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Abstract

Consider the set {1, 2, . . . , n} = [n] and an equation eq. The rainbow
number of [n] for eq, denoted rb([n], eq), is the smallest number of colors
such that for every exact rb([n], eq)-coloring of [n], there exists a solution
to eq with every member of the solution set assigned a distinct color.
This paper focuses on linear equations and, in particular, establishes the
rainbow number for the equations

∑k−1
i=1 xi = xk for k = 3 and k = 4.

The paper also establishes a general lower bound for k ≥ 5.
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1 Introduction

Let {1, 2, . . . , n} = [n] and eq be any equation. The rainbow number of [n] for
eq, denoted rb([n], eq), is the smallest number of colors such that for every exact
rb([n], eq)-coloring of [n], there exists a solution to eq with every member of the
solution set assigned a distinct color. Although much of the literature has focused on
linear equations, as does this paper, this definition is general enough to define rainbow
numbers for any set and any equation. The rainbow number is an anti-Ramsey type
parameter since the key structures are multichromatic (or rainbow) as opposed to
monochromatic. The rainbow number function was inspired by Schur numbers (see
[6] and references therein, the authors originally thought of the rainbow number as
the anti-Schur number) and the anti-van der Waerden function. The anti-van der
Waerden number on [n] = {1, . . . , n}, denoted aw([n], k), is the smallest number
of colors such that every exact aw([n], k)-coloring of [n] is guaranteed to have an
arithmetic progression of length k where each element of the progression is colored
distinctly (note that 3 term arithmetic progressions satisfy the equation x1 + x2 =
2x3). The anti-van der Waerden number was first defined in [11] and many results on
arithmetic progressions on [n], the cyclic groups Zn, finite abelian groups and graphs
have been considered directly or indirectly (see [1, 2, 3, 5, 8, 10, 12]). Rainbow results
have also been considered for equations of the form a1x1 + a2x2 + a3x3 = b over Zp

(see [4, 7, 9]).

An exact r-coloring c of the integers {1, 2, . . . , n} = [n], is a function c : [n] → [r]
such that c is onto. If eq is any linear equation on k variables, namely x1, x2, . . . , xk,
and non-zero coefficients, then the set {s1, s2, . . . , sk} is a rainbow solution if sub-
stituting si = xi makes eq true and |{c(s1), c(s2), . . . , c(sk)}| = k. Note that if a
solution does not have distinct elements it cannot be a rainbow solution and such
solutions will be called degenerate, i.e. the only solutions that will be considered are
non-degenerate.

The rainbow number of [n] for equation eq, denoted rb([n], eq), is the smallest r
such that every exact r-coloring of [n] is guaranteed to have a rainbow solution to
eq. A coloring is extremal, with respect to eq and [n], if it uses rb([n], eq)− 1 colors
and avoids rainbow solutions. As a technical note, if eq has m variables and m > n
or there are no solution sets to eq in [n], define rb([n], eq) = n+ 1.

Some more notation and a convention about the way [n] is colored are now in-
troduced. Let c be an exact r-coloring on [n]. Define Ci = {a ∈ [n] | c(a) = i} and
define si ∈ Ci such that si is the smallest element of Ci for each color i. Note that for
any exact r-coloring c, it is always possible to have si < sj for i < j. If that is not
the case, say si > sj and i < j, an isomorphic coloring can be created by swapping
the color of any number with color i to have color j and vice versa.

Observation 1.1. If c is an exact (r−1)-coloring of [n] that avoids rainbow solutions
for eq, then r ≤ rb([n], eq). If every exact r-coloring of [n] guarantees a rainbow
solution to eq, then rb([n], eq) ≤ r.

Example 1.2. Consider the equation eq : x1 + x2 = x3 over [5]. Define c : [5] → [3]
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by c(1) = 1, c(2) = 2, c(3) = 1, c(4) = 3 and c(5) = 1. Since this is an exact
3-coloring that avoids rainbow solutions to eq, Observation 1.1 gives 4 ≤ rb([5], eq).
On the other hand, any exact 4-coloring of [5] must either use 4 distinct colors in
{1, 2, 3, 4} or {2, 3, 4, 5}. In the former case {1, 2, 3} is a rainbow solution, and in
the latter case {2, 3, 5} is a rainbow solution. Thus rb([5], eq) ≤ 4.

2 The rainbow number of [n] for the equation x1 + x2 = x3

This section focuses on the rainbow number for the equation x1 + x2 = x3 so for
the rest of the section it is assumed that eq is x1 + x2 = x3. Also, when {a, b, c} is
presented as a solution to eq it will be recognized that x1 = a, x2 = b and x3 = c.
In order to discuss the results in this section it is easier if an exact r-coloring uses
the color set {0, 1, . . . , r − 1}. Lemma 2.1 starts with a specific coloring that avoids
rainbow solutions.

Lemma 2.1. For n ≥ 3, �log2(n) + 2� ≤ rb([n], eq).

Proof. The number of trailing zeros that an integer has is the number of zeros, start-
ing from the right, before there is a nonzero digit. Define an exact (�log2(n) + 1�)-
coloring of [n] as

c(x) = the number of trailing zeros in the binary representation of x

(see Example 2.2). Let a, b ∈ [n]. If a and b are odd, then c(a) = c(b) = 0 since
their binary representation ends with a 1. This means {a, b, a+ b} is not a rainbow
solution. If a is odd and b is even, then a + b is odd so c(a) = c(a + b) = 0, thus
{a, b, a + b} is not a rainbow solution. Finally, consider the case where a and b are
both even. If a and b have the same number of trailing zeros, then c(a) = c(b)
meaning {a, b, a + b} is not a rainbow solution. If c(a) �= c(b) assume, without loss
of generality, that c(a) < c(b). Since the number of trailing zeros of b exceeds the
number of trailing zeros of a, it follows, via binary arithmetic, that b + a has the
same number of trailing zeros as a. Thus, c(a + b) = c(a) and {a, b, a + b} is not
a rainbow solution. Therefore, no rainbow solutions exist with this coloring, and
�log2(n) + 2� ≤ rb([n], eq).

Example 2.2. A table describing the coloring from Lemma 2.1.

x x in binary c(x)
1 1 0
2 10 1
3 11 0
4 100 2
5 101 0
6 110 1
7 111 0
8 1000 3
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Lemma 2.3 indicates that when attempting to color [n] and avoid rainbow solu-
tions, there are restrictions on how quickly new colors can be added.

Lemma 2.3. Let c be an exact r-coloring of [n], with color set {0, 1, . . . , r− 1}, that
avoids rainbow solutions, then

1. if si = �, then 2� ≤ si+1 for 0 ≤ i ≤ r − 2,

2. 2i ≤ si for 0 ≤ i ≤ r − 1.

Proof. For the first claim, if � = 1, then i = 0, so the smallest m for which s2 = m
is m = 2. If � ≥ 2, let 1 ≤ a < � with a + � ≤ n. Then c(a) �= c(�), so c(a + �) ∈
{c(a), c(�)}. Thus, c(a + �) �= i+ 1, hence 2� ≤ si+1.

Proving the second claim proceeds by induction on k. The base case is easily
observed, in particular, s0 = 1 = 20. For the induction hypothesis, assume 2k ≤ sk for
0 ≤ k ≤ r−2. Applying part 1 to our induction hypothesis yields 2(2k) = 2k+1 ≤ sk+1

which completes the proof.

Theorem 2.4 follows almost directly from Lemmas 2.1 and 2.3.

Theorem 2.4. For n ≥ 3, rb([n], eq) = �log2(n) + 2�.

Proof. By Lemma 2.1 �log2(n) + 2� ≤ rb([n], 3). Let r = �log2(n) + 2� and c be an
exact r-coloring, with color set {0, 1, . . . , r−1}, of [n] that avoids rainbow solutions.
Then, by Lemma 2.3, 2r−1 ≤ sr−1, so

2r−1 = 2�log2(n)+1� ≤ sr−1.

Thus, n < sr−1. So if color r − 1 appears in a coloring of [n] there must be a
rainbow solution, a contradiction that such a coloring exists. Therefore, rb([n], eq) =
�log2(n) + 2�.

3 The rainbow number of [n] for the equation x1+x2+x3 = x4

This section defines eq : x1 + x2 + x3 = x4 (except in Theorem 3.2) and an exact
r-coloring will use color set [r]. Lemma 3.1 is used to define a coloring on [n] that
avoids rainbow solutions which gives a lower bound on rb([n], eq). It is interesting to
note that the equations in Section 2 and 3 are similar but one result is logarithmic
and the other is linear.

Lemma 3.1. For � ≥ 2, let {b1, b2 . . . , b�} ⊆ [n], with bi < bi+1 for 1 ≤ i ≤ �−1, such

that
�∑

i=1

bi ≥ n. The smallest b� that satisfies these conditions gives a corresponding

maximum b1 value of

b1 =

⌈
2n− �(�− 1)

2�

⌉
.
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Proof. Notice that by first minimizing b� and then maximizing b1 gives bi+1 = bi +1,
for 1 ≤ i ≤ �− 1, and b� = b1 + �− 1. Observe,

�∑
i=1

bi ≥ n.

Well-known facts about triangular numbers gives the equivalent inequality

b�(b� + 1)

2
− (b1 − 1)b1

2
≥ n,

and solving for b1 yields

b1 ≥ 2n− �(�− 1)

2�
.

Since b1 is an integer, and the bi’s are consecutive, it can be concluded that

b1 =

⌈
2n− �(�− 1)

2�

⌉
.

Theorem 3.2. Let eq :
∑k−1

i=1 xi = xk, k ≥ 4 and define L =
⌈
2n−�(�−1)

2�

⌉
for � = k−2.

Then

rb([n], eq) ≥
{

n+ 1 if n < (k−1)k
2

,
n− L+ 3 otherwise.

Proof. The lower bound of n+1 (which is actually an equality) occurs when [n] does

not have any solutions to eq and is based on
∑k−1

i=1 i =
(k − 1)k

2
. Hence every integer

in [n] can be colored distinctly and rb([n], eq) = n+ 1 by definition. If [n] does have
solutions to eq, then consider the coloring c on [n] where

c(x) =

{
1 if 1 ≤ x ≤ L− 1,

i+ 2 if x = L+ i.

This coloring avoids rainbow solutions since any rainbow solution must have at
least k − 1 elements that are bigger than L and Lemma 3.1 indicates that the sum
of these elements is greater than n. Thus, no rainbow solutions exist.

It remains to count how many colors are used. The number of elements that are
not colored 1 is n − L + 1, thus c uses n − L + 2 colors. Since c avoids rainbow
solutions, this gives n− L+ 3 ≤ rb([n], eq).

Corollary 3.3. For n ≥ 5,

⌊
1

2
(n+ 7)

⌋
≤ rb([n], eq).
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Proof. As noted in the introduction to Section 3, eq in this problem has k = 4 and
� = 2, thus so L =

⌈
n−1
2

⌉
. Applying Theorem 3.2 gives the result.

Proposition 3.4. If n is odd and n ≥ 5, then rb([n], eq) =
1

2
(n + 7) and there is a

unique extremal coloring of [n].

Proof. When n = 5 the result is immediate. When n = 7 the lower bound is a result
of Corollary 3.3. The upper bound is trivial since the only coloring of [7] with seven
colors is to color each number distinctly. If c′ is an extremal coloring of [7], then 6
colors are used. Since {1, 2, 3, 6} and {1, 2, 4, 7} are both solutions, c′(1) = c′(2) and
the coloring is unique.

For the induction hypothesis, assume that for all odd k with 7 ≤ k ≤ n, n odd,

that rb([k], eq) =
1

2
(k+7) and there is a unique extremal coloring of [k], namely the

coloring provided in Theorem 3.2. Define r =
1

2
((n + 2) + 7), L =

n− 1

2
and let c

be an exact r-coloring of [n+ 2] with color set {1, . . . , r}. The induction hypothesis
implies that if r or r − 1 colors appear in [n], then there is a rainbow solution, so
sr = n + 2 and sr−1 = n + 1. The induction hypothesis also implies that if r − 2
colors appear in [n], there is a unique coloring of [n] with r − 2 colors that avoids
rainbow solutions. However, applying the unique coloring yields c(1) = 1, c(L) = 2,
c(L + 1) = 3 and c(n + 1) = r − 1 > 3, thus {1, L, L + 1, n + 1} is a rainbow

solution. Therefore, rb([n+2], eq) ≤ 1

2
(n+9). Equality comes from the lower bound

in Corollary 3.3.

Now let c be an exact (r − 1)-coloring of [n+ 2], with color set {1, 2, . . . , r − 1},
that avoids rainbow solutions. If r − 1 colors appear in [n] the inductive hypothesis
implies there is a rainbow solution, thus n + 1 ≤ sr−1 ≤ n + 2.

If r − 2 colors appear in [n], then [n] has the coloring from Theorem 3.2. This
means s2 = L and s3 = L+1. Hence, either {1, L, L+1, n+1} or {2, L, L+1, n+2}
is a rainbow solution since n+ 1 ≤ sr−1 ≤ n + 2. Therefore, n < sr−2 which implies
sr−2 = n+ 1 and sr−1 = n + 2.

Now consider the case where r − 3 colors appear in [n]. If r − j − 1 colors

appear in [n− 2j + 2], for 2 ≤ j ≤ n+ 3

4
, then the coloring from Theorem 3.2 gives

Lj =
n− 2j + 2− 1

2
= L − j + 1 = s2, L − j + 2 = s3, . . . ,n − 2j + 2 = sr−j−1.

However, notice that

L− j + 1 ≤ L < L+ 1 ≤ n− 2j + 2 < n+ 1,

thus {1, L, L+ 1, n+ 1} is a rainbow solution which implies n− 2j + 3 ≤ sr−j−1.

Combining this with si < si+1 gives

n− 2j + 3 ≤ sr−j−1 ≤ n− j + 2. (*)
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Note that Inequality (*) gives s2 = sr−(r−3)−1 ≤ n − (r − 3) + 2 = L + 1. The
remainder of the proof will show that if s2 �= L+1, then there is a rainbow solution.
This then implies that s2 = L+ 1 and c must be the coloring from Theorem 3.2.

Set [n + 2] = {1} ∪ A ∪ B ∪ {n − 1, n, n + 1, n + 2} with A = {2, 3, . . . , L}
and B = {L + 1, L + 2, . . . , n − 2}. Note that |A| = |B| = L − 1 =

n− 3

2
and

that s2 ∈ A. Also, for any x ∈ A, the set {1, x, n − x, n + 1} is a solution to
eq and c(1) = 1 �= r − 2 = c(n + 1). This implies that each element of the pair
{x, n − x} is either the same color or at least one of them is color 1. Further,
since x ∈ A and n − x ∈ B, |c(A ∪ B)| uses at most L − 1 of the remaining
|{2, 3, . . . , r−3}| = r−4 = L+1 colors. This forces c(n−2) = r−4, c(n−1) = r−3 and
each pair {x, n−x} contributing one color from {2, 3, . . . , r−5} that is not accounted
for among any other {y, n−y} pair for y ∈ A. However, now {1, s2, n−s2+1, n+2}
is a rainbow solution. To see this, observe that c(s2−1) = 1 and if c(n−s2+1) = 2,
then the {s2 − 1, n − s2 + 1} pair contributes the color 2 so the {s2, n − s2} pair
must contribute a color that is not 2. This means c(n − s2) �= 2 which makes
{1, s2, n− s2, n+ 1} a rainbow solution.

Lemma 3.5. If n ≥ 5 is odd, then rb([n+ 1], eq) ≤ 1

2
(n+ 7).

Proof. Let r =
1

2
(n + 7) and c be an exact r-coloring of [n + 1]. If r colors appear

in [n], then, by Proposition 3.6, there exists a rainbow solution. Thus c(n + 1) = r
and r − 1 colors appear in [n]. Note that there is unique extremal coloring of [n]

with r− 1 colors, thus

{
1,

n− 1

2
,
n + 1

2
, n+ 1

}
is a rainbow solution since c(1) = 1,

c((n − 1)/2) = 2, c((n + 1)/2) = 3 and c(n + 1) = r. Therefore, rb([n + 1], eq) ≤
1

2
(n+ 7).

Theorem 3.6 follows Proposition 3.4 and Lemma 3.5.

Theorem 3.6. For n ≥ 5, rb([n], eq) =

⌊
1

2
(n+ 7)

⌋
.

4 Conclusion

It is believed that future work on equations of the form
∑k−1

i=1 xi = xk, k ≥ 5 should
focus on the coloring exhibited in Theorem 3.2 and arguments should utilize si.
Data indicates that there are unique colorings, when k = 5, for n = 9, 12, 15, . . .
and colorings for other values of n are closely related to the unique colorings. Other

questions to consider are more general equations like

k∑
i=1

aixk = b. It is not clear

which, if any, techniques from this paper will be applicable in the more general
situation.
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