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Abstract

In this paper, anti-van der Waerden numbers on Cartesian products of
graphs are investigated and a conjecture made by Schulte, et al. is an-
swered. In particular, the anti-van der Waerden number of the Cartesian
product of two graphs has an upper bound of four. This result is then
used to determine the anti-van der Waerden number for any Cartesian
product of two paths.

1 Introduction

The anti-van der Waerden number on [n] = {1, . . . , n} is the fewest number of colors
that must be assigned to the elements of [n] to guarantee an arithmetic progression
of length 3 (or more) where each element of the progression is a unique color. The
anti-van der Waerden number was first defined in [7]. Many results on arithmetic
progressions of [n] and the cyclic groups Zn were considered in [4] and a function
f(n) was established in [3] such that aw([n], 3) = f(n) for all n ∈ N. Results
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on colorings of the integers with no rainbow 3-term arithmetic progressions were
also studied in [1] and [2]. Colorings and 3-term arithmetic progressions have been
extended to groups (see [8]) and graphs (see [6]). The authors in [6] were inspired
to investigate the anti-van der Waerden number of graphs by extending results on
the anti-van der Waerden number of [n] and Zn to paths and cycles, respectively. In
particular, they noticed that the set of arithmetic progressions on [n] is isomorphic
to the set of non-degenerate arithmetic progressions on Pn. Similarly, the set of
arithmetic progressions on Zn is isomorphic to the set of non-degenerate arithmetic
progressions on Cn. Therefore, considering the anti-van der Waerden number of
[n] or Zn is equivalent to studying the anti-van der Waerden number of paths or
cycles, respectively. The authors of [6] made a conjecture about graph products
and this conjecture is proven in this paper. First, some terminology and notation is
introduced.

A graph, G, is a collection of vertices, V (G), and edges, E(G), and will be denoted
asG = (V,E). The edge set E is a set of pairs of vertices that indicate the two vertices
are connected. Thus, if there is an edge connecting vertices u and v, then {u, v} is
an edge or uv is an edge for short. Graph H is a subgraph of G if V (H) ⊆ V (G)
and E(H) ⊆ E(G). An induced subgraph H of G is one formed by deleting vertices
of G and keeping all possible edges. For the purposes of this paper all graphs are
simple (loop free, undirected, no edge weights, no multiple edges) and connected.
The distance between vertex u and v in graph G is denoted dG(u, v), d(u, v) will be
used when the context is clear. If G = (V,E) and H = (V ′, E ′) then the Cartesian
product, written G�H , has vertex set {(x, y) | x ∈ V and y ∈ V ′} and (x, y) and
(x′, y′) are adjacent in G�H if either x = x′ and yy′ ∈ E ′ or y = y′ and xx′ ∈ E. In
this paper, Pn denotes the path graph on n vertices.

The vertex set of Pm�Pn is given by {vi,j | 1 ≤ i ≤ m and 1 ≤ j ≤ n}. This
graph is visually represented as a grid and can be thought of as having m rows and n
columns. Further, vi,j can be found at the intersection of the ith row and jth column
of Pm�Pn. This convention allows for the computation of distances in grid graphs
based on the subscripts of the vertices. In particular, if vi,j and v�,k are in Pm�Pn

then d(vi,j, v�,k) = |i− �|+ |j − k|.
A k-term arithmetic progression of a graph G, k-AP, is a subset of k vertices of

G of the form {v1, v2, . . . , vk}, where d(vi, vi+1) = d for all 1 ≤ i < k. Throughout
the remainder of this paper the order the subset is written will denote the order of
the arithmetic progression. A k-term arithmetic progression is degenerate if vi = vj
for any i �= j.

An exact r-coloring of a graph G is a surjective function c : V (G) → {1, 2, . . . , r}.
A set of vertices S ⊆ V (G) is rainbow under coloring c, if for any vi, vj ∈ S, c(vi) �=
c(vj) when vi �= vj. Note that degenerate k-APs will not be rainbow. Given a set
of vertices S ⊆ V (G), c(S) = {c(v)|v ∈ S}, is the set of colors used on the vertices
of S.

The anti-van der Waerden number of a graph G, denoted by aw(G, k), is the least
positive integer r such that every exact r-coloring of G contains a non-degenerate
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rainbow k-AP. If G has n vertices and no coloring of G contains non-degenerate
k-APs, then aw(G, k) = n + 1. For a graph G, if aw(G, k) = r, then an extremal
coloring is an exact (r − 1)-coloring of G that avoids rainbow 3-APs.

Notice that at least k colors are needed to have a rainbow k-AP. This paper also
includes the convention that since a graph cannot be colored with more colors than
it has vertices the anti-van der Waerden number of a graph is bounded above by one
more than its order. In the case that k ≥ |G|+ 1, then aw(G, k) = |G|+ 1. This is
formally stated in Observation 1.1.

Observation 1.1. If G is a graph on n vertices, then k ≤ aw(G, k) ≤ n + 1. If
k ≥ n + 1, then aw(G, k) = n+ 1.

In Section 2, results that will be used throughout the paper are established. In
Section 3, results are established on Pm�Pn where m = 2 or m = 3. In Section
4, these results are used to prove Conjecture 1.2 from a paper authored by Schulte,
et al.

Conjecture 1.2 ([6]). If G and H are connected graphs, then

aw(G�H, 3) ≤ 4.

The result from Conjecture 1.2 is used in Section 5 to find the anti-van der
Waerden number of Pm�Pn for all m and n.

2 Fundamental Tools

In this section, preliminary results are established that are applicable throughout
the remainder of the paper. A subgraph H of G is isometric if for all u, v ∈ V (H),
dH(u, v) = dG(u, v).

Lemma 2.1. If H is an isometric subgraph of G, then a k-AP in H is a k-AP in G.
If there exists a k-AP in G that only contains vertices of H, then it is also a k-AP
in H.

Proof. Let {x1, x2, . . . , xk} be a k-AP in H . Since this is a k-AP, then dH(xi, xi+1) =
d for 1 ≤ i ≤ k − 1. By the definition of isometric subgraph, dH(xi, xi+1) =
dG(xi, xi+1). Hence, {x1, x2, . . . , xk} is a k-AP in G. Now suppose {x1, x2, . . . , xk} is
a k-AP in G and xi ∈ V (H) for 1 ≤ i ≤ k. Since {x1, x2, . . . , xk} is a k-AP in G, it
follows that dG(xi, xi+1) = d′ for 1 ≤ i ≤ k − 1. Since H is an isometric subgraph,
dG(xi, xi+1) = dH(xi, xi+1) for all 1 ≤ i ≤ k − 1, and therefore, {x1, x2, . . . , xk} is a
k-AP in H .

Proposition 2.2. If H is an isometric subgraph of G and c is an exact r-coloring
of G that avoids rainbow k-APs, then H contains at most aw(H, k)− 1 colors.
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Proof. Suppose by way of contradiction, |c(H)| ≥ aw(H, k). This implies H has a
rainbow k-AP, namely {x1, x2, . . . , xk}, since every aw(H, k)-coloring of H must have
a rainbow k-AP by definition. By Lemma 2.1, {x1, x2, . . . , xk} is also a k-AP in G,
a contradiction. Hence, any isometric subgraph H of G has at most aw(H, k) − 1
colors.

Note that Proposition 2.2 ensures that whenever there exists a rainbow 3-AP in
an isometric subgraph of G, there is a corresponding rainbow 3-AP in G. This fact
is used frequently without citation in the remainder of this paper.

Lemma 2.3. Let G = Pm�Pn and c be an exact r-coloring of G with r ≥ 3
that avoids rainbow 3-APs. If c(vi,j) = red and c(vi−1,j+1) = blue, then c(vk,�) ∈
{red, blue} when k ≥ i and � ≥ j + 1 or k ≤ i − 1 and � ≤ j. Further, if c(vi,j) =
red and c(vi−1,j−1) = blue, then c(vk,�) ∈ {red, blue} when k ≥ i and � ≤ j − 1 or
k ≤ i− 1 and � ≥ j.

Proof. Consider the case when c(vi,j) = red and c(vi−1,j+1) = blue (see Figure 1).
Define vk,� so that k ≥ i and � ≥ j + 1. Notice that d(vk,�, vi,j) = d(vk,�, vi−1,j+1) =
k − i + � − j. This means {vi,j, vk,�, vi−1,j+1} is a 3-AP and since c avoids rainbow
3-APs c(vk,�) ∈ {red, blue}. A similar argument can be made in the other three
situations.

B

R

Figure 1: Vertex R (or vi,j) being red and vertex B (or vi−1,j+1) being blue force the
Northwest and Southeast blocks to be red or blue.

Lemma 2.4. Let G = Pm�Pn and c be an exact r-coloring of G such that c avoids
rainbow 3-APs and r ≥ 3. If c(vi,k) = {red} for fixed i and 1 ≤ k ≤ n, S1 = {vs,t | 1 ≤
s < i, 1 ≤ t ≤ n} and S2 = {vs,t | i < s ≤ m, 1 ≤ t ≤ n}, then |c(Si) ∪ {red}| ≤ 2.

Proof. Assume, without loss of generality, that c(v�,j) = blue for some j and i <
� ≤ m and rows i + 1 to � − 1 are monochromatic red. By Lemma 2.3, if c(vs,t) =
green for � ≤ s ≤ m, 1 ≤ t ≤ n and t �= j, then either {v�,j, vs,t, v�−1,j−1} or
{v�,j, vs,t, v�−1,j+1} is rainbow. This implies that for t �= j, c(vs,t) ∈ {red, blue}.
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However, using Lemma 2.3 with vs,j, one of {vs,j, v�,j, vs−1,j−1}, {vs,j, v�,j, vs−1,j+1},
{vs,j, v�−1,j, vs−1,j−1} or
{vs,j, v�−1,j, vs−1,j+1} exists and is rainbow. Thus, no such vs,t is green. A similar
argument applies when 1 ≤ � < i and rows �+1 to i− 1 are monochromatic red.

Lemma 2.4 says that if there is a monochromatic row in some Pm�Pn, then at
most one new color can be introduced below the monochromatic row and at most one
new color can be introduced above the monochromatic row. Note that the argument
can be easily applied to monochromatic columns. Corollary 2.5 states this result.

Corollary 2.5. Let G = Pm�Pn and c be an exact r-coloring of G such that c
avoids rainbow 3-APs and r ≥ 3. If c(vi,k) = {red} for fixed k and 1 ≤ i ≤ m,
S1 = {vs,t |1 ≤ s ≤ m, 1 ≤ t < k} and S2 = {vs,t | 1 ≤ s ≤ m, k < t ≤ n}, then
|c(Si) ∪ {red}| ≤ 2.

Lemma 2.6 will be useful in combination with Proposition 2.2 in determining the
anti-van der Waerden number. In particular, Lemma 2.6 establishes the possible 3-
colorings of P2�P2k+1 that avoid rainbow 3-APs. These colorings are achieved when
two non-adjacent corners are given unique colors and the remainder of the graph is
colored with the third color.

Lemma 2.6. If G = P2�P2k+1 and k ≥ 1, then there are precisely two exact 3-
colorings of G that avoid rainbow 3-APs.

Proof. Let c be an exact 3-coloring of G that avoids rainbow 3-APs. Without loss of
generality, let c(v1,1) = red. If c(v2,1) = red, then by Corollary 2.5, G is colored with
at most two colors. Thus, c(v2,1) = blue. If c(v1,2) = green, then {v1,2, v1,1, v2,1} is a
rainbow 3-AP. Now, consider the following cases.

Case 1: c(v1,2) = red
By Lemma 2.3, c(v2,j) ∈ {red, blue} for 2 ≤ j ≤ 2k+1. If c(v2,2) = blue, then Lemma
2.3 forces both the top and bottom rows to be colored red or blue contradicting that
c was an exact 3-coloring. Thus, c(v2,2) must be red. By Corollary 2.5, columns 3
through 2k+1 must be red and green, but the bottom row is also red and blue; thus,
c(v2,j) = red for 3 ≤ j ≤ 2k+1. This means c(v1,i) = green for some 3 ≤ i ≤ 2k+ 1.
If i �= 2k+1, then {v1,i, v2,1, v2,i+1} is a rainbow 3-AP. Thus, for i < 2k+1, c(v1,i) =
red and c(v1,2k+1) = green. This is an exact 3-coloring that avoids rainbow 3-APs.

Case 2: c(v1,2) = blue
If c(v2,2) = green then there exists an obvious rainbow 3-AP. If c(v2,2) = blue apply an
argument similar to Case 1 and achieve a symmetric coloring. Consider if c(v2,2) =
red. Let c(vi,j) = green such that j is minimal. By Corollary 2.5, column j cannot be
monochromatic since red and blue appear in column 1. If c(v1,j) = red and c(v2,j) =
green, then c(v1,j−1) �= green by minimality of j, c(v1,j−1) �= blue by the rainbow
3-AP {v1,j−1, v2,2, v2,j} and c(v1,j−1) �= red by the rainbow 3-AP {v1,j−1, v2,1, v2,j, }.
If c(v1,j) = blue and c(v2,j) = green, a similar argument can be made. Finally, the
symmetry of column 1 and 2 demonstrate that c(v1,j) �= green.

Therefore, there are two exact 3-colorings on G that avoid rainbow 3-APs.
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3 Analysis of P2�Pn and P3�Pn

In this section, results on P2�Pn and P3�Pn are established. These results are used
in conjunction with Proposition 2.2 to obtain other results including Theorem 4.5.
To begin, first consider the smallest non-trivial Pm�Pn.

Observation 3.1. The anti-van der Waerden number of P2�P2 is 3, that is,
aw(P2�P2, 3) = 3.

Almost all of the results in this section require an arbitrary coloring of a graph.
Lemma 2.6 allows the elimination of one (or more) colors from half of the graph
under the right circumstances.

Proposition 3.2. For every k ≥ 1, aw(P2�P2k, 3) = 3.

Proof. Consider the graph P2�P2k and proceed by induction on k. First, if k = 1,
then Observation 3.1 gives aw(P2�P2k, 3) = 3.

For the inductive hypothesis, assume that aw(P2�P2k, 3) = 3. Now consider
P2�P2k+2 with an exact 3-coloring c which avoids rainbow 3-APs. The graph
P2�P2k+2 can be thought of as the union of the two isometric subgraphs formed
by columns 1 through 3 and columns 3 through 2k + 2. More technically, let
G1 = P2�P3 with V (G1) = {v1,1, v1,2, v1,3, v2,1, v2,2, v2,3} and let G2 = P2�P2k with
V (G2) = {v1,3, v2,3, v1,4, v2,4, . . . , v1,2k+2, v2,2k+2}. Then V (G1) ∩ V (G2) = {v1,3, v2,3}
and G1 ∪ G2 = P2�P2k+2 (see Figure 2). For the following cases, let c be an exact
3-coloring and let S = {v1,3, v2,3}.

Case 1: |c(S)| = 2.
Without loss of generality, let c(v1,3) = blue and c(v2,3) = red. By the inductive
hypothesis, a third color cannot be introduced into G2 such that there is no rainbow
3-AP. However, by Lemma 2.6, there exists a unique exact 3-coloring that avoids
rainbow 3-AP’s in G1. Without loss of generality, consider the following coloring of
G1 where c(v1,1) = green, and all other vertices in G1 are colored blue (see Figure 2).

G B B

v1,3

B

v1,3
v1,4 v1,5

B B R
v2,3

R
v2,3

v2,4 v2,5 · · ·
v2,2k+2

v1,2k+2

. . .

. . .

Figure 2: Note the identification of vertices v1,3 and v2,3 implies the figure shows
P2�P3 ∪ P2�P2k = P2�P2k+2.

Now, focusing on the vertex pairs v1,1, v2,2 and v1,2, v2,3, Lemma 2.3 forces
c(v1,j) = blue for 2 ≤ j ≤ 2k + 2. This however yields the rainbow 3-AP, {v1,4, v1,1,
v2,3} and this case is complete.
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Case 2: |c(S)| = 1.
Without loss of generality let c(S) = {red}. By Lemma 2.6 at most one new color
can be added to G1 and by the induction hypothesis at most one new color can be
added to G2 while still avoiding rainbow 3-APs. Without loss of generality, assume
the color introduced in G1 is blue and the color introduced in G2 is green. If c(v1,2) =
blue then, by Lemma 2.3, c(v1,j) = red for 3 ≤ j ≤ 2k + 2. Now if c(v2,�) =
green for some 4 ≤ � ≤ 2k + 2, then Lemma 2.3 says that c(v2,1) = red, but then
{v2,1, v2,�, v1,2} is a rainbow 3-AP. A similar argument can be made if c(v2,2) = blue,
so c(v1,2) = c(v2,2) = red.

Now let c(v1,1) = blue, then by Lemma 2.3 c(v1,j) = red for 4 ≤ j ≤ 2k + 2. This
forces c(v2,�) = green for some 4 ≤ � ≤ 2k+2. If 4 ≤ � ≤ 2k+1 then {v2,�, v1,1, v1,�+1}
is a rainbow 3-AP. If � = 2k+2, then {v1,1, v1,k+2, v2,2k+2} is a rainbow 3-AP. Similarly,
c(v2,1) �= blue which means |c(G1)| = 1. This in turn implies that |c(G2)| = 3 which,
as noted earlier, has a rainbow 3-AP via the inductive hypothesis.

It has been demonstrated that every exact 3-coloring of P2�P2k+2 will result in
a rainbow 3-AP. Thus, aw(P2�P2k, 3) = 3 for all k ≥ 1.

Lemma 3.3. If G = Pm�Pn and m+n = 2k+1 for some k ≥ 1, then 4 ≤ aw(G, 3).

Proof. Consider the exact 3-coloring c where c(v1,1) = red, c(vm,n) = blue and the
remaining vertices are green. Note d(v1,1, vm,n) = m+n−2 which, by assumption, is
odd so there does not exist a vertex equidistant from both v1,1 and vm,n, i.e. there is
no 3-AP of the form {v1,1, vi,j, vm,n}. This means if a rainbow 3-AP exists it must be
of the form {v1,1, vm,n, vi,j} (or similarly {vm,n, v1,1, vi,j} which implies there is some
vertex vi,j that is distance m+n− 2 from v1,1 or vm,n. However, this cannot happen
since v1,1 and vm,n are, up to isomorphism, the only two vertices distance m+ n− 2
apart. Thus, an exact 3-coloring that avoids rainbow 3-APs has been constructed,
therefore 4 ≤ aw(G, 3).

Proposition 3.4. For every k ≥ 1, aw(P2�P2k+1, 3) = 4.

Proof. Let G = P2�P2k+1. First notice that 4 ≤ aw(G, 3) by Lemma 2.6. Now,
consider the two isometric subgraphs G1 = P2�P2 and G2 = P2�P2k with S =
V (G1) ∩ V (G2) = {v1,2, v2,2}. Let c be an exact 4-coloring of G. Note that G1

and G2 must share at least one color. If |c(G1)| = 2 and |c(G2)| = 2 then at most
three colors have been used. This implies |c(Gi)| = 3 for i = 1 or i = 2, but
aw(G1, 3) = aw(G2, 3) = 3 by Observation 3.1 and Proposition 3.2, respectively.
Thus, there exists a rainbow 3-AP in either G1 or G2. Therefore, aw(G, 3) = 4.

Proposition 3.5. For every k ≥ 1, aw(P3�P2k, 3) = 4.

Proof. Consider the graphG = P3�P2k. Since 3+2k = 2(k+1)+1, then 4 ≤ aw(G, 3)
by Lemma 3.3. Let c be an exact 4-coloring of G. Now consider the two isometric
subgraphs G1 and G2 each of which are P2�P2k graphs where V (G1) ∩ V (G2) =
{v2,1, v2,2, . . . , v2,2k}. By Proposition 3.2, G1 and G2 must have at most two colors to
avoid a rainbow 3-APs. This means the coloring c must give a rainbow 3-AP, thus
aw(G, 3) = 4.
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Lemma 3.6. The anti-van der Waerden number of P3�P3 is 3, that is, aw(P3�P3, 3)
= 3.

Proof. Let G = P3�P3 and note that Observation 1.1 gives 3 ≤ aw(G, 3). Let c
be an exact 3-coloring. Consider the two isometric subgraphs G1 and G2 each of
which are P2�P3 graphs. Let S = V (G1)∩ V (G2) = {v2,1, v2,2, v2,3}. If each of these
vertices is assigned a different color, then G clearly has a rainbow 3-AP.

Case 1: |c(S)| = 1.
Suppose, without loss of generality, that c(S) = {red}. By Lemma 2.4, neither G1

nor G2 can have three colors. Let c(v1,1) = blue and suppose c(v3,j) = green for
some j ∈ {1, 2, 3}. Then, either {v1,1, v2,1, v3,1}, {v3,2, v1,1, v2,3} or {v1,1, v2,2, v3,3} is
a rainbow 3-AP. Therefore, c(v1,1) = red and by symmetry

c(v1,1) = c(v1,3) = c(v3,1) = c(v3,3) = red.

This leaves only v1,2 and v3,2 uncolored and assigning them the colors blue and green
yields the rainbow 3-AP {v1,2, v2,2, v3,2}.

Case 2: |c(S)| = 2.
Without loss of generality, let c(S) = {blue, green}. A coloring described in Lemma
2.6 indicates that if a third color is added to G1 or G2, without loss of generality,
c({v1,2, v1,3, v2,1, v2,2}) = {blue}, c(v1,1) = red, and c(v2,3) = green. If c(v3,1) = blue,
c(v3,1) = green or c(v3,1) = red, then {v1,1, v2,3, v3,1}, {v1,1, v2,1, v3,1} or {v1,2, v3,1, v2,3}
is a rainbow 3-AP, respectively.

Therefore, aw(G, 3) = 3.

Proposition 3.7. For every k ≥ 1, aw(P3�P2k+1, 3) = 3.

Proof. First, consider when k = 1. From Lemma 3.6, aw(P3�P2k+1, 3) = 3. Assume
that aw(P3�P2k+1, 3) = 3 and now consider the graph P3�P2k+3. Recall that 3 ≤
aw(P3�P2k+3, 3) by Observation 1.1. Let c be an exact 3-coloring of P3�P2k+3 and
consider the two isometric subgraphs G1 = P3�P3 and G2 = P3�P2k+1 where S =
V (G1) ∩ V (G2) = {v1,3, v2,3, v3,3}. Note that aw(G1, 3) = aw(G2, 3) = 3 by the base
case and induction hypothesis, respectively. Notice that |c(S)| �= 2, otherwise adding
a third color to either G1 or G2 would yield a rainbow 3-AP. Clearly |c(S)| �= 3, so
suppose |c(S)| = 1. Without loss of generality, let c(S) = {red}, c(V (G1)) =
{red, blue}, and c(V (G2)) = {red, green}.

If c(v1,2) = blue, then c(v1,j) = red for 4 ≤ j ≤ 2k + 3 by Lemma 2.3. If c(v2,�) =
green for some 4 ≤ � ≤ 2k + 2, then {v2,�, v1,2, v1,�+1} is a rainbow 3-AP so c(v2,�) =
red. If c(v2,2k+3) = green, then {v1,2, v1,k+3, v2,2k+3} is a rainbow 3-AP. Thus, the
color green must only appear in the third row. A similar argument, using 3-AP
{v3,�, v1,2, v2,�+1}, shows that c(v3,�) = red. If c(v3,2k+3) = green, then c(v2,1) must
be blue since {v2,1, v3,2k+3, v1,2} is a 3-AP. However, this creates the rainbow 3-AP
{v3,2k+3, v2,1, v1,2k+3}. This implies c(v1,2) = red and by symmetry c(v3,2) = red.

Now, if c(v2,2) = blue, then by Lemma 2.3, a third color cannot be introduced in
G2. Therefore, all of column two is colored red.
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If c(v2,1) = blue, then by Lemma 2.3 a third color cannot be introduced in G2.
Thus c(v2,1) = red. If c(v1,1) = blue, then by Lemma 2.3 c(v1,j) = red for 4 ≤
j ≤ 2k + 3. If c(v2,�) = green for some 4 ≤ � ≤ 2k + 2, then {v1,�+1, v1,1, v2,�} is a
rainbow 3-AP. If c(v2,2k+3) = green, then by Lemma 2.3 c(v3,1) = red which yields
the rainbow 3-AP {v1,1, v2,2k+3, v3,1}. Thus, c(v2,2k+3) = red. If c(v3,�) = green for
4 ≤ � ≤ 2k + 2, then {v3,�, v1,1, v2,�+1} is a rainbow 3-AP. Therefore, c(v3,�) = red.
Finally, if c(v3,2k+3) = green, then {v1,1, v2,k+2, v3,2k+3} is a rainbow 3-AP. Therefore,
any 3-coloring of G yields a rainbow 3-AP.

4 General Products

In this section, the main result is that the anti-van der Waerden number of Cartesian
products of graphs are bounded above by 4. The section begins with Lemma 4.1
which limits the number of colors that can be introduced in a Cartesian product of
graphs.

Lemma 4.1. [6, Lemma 4.3] Let G be a connected graph on m vertices and H be a
connected graph on n vertices. Let c be an exact r-coloring of G�H with no rainbow
3-APs. If G1, G2, . . . , Gn are the labeled copies of G in G�H, then |c(V (Gj)) \
c(V (Gi))| ≤ 1 for all 1 ≤ i, j ≤ n.

It will be useful to find isometric graphs that have at least three colors. This is
made possible by the following lemma.

Lemma 4.2. If G is a connected graph on at least three vertices with an exact r-
coloring c where r ≥ 3, then there exists a subgraph H in G with at least three colors
where H is either an isometric path or H = C3.

Proof. Choose u, v ∈ V (G) such that uv ∈ E(G), c(u) = red and c(v) = blue.
Further, let w ∈ V (G) such that d(v, w) is minimal and c(w) = green, Pv be a
shortest path from v to w, and Pu be a shortest path from u to w. If Pu ⊆ Pv or
Pv ⊆ Pu, then one of Pu or Pv is H . Now assume Pu �⊆ Pv and Pv �⊆ Pu. If the
lengths of Pu and Pv differ by two or more, then there is a contradiction about the
minimality of Pu or Pv. If the lengths of Pu and Pv differ by one, then extending Pu

to contain v or Pv to contain u gives H . If the lengths of Pu and Pv are the same,
define V (Px) = {x, x1, x2, . . . , x�, w} for x ∈ {u, v}. If c(ui) = green, then either
d(v, w) = d(v, ui) or d(v, ui) < d(v, w). In the former case, the shortest path from v
to u to ui is H , and the latter case contradicts the minimality of Pv. If c(ui) �= red,
then Pu = H and if c(vi) �= blue, then Pv = H . Thus, the last situation to consider
is if c(ui) = red and c(vi) = blue for all i. However, the subgraph of G induced by
{u�, w, v�} is H .

Lemma 4.3. Assume G and H are connected and consider the graph G�H. Let
V (H) = {v1, v2, . . . , vn}, n ≥ 3, and suppose c is an exact r-coloring such that r ≥ 3,
c avoids rainbow 3-APs and |c(V (Gi))| ≤ 2 for 1 ≤ i ≤ n. If vivj ∈ E(H), then
|c(V (Gi) ∪ V (Gj))| ≤ 2.
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Proof. If Gi is monochromatic and Gj is monochromatic then the result is immediate.
If Gi is monochromatic and Gj is bichromatic then either |c(V (Gi)∪ V (Gj))| ≤ 2 or
|c(V (Gj))\c(V (Gi))| = 2. The former is the desired result and the latter contradicts
Lemma 4.1. Now consider the case where at least one of Gi or Gj has three or more
colors. Without loss of generality, assume Gi has three or more colors. Then there
exists an C3 subgraph or an isometric path with at least three colors, by Lemma 4.2,
in Gi. If Gi has a C3 subgraph with three colors, then there is an immediate rainbow
3-AP in G�H . If Gi has an isometric path with at least three colors, let ρ(i) be
the shortest such path Gi and ρ(j) be the corresponding path in Gj . This creates a
P2�Py where y is the length of ρ(i). By Lemma 2.6 and Proposition 3.2 there exists
a rainbow 3-AP in G�H .

Assume Gi and Gj each have two colors with |c(V (Gi) ∪ V (Gj))| ≥ 3. Since
|c(V (Gi)) \ c(V (Gj))| ≤ 1, by Lemma 4.1, then they must share a color. Without
loss of generality, let c(V (Gi)) = {red, blue} and c(V (Gj)) = {blue, green}. Pick a
red vertex, say vi,α , in Gi with a blue neighbor, namely v. Also, choose vj,β in Gj

such that c(vj,β) = green. Let vi,β be the vertex in Gi that corresponds to vj,β and let
P (i) be a shortest path from vi,α to vi,β in Gi and P (j) be the corresponding path in
Gj . Notice that P

(i) and P (j) form an isometric P2�Px in G�H where x is the length
of P (i). If P2�Px has no blue vertices, then {v, vi,α, vj,α} is a rainbow 3-AP. If P2�Px

has a blue vertex and x is even, then there is a rainbow 3-AP since aw(P2�P2k, 3) = 3
by Proposition 3.2. If x is odd, then by Lemma 2.6, so c(vj,α) = c(vi,β) = blue. Now,
extend to P2�Px to include a corresponding path from Gk where vjvk ∈ E(H), which
gives a P3�Px subgraph. If P3�Px is an isometric subgraph of G�H , then there is
a rainbow 3-AP since aw(P3�P2k+1, 3) = 3, by Proposition 3.7. If P3�Px is not
an isometric subgraph of G�H , then it must correspond to an isometric subgraph
C3�Px of G�H . Let vk,β be the vertex in Gk that corresponds to vj,β. However,
c(vk,β) cannot be red, blue or green due to 3-APs {vi,β, vj,β, vk,β}, {vk,β, vi,α, vj,β} or
{vi,α, vk,β, vj,α}.
Lemma 4.4. If H is connected and |H| ≥ 2, then aw(P2�H, 3) ≤ 4.

Proof. Let c be an exact 4-coloring of P2�H with H1 and H2 labeled copies of H .
If |c(V (H1))| ≥ 3, then, by Lemma 4.2, there exists an isometric C3 or a shortest
isometric path P with at least three colors in H1. If C3 ⊆ H1 has three colors,
then there is an immediate rainbow 3-AP in P2�H . In the other case, P2�P is
an isometric subgraph of P2�H . By Lemma 2.6 and Proposition 3.2 there exists
a rainbow 3-AP in P2�H In the case where |c(V (H1))| = 1, then |c(V (H2))| ≥ 3,
which is the previous situation. Finally, consider the case where |c(V (H1))| = 2.
Since c is an exact 4-coloring of P2�H , |c(V (H1))\c(V (H2))| = 2 so by Lemma 4.1
there is a rainbow 3-AP.

The results established thus far come together to show an extremely useful bound
on the Cartesian products of graphs in Theorem 4.5. This bound demonstrates that
the anti-van der Waerden number of any Cartesian product is either 3 or 4.
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Theorem 4.5. If G and H are connected graphs and |G|, |H| ≥ 2, then aw(G�H, 3)
≤ 4.

Proof. If |H| = |G| = 2 then G�H = P2�P2 and by Observation 3.1, aw(G�H, 3) =
3 ≤ 4. Let c be an exact 4-coloring of G�H with V (H) = {v1, v2, . . . , vn}. Without
loss of generality, assume |H| ≥ 3. If |G| = 2, then by Lemma 4.4 there is a rainbow
3-AP. Now, suppose |H|, |G| ≥ 3 and define G1, G2, . . . , Gn as the labeled copies of
G in G�H . Let P be an isometric path that contains the most colors in some Gi,
further, let it be the shortest such path.

Case 1: P has 3 or 4 colors.
Let P have x vertices and vivj ∈ E(H). Also, let P ′ be the path in Gj that corre-
sponds to P, note this creates an isometric subgraph P2�Px in G�H . If x is even,
then there is a rainbow 3-AP since aw(P2�P2k, 3) = 3 for all k ≥ 1 by Proposition
3.2 . If x is odd, then a rainbow 3-AP is guaranteed by Lemma 2.6 since path P has
3 or 4 colors.

Case 2: P is monochromatic.
This implies that each Gi is monochromatic by the definition of P. Since G�H has
4 colors, there exists either an isometric C3 or an isometric shortest path P ′ in a
copy of H that has at least 3-colors by Lemma 4.2. If there is an isometric C3, then
there is an immediate rainbow 3-AP. In the other case, this is just Case 1 with the
roles of G and H reversed.

Case 3: P has two colors.
This means that some copy of G has exactly two colors, call this copy Gd and assume
the two colors are red and blue. By Lemma 4.1, when the remaining two new colors
appear they must both appear either with colors red or blue. Let yellow and green
be the two additional colors that are introduced and, without loss of generality,
suppose they both appear with red. In particular, let c(V (Ge)) = {red, green} and
c(V (Gf)) = {red, yellow}. Now, create an auxiliary coloring c′ of H defined by

c′(v�) =
{

red if c(V (G�)) = {red}
C if c(V (G�)) = {C, red} .

Subcase 1: There is no path in H , under coloring c′, that contains the colors blue,
green and yellow.

Find the smallest subgraph of H that contains blue, green and yellow, say c′(vi) =
blue, c′(vj) = green and c′(vk) = yellow and call this smallest subgraph K. This
guarantees that vi, vj and vk are leaves in the subgraphK. Without loss of generality,
assume d(vi, vj) ≤ d(vj , vk). Let vi,α ∈ Gi such that c(vi,α) = blue, vj,β ∈ Gj such
that c(vj,β) = green and vi,β be the vertex in Gi that corresponds to vj,β. Let vk,α
be the vertex in Gk that corresponds to vi,α and find a shortest path P from vj,β
to vk,α whose only vertex in Gj is vj,β. Now, consider the 3-AP, {vi,α, vj,β, u}, such
that u is a vertex on P since d(vi, vj) ≤ d(vj, vk). If c(u) = blue or c(u) = green
this contradicts the minimality of K or the assumption of the subcase. Therefore,
c(u) ∈ {red, yellow} and this 3-AP is rainbow.
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Subcase 2: There is a path in H , under coloring c′, that contains blue, green and
yellow.

Let P be the shortest path in H that contains blue, green and yellow and, without
loss of generality, assume the path has leaves vi and vk with c′(vi) = blue and c′(vk) =
yellow. Further, assume vj is the closest green vertex to vi on P and d(vi, vj) ≤
d(vj, vk). Note, there are no other blue or yellow vertices on P, otherwise P would
not be the shortest path that contains blue, green and yellow.

Let vi,α and vj,β be in Gi and Gj , respectively, so that they are the closest two
vertices with c(vi,α) = blue and c(vj,β) = green (see Figure 3 for the following con-
struction). Let P be a shortest path from vi,α to vi,β in Gi and P ′ be a shortest
path from vi,β to vj,β. Notice that, by minimality of distance from vi to vj , P�P ′

is an isometric subgraph of G�H . Note that the length of P ′ is 1 then there is a
rainbow 3-AP by Lemma 4.3. Assume the length of P ′ is at least 2. If d(vi,α, vj,β)
is even, then there is a red vertex in P�P ′, say u, such that d(vi,α, u) = d(u, vj,β)
which creates a rainbow 3-AP.

Now, consider the case where d(vi,α, vj,β) = 2x + 1. Let vk,γ be a vertex in Gk

such that d(vj,β, vk,γ) is minimal and c(vk,γ) = yellow. Let ρ be a shortest path from
vj,β to vj,γ in Gj and ρ′ be a shortest path from vj,γ to vk,γ, then ρ�ρ′ is an isometric
subgraph of G�H . Note that c(V (Gk−1)) = {red} and c(V (Hγ−1)) = {red} by
Lemma 4.3. Define Da = {v ∈ V (ρ�ρ′)| d(v, vj,β) = a} and note that this means
D0 = {vj,β}. Define y so that Dy = {vk,γ}. Further, define the distance from Ds to
Dt to be |s− t|. If y < 2x+1, let u be the vertex on P ′ or P such that d(u, vj,β) = y.
Then, c(u) ∈ {red, blue} and {vk,γ, vj,β, u} is a rainbow 3-AP. This means D2x+1 �= ∅,
further, c(D2x+1) = {green} because if v ∈ D2x+1, then {vi,α, vj,β, v} is a 3-AP. This
implies that the distance from Dy to either D0 or D2x+1 is even. If y − 0 is even,
then either

{vk,γ, vk−1,γ−(y/2−1), vj,β} or {vk,γ, vk−(y/2−1),γ−1, vj,β}
is a rainbow 3-AP since c(vk−1,γ−(y/2−1)) = c(vk−(y/2−1),γ−1) = red. Similarly, if
y − 2x− 1 is even and z = y−2x−1

2
, then either

{vk,γ, vk−1,γ−(z−1), vk−1−z,γ−(z−1)} or {vk,γ, vk−(z−1),γ−1, vk−(z−1),γ−1−z}

is a rainbow 3-AP.

Therefore, each case yields a rainbow 3-AP so aw(G�H, 3) ≤ 4.
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vi,α

. . .

. . . vi,β

...
...

...

vj,α . . . vj,β . . .

. . .

vj,γ

...
...

...

vk,β . . . vk,γ

P

P ′

ρ′

ρ

Gi

Gj

Gk

Figure 3: Construction of isometric subgraphs of G�H .

5 Application to Pm�Pn

In Sections 2 and 3 results for m = 2 and m = 3 were established. The result of
Theorem 4.5 is used, with earlier results, to determine aw(Pm�Pn, 3) for all m and n.
It is interesting to note that the pattern for the small values of m does not continue
when considering large values of m. Essentially, there are ‘more’ 3-APs which forces
the anti-van der Waerden number to always be 4. First notice that Lemma 3.3 and
Theorem 4.5 give the result of Corollary 5.1 immediately.

Corollary 5.1. If G = Pm�Pn and m+ n = 2k + 1 for some k ≥ 1, then aw(G, 3)
= 4.

Lemma 5.2 gives the final lower bound to determine the anti-van der Waerden
number for all Pm�Pn.

Lemma 5.2. If m ≥ 4, n ≥ 4 and m + n = 2k for some k ≥ 1, then 4 ≤
aw(Pm�Pn, 3).

Proof. Let G = Pm�Pn. Define

c(vi,j) =

⎧⎨
⎩

red if i = 1 and j = 2 or i = 2 and j = 1
blue if i = m and j = n
green otherwise

.

Note that if a rainbow 3-AP exists it must contain vertex vm,n and either v1,2 or
v2,1. Let S = {vm,n, v1,2, v2,1}. Note that d(v1,2, vm,n) = d(v2,1, vm,n) = m + n − 3
which, by assumption, is odd. Therefore, there does not exist a vertex equidistant
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from v2,1 and vm,n or equidistant from v1,2 and vm,n. This means a rainbow 3-AP
cannot exist in the order of {v2,1, vi,j, vm,n} or {v1,2, vi,j, vm,n}.

This means any rainbow 3-AP must exist in the order of {vm,n, v2,1, vi,j} or
{vm,n, v1,2, vi,j} (or the reverse order) where vi,j /∈ S. Note that vi,j must be distance
m + n − 3 from one of the vertices in S, but the only vertices distance m + n − 3
from any vertex in S are already in S thus vi,j does not exist. Therefore, c avoids
rainbow 3-APs so 4 ≤ aw(G, 3).

Using Theorem 4.5, Corollary 5.1 and Lemma 5.2 gives Corollary 5.3.

Corollary 5.3. If m ≥ 4 and n ≥ 4, then aw(Pm�Pn, 3) = 4.

Finally, combining Propositions 3.2, 3.4, 3.5, 3.7 and Corollary 5.3 gives a function
to determine aw(Pm�Pn, 3) for all m and n.

Theorem 5.4. For m,n ≥ 2,

aw(Pm�Pn, 3) =

{
3 m = 2 and n is even, or m = 3 and n is odd;
4 otherwise.
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