跳转到内容

利普希茨连续

维基百科,自由的百科全书

数学中,特别是实分析利普希茨连续Lipschitz continuity)以德国数学家鲁道夫·利普希茨命名,是一个比一致连续更强的光滑性条件。直觉上,利普希茨连续函数限制了函数改变的速度,符合利普希茨条件的函数的斜率的绝对值,必小于一个称为利普希茨常数的实数(该常数依函数而定)。

微分方程,利普希茨连续是皮卡-林德洛夫定理中确保了初值问题存在唯一解的核心条件。一种特殊的利普希茨连续,称为压缩应用于巴拿赫不动点定理

利普希茨连续可以定义在度量空间上以及赋范向量空间上;利普希茨连续的一种推广称为赫尔德连续

定义

[编辑]
对于利普希茨连续函数,存在一个双圆锥(白色)其顶点可以沿着曲线平移,使得曲线总是完全在这两个圆锥外。

对于在实数集的子集的函数 ,若存在常数,使得,则称 符合利普希茨条件,对于 最小的常数 称为 利普希茨常数

称为收缩映射

利普希茨条件也可对任意度量空间的函数定义:

给定两个度量空间。若对于函数,存在常数 使得

则说它符合利普希茨条件。

若存在使得

则称双李普希茨(bi-Lipschitz)的。

皮卡-林德洛夫定理

[编辑]

若已知有界,符合利普希茨条件,则微分方程初值问题刚好有一个解。

在应用上,通常属于一有界闭区间(如)。于是必有界,故有唯一解。

例子

[编辑]
  • 符合利普希茨条件,
  • 不符合利普希茨条件,当
  • 定义在所有实数值的符合利普希茨条件,
  • 符合利普希茨条件,。由此可见符合利普希茨条件的函数未必可微。
  • 不符合利普希茨条件,。不过,它符合赫尔德条件
  • 当且仅当处处可微函数f的一次导函数有界,符合利普希茨条件。这是中值定理的结果。所有函数都是局部利普希茨的,因为局部紧致空间的连续函数必定有界。

性质

[编辑]
  • 符合利普希茨条件的函数连续,实际上一致连续
  • 双李普希茨(bi-Lipschitz)函数是单射
  • Rademacher定理:若为开集,符利普希茨条件,则几乎处处可微。[1]
  • Kirszbraun定理:给定两个希尔伯特空间符合利普希茨条件,则存在符合利普希茨条件的,使得的利普希茨常数和的相同,且[2][3]

参考

[编辑]
  1. ^ Juha Heinonen, Lectures on Lipschitz Analysis页面存档备份,存于互联网档案馆, Lectures at the 14th Jyväskylä Summer School in August 2004. (第18页以后)
  2. ^ M. D. Kirszbraun. Uber die zusammenziehenden und Lipschitzchen Transformationen. Fund. Math., (22):77–108, 1934.
  3. ^ J.T. Schwartz. Nonlinear functional analysis. Gordon and Breach Science Publishers, New York, 1969.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy