For instance, it would be extremely diffi-
cult to extract the types of subset required by social science
researchers from the Internet Archive. Researchers study-
ing the Web graph typically study the links among billions
of pages. It is much easier to study the graph if it is loaded
into the memory of a single large computer than distributed
across many smaller ones.

4.1 Architecture

Access to the WebLab is provided via a Web Services
interface to a dedicated Web server. General services pro-
vided include a ”Retrobrowser” to browse the Web as it was
at a certain date, a facility to extract subsets of the collection
and store them as database views, and tools for common
analyses of subsets, such as extraction of the Web graph
and calculations of graph statistics.

The conventional architecture for providing heavily used
services on the Web distributes the data and processing



across a very large number of small, commodity comput-
ers. Examples include the Web search services, such as
Google and Yahoo, and the Internet Archive’s Wayback
Machine. While highly successful for production services,
large clusters of commodity computers are inconvenient for
researchers who carry out Web-scale research, either on the
Web itself or on the social phenomena that the Web pro-
vides a record of. For instance, it would be extremely dif-
ficult to extract a stratified sample of Web pages from the
Internet Archive. Researchers studying the Web graph typ-
ically study the links among billions of pages. It is much
easier to study the graph if it is loaded into the memory of a
single large computer than distributed across many smaller
ones.

For these purposes, the decision was made to separate
link information and metadata about pages from their con-
tent, and store the meta-information in a relational database
on a single high-performance computer. The current ma-
chine is a 16-processor Unisys Server ES7000/430 with 64
GB of shared memory. By the end of 2007 it will have 240
TB of RAID disk storage.

Transferring the data from the Internet Archive to Cor-
nell and loading it online places heavy demands on three
parts of the system: the network connection, preprocessing
the raw data, and the database load process. In addition,
archiving the raw data, logging, backup, and restore opera-
tions can easily become a burden.

Our recent studies established that a good balance be-
tween the various parts of the system is achieved by setting
an initial target of downloading one complete crawl of the
Web for each year since 1996 at an average speed of 250
GB/day. For this, the network connection uses a dedicated
100 Mb/sec connection from the Internet Archive to Inter-
net2 [4], which can easily be upgraded to 500 Mb/sec. The
Cornell connection will move to the TeraGrid early in 2006.
First versions of the two processing components were de-
veloped during fall 2005. Each has been tested at sustained
rates of approximately 1 TB per day, when given sole use of
the system. Experiments will be carried out during winter
2006 to determine the best mix of jobs to run in production.

4.2 WebLab Data Flow Summary

4.2.1 Preload subsystem

The Internet Archive stores Web pages in the ARC file for-
mat. The pages are stored in the order received from the
Web crawler and the entire file is compressed with gzip.
Each compressed ARC file is about 100 MB big. Corre-
sponding to an ARC file there is a metadata file in the DAT
file format, also compressed with gzip. It contains meta-
data for each page, such as URL, IP address, date and time
crawled, and links from the page. The DAT files vary in
length, but average about 15 MB.

The preload subsystem takes the incoming ARC and
DAT files, uncompresses them, parses them to extract rel-
evant information, and generates two types of output files:
metadata for loading into the relational database and the ac-
tual content of the Web pages to be stored separately. The
design of the subsystem does not require the corresponding
ARC and DAT files to be processed together.

As of December 2005, a basic workflow for this design
has been implemented and tested. First indications are that
the performance will comfortably meet the required perfor-
mance goals. Extensive benchmarking is required to tune
many parameters, such as batch size, file size, degree of
parallelism, and the index management.

5 Next Steps

Despite the application specific data flow tuning in each
of the three projects, there are clear commonalities. All
three projects are moving towards using relational databases
for data management. The second trend are steps towards
the usage of Web Services. For example, Arecibo is on the
verge of joining the NVO, federating their data with other
data resources from the Astronomy community.

The CLEO experiment will end within two years, but
the Wilson Lab will participate in the next round of high-
energy particle physics experiment, the Large Hadron Col-
lider. This participation involves even more collaborators
and much larger datasets. The goal is to take advantage of
Grid technology like the tools developed by the Open Sci-
ence Grid.

The WebLab is already in the process of connecting to
TeraGrid for accessing data from the Internet Archive. Cur-
rently, Internet2 is used as a pipe for bulk transfer of data
to the WebLab. However, the very high performance of the
TerraGrid will allow another level of distributed research. A
social science researcher will be able to analyze data, some
of which is stored at Cornell, some in San Francisco at the
Internet Archive, and some on a local computer. When ex-
tracting subsets for detailed research a social scientist will
be able to combine relational queries at Cornell with text
searches using the full text indexes being built by the Inter-
net Archive.

All project would benefit from usage of the Grid to effi-
ciently disseminate data and to mirror data to increase fault
tolerance and availability.
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