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Abstract. Several algorithms that generate the set of all formal concepts and 
diagram graphs of concept lattices are considered. Some modifications of well-
known algorithms are proposed. Algorithmic complexity of the algorithms is 
studied both theoretically (in the worst case) and experimentally. Conditions of 
preferable use of some algorithms are given in terms of density/sparseness of 
underlying formal contexts. Principles of comparing practical performance of 
algorithms are discussed. 

1   Introduction 

Concept (Galois) lattices proved to be a useful tool in many applied domains: ma-
chine learning, data mining and knowledge discovery, information retrieval, etc. [3, 6, 
9, 22, 23]. The problem of generating the set of all concepts and the concept lattice of 
a formal context is extensively studied in the literature [2-5, 7, 11, 13, 16, 18–22]. It is 
known that the number of concepts can be exponential in the size of the input context 
(e.g., when the lattice is a Boolean one) and the problem of determining this number 
is #P-complete [15].  

Therefore, from the standpoint of the worst-case complexity, an algorithm generat-
ing all concepts and/or a concept lattice can be considered optimal if it generates the 
lattice with polynomial time delay and space linear in the number of all concepts 
(modulo some factor polynomial in the input size). First, we give some standard defi-
nitions of Formal Concept Analysis (FCA) [8]. 

A formal context is a triple of sets (G, M, I), where G is called a set of objects, M is 
called a set of attributes, and I ⊆ G × M. For A ⊆ G and B ⊆ M: A' = { m ∈ M | ∀g∈A 
(gIm)} , B' = { g ∈ G | ∀m∈B (gIm)} . A formal concept of a formal context (G, M, I) is 
a pair (A, B), where A ⊆ G, B ⊆ M, A' = B, and B' = A. The set A is called the extent, 
and the set B is called the intent of the concept (A, B). For a context (G, M, I), a con-
cept X = (A, B) is less general than or equal to a concept Y = (C, D) (or X ≤ Y) if A ⊆ 
C or, equivalently, D ⊆ B. For two concepts X and Y such that X ≤ Y and there is no 
concept Z with Z ≠ X, Z ≠ Y, X ≤ Z ≤ Y, the concept X is called a lower neighbor of Y, 
and Y is called an upper neighbor of X. This relationship is denoted by X �  Y. We call 
the (directed) graph of this relation a diagram graph. A plane (not necessarily a pla-
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nar) embedding of a diagram graph where a concept has larger vertical coordinate 
than that of any of its lower neighbors is called a line (Hasse) diagram. The problem 
of drawing line diagrams [8] is not discussed here. 

The problem of comparing performance of algorithms for constructing concept lat-
tices and their diagram graphs is a challenging and multifaceted one. The first com-
parative study of several algorithms constructing the concept set and diagram graphs 
can be found in [13]. However, the formulation of the algorithms is not always cor-
rect, and the description of the results of the experimental tests lacks any information 
about data used for tests. The fact that the choice of the algorithm should be depend-
ent on the input data is not accounted for. Besides, only one of the algorithms consid-
ered in [13], namely that of Bordat [2], constructs the diagram graph; thus, it is hard 
to compare its time complexity with that of the other algorithms. 

A later review with more algorithms and more information on experimental data 
can be found in [11]. Only algorithms generating diagram graphs are considered. The 
algorithms that were not originally designed for this purpose are extended by the au-
thors to generate diagram graphs. Unfortunately, such extensions are not always ef-
fective: for example, the time complexity of the version of the Ganter  algorithm 
(called Ganter -Allaoui) dramatically increases with the growth of the context size. 
This drawback can be cancelled by the efficient use of binary search in the list pro-
duced by the original Ganter  algorithm. Tests were conducted only for contexts with 
small number of attributes per object as compared to the number of all attributes. Our 
experiments (we consider some other algorithms, e.g., that of Nourine [21]) also show 
that the algorithm proposed in [11] works faster on such contexts than the others do. 
However, in other situations not covered in [11] this algorithm is far behind some 
other algorithms. 

The rest of the paper is organized as follows. In Section 2, we discuss the princi-
ples of comparing efficiency of algorithms and make an attempt at their classification. 
In Section 3, we give a short review of the algorithms and analyze their worst-case 
complexity. In Section 4, we present the results of experimental comparison. 

2   On Principles of Comparison 

 
 In our study, we considered both theoretical (worst-case) and experimental complex-
ity of algorithms. As for the worst-case upper bounds, the algorithms with complexity 
linear in the number of concepts (modulo a factor polynomial of the input size) are 
better than those with complexity quadratic in the number of concepts; and the former 
group can be subdivided into smaller groups according to the form of the factor poly-
nomial of input. According to this criterion, the present champion is the algorithm by 
Nourine [21]. On the other hand, “dense”  contexts, which realize the worst case by 
bringing about exponential number of concepts, may occur not often in practice.  

Starting a comparison of algorithms “ in practice” , we face a bunch of problems. 
First, algorithms, as described by their authors, often allow for different interpretation 
of crucial details, such as the test of uniqueness of a generated concept. Second, au-
thors seldom describe exactly data structures and their realizations. Third, algorithms 
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behave differently on different databases (contexts). Sometimes authors compare their 
algorithms with other on specific data sets. We would like to propose the community 
to reach a consensus w.r.t. databases to be used as testbeds. Our idea is to consider 
two types of testbeds. On the one hand, some “classical”  (well-recognized in data 
analysis community) databases should be used, with clearly defined scalings if they 
are many-valued. On the other hand, we propose to use “randomly generated con-
texts” . The main parameters of a context K = (G, M, I) seem here to be the (relative to 
|M|) number of objects |G| and the (relative to |G|) number of attributes, the (relative, 
i.e. compared to  |G||M|) size of the relation I, average number of attributes per object 
intent (resp., average number of objects per attribute extent). The community should 
specify particular type(s) of random context generator(s) that can be tuned by the 
choice of above (or some other) parameters. 

Another major difficulty resides in the choice of a programming language and plat-
form, which strongly affects the performance. A possible way of avoiding this diffi-
culty could be comparing not the time but number of specified operations (intersec-
tions, unions, closures, etc.) from a certain library, but here one encounters the diffi-
culty of weighting these operations in order to get the overall performance. Much 
simpler would be comparing algorithms using a single platform. 

In this article, we compare performance of several algorithms for clearly specified 
random data sets (contexts). As for ambiguities in original pseudo-code formulations 
of the algorithms, we tried to find most efficient realizations for them. Of course, this 
does not guarantee that a more efficient realization cannot be found. 

In most cases, it was possible to improve the original versions of the algorithms. 
Since only few known algorithms generating the concept set construct also the dia-
gram graph, we attempted to modify some algorithms making them able to construct 
diagram graphs. The versions of algorithms used for comparison are presented in 
[17]. 

As mentioned above, data structures that realize concept sets and diagram graphs 
of concept lattices are of great importance. Since their sizes can be exponential w.r.t. 
the input size, some their natural representations are not polynomially equivalent, as it 
is in the case of graphs. For example, the size of the incidence matrix of a diagram 
graph is quadratic w.r.t. the size of the incidence list of the diagram graph and thus 
cannot be reduced to the latter in time polynomial w.r.t. the input. Moreover, some 
important operations, such as finding a concept, are performed for some representa-
tions (spanning trees [2, 10], ordered lists [7], CbO trees [16], 2-3 trees, see [1] for the 
definition) in polynomial time, but for some other representations (unordered lists) 
they can be performed only in exponential time. A representation of a concept lattice 
can be considered reasonable if its size cannot be exponentially compressed w.r.t. the 
input and allows the search for a particular concept in time polynomial in the input. 

Table 1 presents an attempt at classification of algorithms. Note that this classifica-
tion refers to our versions of the algorithms described in [17] rather than to original 
versions (except for Titanic [22], which we have not implemented; it is included into 
classification, because it realizes an approach completely different from that of the 
other algorithms). Here, we do not address techniques for building diagram graphs; 
the attributes of the context in Table 1 describe only construction of the concept set. 

All the algorithms can be divided into two categories: incremental algorithms [3, 5, 
11, 20], which, at the ith step, produce the concept set or the diagram graph for i first 
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objects of the context, and batch ones, which build the concept set and its diagram 
graph for the whole context from scratch [2, 4, 7, 16, 18, 24]. Besides, any batch algo-
rithm typically adheres to one of the two strategies: top–down (from the maximal ex-
tent to the minimal one) or bottom–up (from the minimal extent to the maximal one). 
However, it is always possible to reverse the strategy of the algorithm by considering 
attributes instead of objects and vice versa; therefore, we choose not to include this 
property into the classification. 

Generation of the concept set presents two main problems: (1) how to generate all 
concepts; (2) how to avoid repetitive generation of the same concept or, at least, to 
determine whether a concept is generated for the first time. There are several ways to 
generate a new intent. Some algorithms (in particular, incremental ones) intersect a 
generated intent with some object intent. Other algorithms compute an intent explic-
itly intersecting all objects of the corresponding extent. There are algorithms that, 
starting from object intents, create new intents by intersecting already obtained in-
tents. Lastly, the algorithm from [22] does not use the intersection operation to gener-
ate intents. It forms new intents by adding attributes to those already generated and 
tests some condition on supports of attribute sets (a support of an attribute set is the 
number of objects whose intents contain all attributes from this set) to realize whether 
an attribute set is an intent. 

In Table 1, attributes m2–m6 correspond to techniques used to avoid repetitive 
generation of the same concept. This can be done by maintaining specific data struc-
tures. For example, the Nour ine algorithm constructs a tree of concepts and searches 
in this tree for every newly generated concept. Note that other algorithms (e.g., Bor-
dat and Close by One) also may use trees for storing concepts, which allows efficient 
search for a concept when the diagram graph is to be constructed. However, these 
algorithms use other techniques for identifying the first generation of a concept, and, 
therefore, they do not have the m5 attribute in the context from Table 1. 

Some algorithms divide the set of all concepts into disjoint sets, which allows nar-
rowing down the search space. For example, the Chein algorithm stores concepts in 
layers, each layer corresponding to some step of the algorithm. The original version of 
this algorithm looks through the current layer each time a new concept is generated. 
The version we used for comparison does not involve search to detect duplicate con-
cepts; instead, it employs a canonicity test based on the lexicographical order (similar 
to that of Ganter ), which made it possible to greatly improve the efficiency of the 
algorithm. We use layers only for generation of concepts: a new intent is produced as 
the intersection of two intents from the same layer. (In our version of the algorithm, 
layers are much smaller than those in [4]; see [17] for details.) The Godin algorithm 
uses a hash function (the cardinality of intents), which makes it possible to distribute 
concepts among “buckets”  and to reduce the search. Several algorithms (Ganter , 
Close by One) generate concepts in the lexicographical order of their extents assum-
ing that there is a linear order on the set of objects. At each step of the algorithm, 
there is a current object. The generation of a concept is considered canonical if its 
extent contains no object preceding the current object. Our implementation of the 
Bordat algorithm uses an attribute cache: the uniqueness of a concept is tested by 
intersecting its intent with the content of the cache (for more details, see [17]). 
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Table 1. Properties of algorithms constructing concept lattices: m1—incremental; m2—uses 
canonicity based on the lexical order; m3—divides the set of concepts into several parts; m4—
uses hash function; m5—maintains an auxiliary tree structure; m6—uses attribute cache; m7—
computes intents by subsequently computing intersections of object intents (i.e., { g} ' ∩ { h} '); 
m8—computes intersections of already generated intents; m9—computes intersections of non-
object intents and object intents; m10—uses supports of attribute sets. 

 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 

Bordat      X X    

Ganter   X     X    

Close by One  X       X  

Lindig     X    X  

Chein  X X     X   

Nour ine X    X    X  

Norr is X X       X  

Godin X  X X     X  

Dowling X X       X  

Titanic          X 

 
Fig. 1. The line diagram of algorithms 

In many cases, we attempted to improve the efficiency of the original algorithms. 
Only some of the original versions of the algorithms construct the diagram graph [2, 
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11, 18, 21]; it turned out that the other algorithms could be extended to construct the 
diagram graph within the same worst-case time complexity bounds. 

In the next section, we will discuss worst-case complexity bounds of the consid-
ered algorithms. Since the output size can be exponential in the input, it is reasonable 
to estimate complexity of the algorithms not only in terms of input and output sizes, 
but also in terms of (cumulative) delay. Recall that an algorithm for listing a family of 
combinatorial structures is said to have polynomial delay [14] if it executes at most 
polynomially many computation steps before either outputting each next structure or 
halting. An algorithm is said to have a cumulative delay d [12] if it is the case that at 
any point of time in any execution of the algorithm with any input p the total number 
of computation steps that have been executed is at most d(p) plus the product of d(p) 
and the number of structures that have been output so far. If d(p) can be bounded by a 
polynomial of p, the algorithm is said to have a polynomial cumulative delay. 

3   Algorithms: a Short Survey 

Some top-down algorithms have been proposed in [2] and [24]. The algorithm MI-
tree from [24] generates the concept set, but does not build the diagram graph. In MI-
tree, every new concept is searched for in the set of all concepts generated so far. The 
algorithm of Bordat [2] uses a tree (a “ trie,”  cf. [1]) for fast storing and retrieval of 
concepts. Our version of this algorithm uses a technique that requires O(|M|) time to 
realize whether a concept is generated for the first time without any search. The time 
complexity of Bordat is O(|G||M|2|L|), where |L| is the size of the concept lattice. 
Moreover, this algorithm has a polynomial delay O(|G||M|2). 

The algorithm proposed by Ganter computes closures for only some of subsets of 
G and uses an efficient canonicity test, which does not address the list of generated 
concepts. It produces the set of all concepts in time O(|G|2|M||L|) and has polynomial 
delay O(|G|2|M|). 

The Close by One (CbO) algorithm uses a similar notion of canonicity, a similar 
method for selecting subsets, and an intermediate structure that helps to compute clo-
sures more efficiently using the generated concepts. Its time complexity is 
O(|G|2|M||L|), and its polynomial delay is O(|G|3|M|). 

The idea of a bottom-up algorithm in [18] is to generate the bottom concept and 
then, for each concept that is generated for the first time, generate all its upper 
neighbors. Lindig uses a tree of concepts that allows one to check whether some con-
cept was generated earlier. The time complexity of the algorithm is O(|G|2|M||L|). Its 
polynomial delay is O(|G|2|M|). 

The Chein [4] algorithm represents the objects by extent–intent pairs and generates 
each new concept intent as the intersection of intents of two existent concepts. At 
every iteration step of the Chein algorithm, a new layer of concepts is created by in-
tersecting pairs of concept intents from the current layer and the new intent is 
searched for in the new layer. We introduced several modifications that made it pos-
sible to greatly improve the performance of the algorithm. The time complexity of the 
modified algorithm is O(|G|3|M||L|). The algorithm has  polynomial delay O(|G|3|M|). 
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Due to their incremental nature, the algorithms considered below do not have 
polynomial delay. Nevertheless, they all have cumulative polynomial delay. 

Nourine proposes an O((|G| + |M|)|G||L|) algorithm for the construction of the lat-
tice using a lexicographic tree [21] with edges labeled by attributes and nodes labeled 
by concepts. Note that this algorithm is only half-incremental. First, this algorithm 
incrementally constructs the concept set outputting a tree of concepts; next, it uses 
this tree to construct the diagram graph. 

The algorithm proposed by Norris [20] is essentially an incremental version of the 
CbO algorithm. The original version of the Norr is algorithm from [20] does not con-
struct the diagram graph. The time complexity of the algorithm is O(|G|2|M||L|). 

The algorithm proposed by Godin [11] has the worst-case time complexity quad-
ratic in the number of concepts. This algorithm is based on the use of an efficiently 
computable hash function f  (which is actually the cardinality of an intent) defined on 
the set of concepts. 

Dowling proposed [5] an incremental algorithm for computing knowledge spaces. 
A dual formulation of the algorithm allows generation of the concept set. Despite the 
fact that the theoretical worst-case complexity of the algorithm is O(|M||G|2|L|), the 
constant in this upper bound seems to be too large and in practice the algorithm per-
forms worse than other algorithms. 

4   Results of Experimental Tests 

The algorithms were implemented in C++ in the Microsoft Visual C++ environment. 
The tests were run on a Pentium II–300 computer, 256 MB RAM. Here, we present a 
number of charts that show how the execution time of the algorithms depends on 
various parameters. More charts can be found in [17]. 
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Fig. 2. Concept set: |M| = 100; |g'| = 4. 
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Fig. 3. Diagram graph: |M| = 100; |g'| = 4. 

For tests, we used randomly generated data. Contexts were generated based on 
three parameters: |G|, |M|, and the number of attributes per object (denoted below as 
|g'|; all objects of the same context had equal numbers of attributes). Given |g'|, every 
row of the context (i.e., every object intent) was generated by successively calling the 
rand function from the standard C library to obtain the numbers of attributes consti-
tuting the object intent, which lead to uniform distribution. 
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Fig. 4. Concept set: |M| = 100; |g'| = 25. 

The Godin algorithm (and GodinEx, which is the version of the Godin algorithm 
using the cardinality of extents for the hash function) is a good choice in the case of a 
sparse context. However, when contexts become denser, its performance decreases 
dramatically. The Bordat algorithm seems most suitable for large contexts, especially 
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if it is necessary to build the diagram graph. When |G| is small, the Bordat algorithm 
runs several times slower than other algorithms, but, as |G| grows, the difference be-
tween Bordat and other algorithms becomes smaller, and, in many cases, Bordat 
finally turns out to be the leader. For large and dense contexts, the fastest algorithms 
are bottom-up canonicity-based algorithms (Norr is, CbO). 
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Fig. 5. Diagram graph: |M| = 100; |g'| = 25. 
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Fig. 6. Concept set: |M| = 100; |g'| = 50. 

It should be noted that the Nour ine algorithm featuring the smallest time complex-
ity, has not been the fastest algorithm: even when diagonal contexts of the form (G, 
G,≠) (which corresponds to the worst case) are processed, its performance was infe-
rior to the Norr is algorithm. Probably, this can be accounted to the fact that we repre-
sent attribute sets by bit strings, which allows very efficient implementation of set-
theoretical operations (32 attributes per one processor cycle); whereas searching in the 
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Nourine-style lexicographic tree, one still should individually consider each attribute 
labeling edges. 
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Fig. 7. Diagram graph: |M| = 100; |g'| = 50. 

 
Figures 8–9 show the execution time for the contexts of the form (G, G, ≠), which 

yield 2|G| concepts. 
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Fig. 8. Concept set: diagonal contexts. 
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Fig. 9. Diagram graph: diagonal contexts. 

5   Conclusion 

In this work, we attempted to compare, both theoretically and experimentally, some 
well-known algorithms for constructing concept lattices. We discussed principles of 
experimental comparison.  

A new algorithm was proposed in [22] quite recently, so we could not include it in 
our experiments. Its worst time complexity is not better than that of the algorithms 
described above, but the authors report on its good practical performance for data-
bases with very large number of objects. Comparing the performance of this algo-
rithm with those considered above and testing the algorithms on large databases, in-
cluding “classical”  ones, will be the subject of the further work. We can also mention 
works [3], [19] where similar algorithms were applied for machine learning and data 
analysis, e.g., in [19] a Bordat-type algorithm was used.   

The choice of an algorithm for construction of the concept lattice should be based 
on the properties of input data. Recommendations based on our experiments are as 
follows: the Godin algorithm should be used for small and sparse contexts; for dense 
contexts, the algorithms based on the canonicity test, linear in the number of input 
objects, such as Close by One and Norr is, should be used. Bordat performs well on 
contexts of average density, especially, when the diagram graph is to be constructed. 
Of course, these recommendations should not be considered as the final judgement. 
By this work, we would like rather to provoke further interest in well-substantiated 
comparison of algorithms that generate concept lattices. 
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