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Abstract

The design of a typical modern block cipher enables potential attackers to represent the ci-

pher as a system of multivariate algebraic equations. Solving this equation system is then

equivalent to breaking the cipher, and the corresponding attack is commonly referred to

as an algebraic attack. Essentially, algebraic attacks can be distinguished in two separate

classes. The first class are the attacks that are tailor-made for specific ciphers, by carefully

analyzing specific properties of the encryption process. The second class consists of more

general attacks that focus on solving multivariate equation systems, such as the ones rep-

resenting ciphers. In practice, this second class mainly consists of techniques that employ

well-documented notions like Gröbner-bases and the Boolean satisfiability problem.

Although considerable effort has been spent on solving equation systems that describe

ciphers, practical results have generally failed to materialize, which may indicate that the

representation of a cipher as a system of algebraic equations is not the most suitable ap-

proach. In this thesis, we present an alternative type of equation, which is particularly ef-

fective for representing a large class of ciphers. Although these equations are not linear by

definition, they have some linear properties that can be exploited by an algorithm for solv-

ing them. We propose such an algorithm and study its behavior when applied to equation

systems that represent small-scale variants of the block ciphers DES and AES.
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Preface

This thesis concludes my graduation project, which is part of the Master of Science program

“Industrial and Applied Mathematics” at the Eindhoven University of Technology. The

research herein was performed at the Selmer center, which is the center for coding theory

and cryptology of the University of Bergen, Norway.

It is very interesting to see how recent cryptanalytic research has focused on the solution

of large systems of algebraic (typically quadratic) equations that represent cryptosystems.

For some reason, the cryptographic community seems convinced that algebraically defined

ciphers (i.e. ciphers that are defined using algebraic transformations) should be analyzed

using this particular representation. However, in many cases, practical results have yet to

be reported and the described attacks typically have a computational complexity that is

much higher than the brute force attack, at least when they are applied to real-life ciphers.

This might imply that alternative representation methods should be considered. One of

these alternative methods is to use extended versions of ordinary linear equations that can

have multiple outcomes, or right-hand sides. We will show that a large class of ciphers

can be represented very efficiently using these so-called multiple right-hand side (MRHS)

equations.

The concept of multiple right-hand side equations and their possible use in the field of

cryptanalysis is a rather new and unconventional subject, and there is only a small body

of work on this approach. Although the ideas contained in this thesis have been published

earlier, e.g. in [RS07] and [Rad07], we generalize this new type of equation in more detail,

as well as a possible algorithm for solving them. Independent experimental results are

presented and several examples are included to clarify the theory.

The thesis is organized as follows:

• Chapter 1 briefly describes the mathematical prerequisites and notations that are used

throughout the rest of the thesis;

• Chapter 2 serves as an introduction to symmetric cryptography and algebraic attacks

in general. In particular, some previous attacks are described and analyzed;

• Chapter 3 introduces multiple right-hand side equations and a general algorithm for

solving them;

• Chapter 4 describes a particular implementation of the algorithm;

• Chapter 5 covers the use of MRHS equations in cryptanalysis and gives experimental

results;

• Chapter 6 concludes the theory and describes, in varying detail, some possible topics

for future research, including an alternative problem description;

• The appendices contain details of the investigated ciphers and some reference code.

I would like to thank the people that were involved in this project, in particular Igor

Semaev and Håvard Raddum for many fruitful discussions on the subject and suggestions
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on this thesis. Furthermore, Tor Helleseth for offering me the opportunity to perform my re-

search in beautiful Norway, and Henk van Tilborg for overall supervision and for reviewing

updated versions of this thesis numerous times. Also, thanks to Benne de Weger and Hen-

nie Wilbrink for being on my graduation committee. A general thanks to the people at the

Selmer center, who have provided a very comfortable and enjoyable working atmosphere.

Finally, I want to thank Sonja and Lex for being nearly infinitely patient, and my father

for being the most supportive person I know, no matter what the circumstances, and for
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1

Mathematical preliminaries

This chapter will summarize some of the mathematical basics used throughout this thesis.

We will not go into the theory with too much detail; interested readers are referred to, for

instance, [Mey01].

1.1 Finite fields

All operations are in the finite field Fq = GF (q), where q is a prime power. We will denote

the field addition by + and the corresponding zero-element by 0. In the special case q = 2n

for some n (i.e. fields of characteristic 2), the addition may be denoted by ⊕. The field

multiplication will be denoted by ·, although commonly it is simply omitted and we may

use x1x2 to indicate the product of elements x1 and x2. The corresponding unit element is

denoted by 1.

Elements of F2 are called bits. A special field used in Section 5.4 is F28 . Elements of this

field, also called bytes, may be represented in three different ways:

• as a binary vector of eight bits, cf. 1.2,

• as a polynomial with coefficients in F2 and degree at most seven,

• as a pair of hexadecimals, each representing four bits.

We will use the so-called most-significant bit first notation, which means that the leftmost

element in vector notation corresponds to X7 in polynomial notation, etc. For example,

the binary vector (10011100) may be written as the polynomial X7 + X4 + X3 + X2 or in

hexadecimals as 9C.

1.2 Vector spaces

We can define an n-dimensional vector space V over a field K. Elements of V are repre-

sented as vectors of length n, whose entries are elements of K. A subset W of a vector space

V is called a subspace if it satisfies two axioms:

• W is closed under addition. For any pair of vectors w1, w2 ∈ W , the sum w1 + w2 is

also in W .

1
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2 MATHEMATICAL PRELIMINARIES

• W is closed under (scalar) multiplication. For any vector w ∈ W and any scalar

α ∈ K, the product αw is also in W .

Consider a vector space V and v1, . . . , vm ∈ V , then a linear combination of these vectors

is a vector of the form

α1v1 + . . . + αmvm,

where α1, . . . , αm ∈ K. A vector v is called (linearly) dependent of a given set of vectors if it

can be written as a linear combination of these vectors, otherwise the vector is independent.

In any vector space V , there is always a set of independent vectors (called a basis) such

that any vector in V can be written as a linear combination of these basis vectors. For an

n-dimensional vector space, any basis consists of n vectors. In our case, the vector space V

is defined over the finite field K = Fq, and we will denote the n-dimensional vector space

as F
n
q .

In this thesis the vector consisting of only ones will be denoted by 1 = (1, . . . , 1). Its

length is determined by the context. Similarly, the all-zero vector is denoted by 0, and we

may refer to this as the zero vector (or simply zero). The general vector consisting of only

r’s is then denoted by r · 1. The concatenation of vectors x and y will be denoted by (x || y),

i.e.

(x || y) = (x1, . . . , xn, y1, . . . , yn).

Finally, the inner product of vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is defined as

〈x, y〉 =

n
∑

i=1

xiyi.

The inner product exists only if x and y have the same length.

1.3 Matrices

Given vector spaces F
n
q and F

m
q , we can define a function (or transformation) f : F

n
q → F

m
q .

This function is called linear if it satisfies

∀α, β ∈ Fq ∀x, y ∈ F
n
q : f(αx + βy) = αf(x) + βf(y).

Assume the set {e1, . . . , en} is a basis of F
n
q and let x be a column vector in K. Then, we can

alternatively describe the linear transformation f(x) as the product Fx, where F is the m×n

matrix whose columns are f(ei) for i = 1, . . . , n. Note that matrix-vector multiplication is

defined as

Fx =







〈F1, x〉
...

〈Fm, x〉






,

where we denote the the i-th row of F as Fi. The i-th column of F will be denoted as F i. In

this thesis, we will not use powers of matrices, so there should be no confusion when using

this notation.

Three important tools when processing matrices are the elementary row operations:

• Interchange two rows;

• Multiply a row by a non-zero constant;

Eindhoven University of Technology // University of Bergen



1.4. GAUSSIAN ELIMINATION 3

• Add a non-zero multiple of one row to another row.

A special matrix is the n × n identity matrix, denoted by In, which contains only zeroes

except on the diagonal, where it has only ones. Also, O denotes the all-zero matrix (not

necessarily square), whose dimensions will be determined by the context. Note that for all

vectors x of appropriate length, it holds that Inx = x and Ox = 0.

The number of linearly independent rows of a matrix A is called the (row) rank of A,

and will be denoted by ρ(A). If this number equals the number of rows of A, the matrix is

said to have full row rank (i.e. the rows form an independent set of vectors). The row rank

of a matrix can be determined by using an algorithm known as Gaussian elimination, cf.

1.4. In this thesis, we will only be concerned with the row rank of a matrix, and we will

omit the term “row”. Hence, full rank formally means “full row rank”.

1.4 Gaussian elimination

An important algorithm used in this thesis is the process of Gaussian elimination. It is

an algorithm that uses elementary row operations to transform a matrix into reduced row

echelon form (RREF). A matrix is in RREF if

1. Any non-zero row is above any zero row,

2. The leading coefficient of any row equals one,

3. The leading coefficient of any row is strictly to the right of the leading coefficient of

the row above it,

4. All entries in the same column above a leading coefficient are zero,

where the leading coefficient of a row is defined as the leftmost non-zero coefficient. In

essence, the RREF of a matrix A gives the minimal set of vectors (formed by the non-zero

rows of the resulting matrix) such that each row of A can be written as a linear combination

of these vectors. If the RREF of A contains one or more zero rows, this implies that A has

linearly dependent rows.

We will not present the details of the algorithm here, but mention that it consists of two

separate stages. In the first stage, also called the elimination step, the matrix is transformed

into row echelon form, for which conditions 1, 2 and 3 are required. The second stage, also

referred to as backward substitution, transforms the matrix into RREF by forcing it to satisfy

condition 4.

The rank of a matrix A can be easily determined by transforming A into RREF. The

number of non-zero rows in the RREF of A is then equal to ρ(A).

Example 1.1. Consider over F2 the matrix

A =





1 1 1 1 0 0

0 0 1 0 1 1

1 0 0 0 0 0



 .

Then, by interchanging rows and adding multiples of one row to another, this matrix is

transformed into RREF as follows:




1 1 1 1 0 0

0 0 1 0 1 1

1 0 0 0 0 0





(1)
∼





1 0 0 0 0 0

1 1 1 1 0 0

0 0 1 0 1 1





(2)
∼





1 0 0 0 0 0

0 1 1 1 0 0

0 0 1 0 1 1





(3)
∼





1 0 0 0 0 0

0 1 0 1 1 1

0 0 1 0 1 1



 .

Eindhoven University of Technology // University of Bergen



4 MATHEMATICAL PRELIMINARIES

Here, (1) follows from moving the third row to the top of the matrix. The second step (2)

is to subtract the second row from the first, and (3) is obtained by subtracting the third row

from the second row. Note that the final matrix satisfies the properties for the reduced row

echelon form of a matrix. The rank of the initial matrix A equals three, as the RREF of A has

three non-zero rows.

1.5 Linear equation systems

A linear equation system in the variables X = {x1, . . . , xn} is commonly represented as an

equation of the form

AX = b, (1.1)

where A is an m × n coefficient matrix with elements in Fq, and b ∈ F
m
q is referred to as the

right-hand side. The set of variables X is represented as a column vector, i.e.

X =







x1

...

xn






.

Solutions to (1.1) are those assignments of values to the variables x1, . . . , xn such that equal-

ity holds. If a solution exists, the system is called consistent.

A common method to solve a linear equation system uses the Gaussian elimination

algorithm to determine the RREF of the augmented matrix

(A || b),

after which the solutions can be easily read out.

Example 1.2. Consider over F2 the linear equation in variables X = (x1, . . . , x5) given by





1 1 1 1 0

0 0 1 0 1

1 0 0 0 0



X =





0

1

0



 . (1.2)

This equation can be solved by applying the Gaussian elimination procedure to the aug-

mented matrix A (cf. Example 1.1). We have already determined that the RREF of A is





1 0 0 0 0 0

0 1 0 1 1 1

0 0 1 0 1 1



 .

This implies that the solution to (1.2) is described by the equations







x1 = 0

x2 + x4 + x5 = 1

x3 + x5 = 1.

1.6 Computational complexity

Computational complexity analysis is a branch of computer science that studies the amount

of resources needed to run a particular algorithm. An excellent reference on the topic of

Eindhoven University of Technology // University of Bergen



1.6. COMPUTATIONAL COMPLEXITY 5

algorithms and (computational) complexity is [Kob98]. In this thesis, we will be interested

in two measurable quantities:

• Time complexity, i.e. the amount of time required to run the algorithm,

• Memory complexity or memory requirement, i.e. the amount of memory consumed

by the algorithm.

Although the memory requirement of an algorithm is rather easy to describe (for example,

an algorithm may require to store a particular number of bits), the time complexity is rather

hard to specify. After all, a faster computer will process an algorithm in less time than a

slower one, and we want the time complexity to measure the efficiency of the algorithm,

and not of the particular implementation or hardware used. For this reason, it is customary

to express the time complexity of an algorithm as the number of elementary operations

(additions, multiplications) needed by the algorithm. This quantity is implementation and

hardware-independent, and as such is a good measure for the efficiency of an algorithm.

The size of the input to an algorithm affects both the time and memory complexities of

the algorithm: running the same algorithm on a larger instance of a problem will typically

require more operations and memory. Generally, these quantities are expressed as a func-

tion of the size n of the input, and we are especially interested in the asymptotic behavior

(i.e. for n → ∞) of algorithms. To formalize this, we introduce the O or big-O notation,

which is defined as

if f(n)/g(n) → constant as n → ∞, then f(n) = O(g(n)).

In less formal terms, O(·) only gives the most dominant term(s) of an expression, and disre-

gards scalar multiplications and lower order terms. For example, the polynomial

f(n) = 3n3 + 2n + 1

in big-O notation is O(n3). Alternatively, we may state that f is in the order of n3 or even

that f is approximately n3. Indeed, the difference between f and n3 approaches zero as n

approaches ∞.

An algorithm that has time complexity O(nc) for some c > 1 is said to be polynomial.

Some additional terminology is in Table 1.1, where c > 1 is a constant. Each entry increases

faster (for increasing n) than the entries above it, so of these examples an exponential al-

gorithm is the least efficient. In practice, any algorithm that has a time complexity that is

Notation Name

O(1) Constant

O(log n) Logarithmic

O(n) Linear

O(nc) Polynomial

O(cn) Exponential

Table 1.1: Big-O notation.

polynomial or less is considered efficient. However, many algebraic attacks (cf. 2.2) involve

exponential algorithms, which makes them impractical (unless the value of n is kept small).

Note that Table 1.1 is not complete, e.g. there are algorithms that behave worse than

polynomial but better than exponential, etc. We will return to the concept of complexity in

Section 2.3.

Eindhoven University of Technology // University of Bergen



6



2

Algebraic cryptanalysis

The purpose of this chapter is to give a brief introduction into the concepts of cryptography

and in particular algebraic attacks on block ciphers, as well as a general description of a few

currently known and studied attacks.

2.1 Symmetric cryptography

Cryptography is the study of the design and analysis of systems that enable its users to

exchange information with a certain degree of confidentiality or authenticity. A method to

achieve this is by using a symmetric cryptographic system (or cryptosystem), in which the

involved parties use a pre-shared secret (the encryption key) to mask their messages using a

process called encryption. In arguably cryptography’s most influential paper [Sha49], Shan-

non suggested the following model for a general secrecy system, which basically describes

our notion of a symmetric cryptosystem.

message
source

message

M

encipherer

TK

key
source

key
K K

cryptogram

E E

E

decipherer

T−1
K M

enemy
cryptanalyst

Figure 2.1: Shannon’s model of a “secrecy system”.
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8 ALGEBRAIC CRYPTANALYSIS

In this model, the message M is transformed into a seemingly random cryptogram E

by a process called the encipherer TK , which has the pre-shared key K as additional input.

The cryptogram is then sent to the intended recipient, where the channel used for com-

munication is possibly insecure. This means that it is assumed that not only the intended

recipient but also an external party (called an enemy cryptanalyst) can intercept E. The

received cryptogram can then be translated into the original message M by an operation

T−1
K called the decipherer, which basically is the inverse of TK for a fixed key K. Since

only the intended recipient has access to K (it is important that K is kept secret by both

parties), no enemy cryptanalyst should be able to retrieve M from E. This form of cryptog-

raphy, in which the key used for encryption is equal to the key used for decryption, is called

symmetric cryptography and will be the focus of this thesis.

It was already recognized by Shannon that for fixed K, the encipherer TK acts as a func-

tion from the set of all possible messages to all possible cryptograms, and that the particular

choice for this function mainly determines the level of security of the system: if TK is not

able to mask the message M sufficiently, an enemy cryptanalyst might be able to, upon re-

ception of a cryptogram, retrieve the corresponding message without knowing the key, by

a process called cryptanalysis. If the enemy succeeds, the system is said to be broken. In

principle, if the number of possible keys is finite, as is often the case in practice, an enemy

can break any system by trying all possible keys (this method is referred to as an exhaustive

search or brute force attack). However, if the number of possibilities is sufficiently large,

this will take an undesirable amount of time. This gives a requirement on the function TK ,

which Shannon further generalized by stating that

“we may construct our cipher in such a way that breaking it is equivalent to (or

requires at some point in the process) the solution of some problem known to be

laborious”.

The problem he suggested is the simultaneous solution of a large number of equations1 in

a large number of variables, cf. 2.3. So, if we are able to describe the cryptosystem as a huge

equation system, whose solution implies a break of the system, the difficulty of solving

these equations should ensure the security of the cryptosystem.

Shannon’s model is still used, although the nomenclature has been slightly adjusted:

we will use

• plaintext p instead of message M ,

• ciphertext c instead of cryptogram E,

• encryption EK instead of encipherer TK ,

• decryption DK instead of decipherer T−1
K ,

• adversary or attacker instead of enemy cryptanalyst,

• cryptosystem or cipher instead of secrecy system.

The description of a particular process of cryptanalysis may also be referred to as an attack.

Note that for decryption to be possible, it should hold for any K that if c = EK(p), then

p = DK(c).

1Shannon mentions these equations should be “complex”, which is to be interpreted as hard or difficult.

Eindhoven University of Technology // University of Bergen



2.2. ALGEBRAIC ANALYSIS 9

2.2 Algebraic analysis

Where most pre-Shannon ciphers use either basic pen-and-paper or mechanical techniques,

modern ciphers are typically implemented using integrated circuits, i.e. chips and comput-

ers. Such ciphers use operations defined in some finite field Fq , usually F2 or one of its

related fields, to translate a plaintext p into a seemingly random ciphertext c using a secret

key K. In practice, the plain- and ciphertext and the key are represented as vectors over the

finite field Fq, and encryption can be viewed as a transformation from a particular vector

space to another (or itself). Typically, this transformation is non-linear, which makes it hard

to reverse without any further knowledge, e.g. the encryption key.

Clearly, any attack will benefit from more known information. For example, if only a

received ciphertext is given (the so-called ciphertext only setting), it is very unlikely that

an attacker will be able to choose between all possible plaintexts. Another possibility is

that an attacker has access to one or more plaintexts and the ciphertexts that were obtained

by encrypting these plaintexts using the same encryption key. This is the known plaintext

setting, and it will be assumed from now on, unless indicated otherwise. In this case, most

encryption and decryption processes can be described by a system of equations in many

variables (a so-called multivariate equation system), in which the encryption key acts as

one of the variables and the plain-/ciphertext pairs are known constants. An extension of

the known plaintext setting is the chosen plaintext setting, in which the attacker can even

generate the corresponding ciphertext for any desired plaintext.

If the multivariate equation system describing a cipher is solved, the encryption key

can be extracted from the solution and the cipher is essentially broken. In terms of Shan-

non’s theory, this is an attack on the cryptosystem, which will be referred to as an algebraic

attack: to (attempt to) solve a multivariate equation system that represents a cipher. Most

modern ciphers require a huge number of (typically quadratic) equations and variables to

be described by such a system. For example, the 128-bit version of AES (Section 5.4) can

be represented by 8,000 quadratic equations in 1,600 variables over F2. Since the systems

describing a cipher typically contain a lot of non-linear equations in a lot of variables (as

described by Shannon’s early requirement for a cipher), which are hard to solve in compar-

ison to linear equations, the search for an efficient algorithm for solving these systems is a

topic of cryptographic research.

So far, several proposals have been made, but only a few have led to successful and

practical attacks on hardly used cryptosystems. It seems that cipher designers are careful

enough to make it impossible (or at least very difficult) to describe their ciphers as a system

of easily solvable equations. On the other hand, cryptanalysts seem to believe that cipher

designers (unknowingly) rely on the intractability of multivariate non-linear equation sys-

tems a bit too much, and that the equation system describing a typical cipher is actually

easier to solve than a system that is randomly generated. We will formally determine how

difficult solving a random multivariate equation system is.

2.3 Complexity of multivariate equations

As noted, it is not unlikely that the multivariate equation system describing a typical cipher

is not as complex as a random system. A natural question is then how complex a truly

random system is, and we will build a common framework to formalize this and explain its

consequences.

Eindhoven University of Technology // University of Bergen



10 ALGEBRAIC CRYPTANALYSIS

2.3.1 General definitions

We start this section with some definitions.

Definition 2.1. A decision problem is a problem P that can be answered by either “yes” or “no”.

Definition 2.2. The class NP of non-deterministic polynomial time problems is defined as the set of

all decision problems P to which a yes-answer and a corresponding proof can be provided by a non-

deterministic machine in a number of steps that is bounded by a polynomial in the size of the input

to P (so-called polynomial time). In case the answer is yes, the proof can be verified in polynomial

time by a deterministic machine. The name NP stands for Non-deterministic Polynomial time.

Example 2.1. A classic example of an NP-problem is the problem of determining whether

a given natural number is either prime or composite. In this case, although it was believed

impossible for many years, this problem can be solved in polynomial time by a deterministic

machine [AKS04], so it is actually in the subset P of NP that contains all problems that can

be solved in polynomial time by a deterministic machine.

In less formal terms, the set NP contains all decision problems to which the proof of

a yes-answer can be efficiently verified. Note that the answer is not necessarily efficiently

determined; in case it is the problem is in the subset P . One of the most notorious open

questions in mathematics is whether P = NP .

Definition 2.3. A decision problem P1 ∈ NP can be reduced to another decision problem P2 ∈ NP
if, given a solution to P2, a solution to P1 can be determined in polynomial time. We also say that

P1 reduces to P2.

In other words, if P1 can be reduced to P2, it is not harder to solve P1 than it is to solve P2.

Definition 2.4. A decision problem P is called NP-hard if every problem in NP reduces to P . If

also P ∈ NP , the problem is called NP-complete.

So, if an algorithm that solves a particular NP-complete problem in polynomial time (on

a deterministic machine) is ever found, each problem in NP can be solved in polynomial

time. In that case, the P = NP question can be answered ‘yes’.

In practice, NP-hardness is proved by reducing a problem that is known to be NP-

complete (for instance one of the many problems described in [GJ79]) to the studied prob-

lem. The NP-complete problems are considered to be among the most difficult problems,

and they are often encountered in algebraic attacks on ciphers.

2.3.2 SAT

An important decision problem in algebraic cryptanalysis is the Boolean satisfiability prob-

lem SAT. Boolean variables are variables whose value is either “true” (often denoted by 1)

or “false” (denoted by 0). We can then combine several Boolean variables by using the con-

junction AND denoted by ∧, the disjunction OR denoted by ∨ and the complement NOT(x)

denoted by x. If a formula contains only OR and NOT operators, it is called a clause; a

variable or a negation of a variable is a literal. If several clauses are combined using AND

operators, the resulting Boolean formula is said to be in CNF (Conjunctive Normal Form).

Eindhoven University of Technology // University of Bergen
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Definition 2.5. The satisfiability problem (or SAT) is the problem of, given a Boolean formula in

CNF, determining whether there exists an assignment of values to the variables such that the formula

holds. If the number of literals per clause is exactly k, we may also refer to the problem as k-SAT.

Example 2.2. Consider the Boolean formula

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4),

which is clearly in CNF. It contains three clauses, and the number of literals per clause is

three. Hence, this induces an instance of 3-SAT. The answer in this case is yes, which can be

verified by using e.g. (x1, x2, x3, x4) = (0, 0, 0, 1).

A known result in complexity theory is the following theorem, which is due to Cook

[Coo71] and is often referred to as Cook’s theorem or the Cook-Levin theorem. We will not

formally prove it here, the interested reader is referred to [GJ79] or Cook’s original paper.

Theorem 2.1 (Cook’s theorem). The Boolean satisfiability problem SAT is NP-complete.

In other words, every instance of a problem in NP can be transformed into a SAT-instance

in polynomial time. Also, SAT itself is in NP .

Following Definition 2.4, we can then prove the following theorem about 3-SAT.

Lemma 2.2. 3-SAT is NP-complete.

Proof. Given an instance of SAT, i.e. a Boolean formula in CNF, we can replace each clause

by a combination of several clauses of three literals by applying these simple steps to each

of the clauses in the original formula:

• If the clause contains three literals, do nothing.

• If the clause contains more than three literals, say (x1 ∨ . . . ∨ xt) for t ≥ 4, write the

clause as the combination (x1 ∨x2 ∨ y1)∧ (y1 ∨x3 ∨ y2)∧ . . .∧ (yt−3 ∨xt−1 ∨xt), where

y1, . . . , yt−3 are new variables.

• If the clause contains one or two literals, pad it by adding variables that are forced to

have the value false. For example, the clause (x1 ∨ x2) can be replaced by

(x1 ∨ x2 ∨ y) ∧ (y ∨ y ∨ y).

To satisfy the second clause, the value of y must be set to false, canceling its effect on

the first clause.

After all clauses have been checked, each of them has been replaced by an equivalent com-

bination of clauses of three literals. This implies that the resulting formula (which is clearly

in CNF) consists of three-literal clauses and is satisfied if and only if the original formula is

satisfied. This reduction from SAT to 3-SAT can be performed in polynomial time. Since 3-

SAT is a special case of SAT which is in NP , so is 3-SAT. Actually, SAT is even NP-complete

by Cook’s theorem, which completes the proof.

2.3.3 Multivariate quadratic equation systems

As mentioned earlier, many modern ciphers can be described by a multivariate quadratic

equation system over a finite field. We are now ready to prove the following statement, that

supports Shannon’s requirement. The proof is due to Garey and Johnson in [GJ79, pp. 251].
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Theorem 2.3. The problem MQ of determining whether an arbitrary multivariate quadratic

equation system over a finite field Fq can be solved is NP-complete.

Proof. First, let q = 2. Consider an instance of 3-SAT, i.e. a Boolean formula in which each

clause contains precisely three literals. We prove the theorem by reducing an instance of

3-SAT to an instance of MQ . To achieve this, we replace the logical operators and values

with their algebraic counterparts: AND by multiplication, OR by addition, true by 1 and

false by 0. Note that then x = (1 − x). Without loss of generality, we can assume that each

clause of the given Boolean function is of the form

(xi1 ∨ xi2 ∨ xi3), (2.1)

which translates to the sum

xi1 + xi2 + xi3 = 1. (2.2)

Although a solution to (2.2) is a solution to (2.1), the converse is not necessarily true: if

exactly two of the variables are set to 1, their sum equals 0, but the clause is satisfied. To

include all possibilities, we replace each clause by the equations







xi1 + xi2 + xi3 = xi4

xi1xi2 + xi2xi3 + xi1xi3 = xi5

xi4 + xi5 + xi4xi5 = 1.

(2.3)

It is an easy task to verify that a solution to (2.1) is a solution to (2.3) and vice versa.

For the general field Fq , it suffices to force the values of the variables to be either 0 or 1.

This is accomplished by adding the equations

x2
i − xi = 0

for each variable xi. Then, we have determined an instance of MQ that corresponds to the

initial instance of 3-SAT, which proves that MQ is NP-hard. The fact that MQ ∈ NP is

trivial (a provided solution can be easily checked), which concludes the proof.

Note that the straightforward way to prove a yes-answer to MQ is to provide the actual

solution to the system of equations, which can then be easily checked. At this moment this

is the only known proof, and we can only solve MQ if we solve the system. For this reason,

the problem of actually solving a multivariate quadratic equation system is also referred to

as MQ . Formally, this is no longer a decision problem, but it is equivalent to one.

Recall Shannon’s requirement that a cipher should employ an encryption function EK(p)

that can be described using a large number of “complex” equations in a large number of

variables. Theorem 2.3 suggests that such a system is indeed very hard to solve in the av-

erage case, provided the equations are quadratic. However, the fact that decryption must

be possible implies that the system of equations describing a particular cipher is not ran-

dom at all: there has to be some structure that is exploited by the decryption function DK .

Hence, the MQ-instances that describe ciphers contain some additional information that

might imply that they are easier to solve than fully random systems. It is this important

observation that motivates cryptographic researchers to look for algorithms that find this

hidden structure (which is usually not an easy task) and use it to break the corresponding

cryptosystem.
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Example 2.3. As an example that not every multivariate quadratic equation system is diffi-

cult, we note that it is known that 2-SAT is in P . Then, a clause of the general form (xi1 ∨xi2)

is described by the single equation

xi1 + xi2 + xi1xi2 = 1

over F2. But, since 2-SAT can be solved in polynomial time, a system of equations of this form

is not NP-complete and can be easily solved. Hence, a cipher that can be described using

only this type of equation may not be considered secure, as it does not satisfy Shannon’s

requirement.

2.4 Recent attacks

This section will describe some of the techniques that are currently used to solve MQ and

related problems for systems representing ciphers. References are included for readers that

are interested in the details of a specific attack. These and further examples are also de-

scribed in Sections 5.3.2 and 5.4.2

2.4.1 XL

A basic algebraic approach to MQ is the XL-attack suggested by Courtois et al. in 2000

[CKP00]. In XL (eXtended Linearization), the system of equations is expanded by multiply-

ing each of the equations by all monomials (a monomial is the product of certain variables,

e.g. x1x3x9) of a certain degree. The higher this degree, the higher the number of equations,

but the resulting system may actually become more efficiently solvable.

The system is then viewed as a matrix, in which each row represents an equation and

each column contains the coefficients corresponding to a given monomial. This matrix is

then reduced to RREF using Gaussian elimination. If the matrix is approximately square,

the solution to the initial problem can then be easily extracted. It was estimated by the

authors that this attack is considerably slower than the brute force attack when applied to

ciphers such as AES (cf. 5.4), making it impractical. However, further research led to an

improved version of the algorithm called XSL.

2.4.2 XSL

One of the main drawbacks of XL is the fact that each equation is multiplied by all mono-

mials of a given degree. In that case, the number of equations explodes quite rapidly, while

some of the new equations turn out to be more helpful than others. A refinement of XL,

called XSL (eXtended Sparse Linearization) [CP02], carefully selects which equations are

to be added to the equation system, thus trying to keep the number of equations within

reasonable bounds. Several procedures for selecting these new equations have been stud-

ied, and from the most optimistic results the authors conclude that their technique “might

be able” to break AES. However, the original paper and therefore the authors’ claim is be-

lieved to be flawed [Die04]; in practice the algorithm does not behave as promised, and it

may even occur that the resulting system can not be solved.
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2.4.3 Gröbner basis techniques

A different approach is the use of Gröbner bases [BW93] to solve MQ . Although it goes

beyond the scope of this report to properly describe this theory, we mention that a large

portion of promising algebraic attacks involves the use of an algorithm for determining a

Gröbner basis. At this moment, Faugère’s F5 is considered one of the fastest algorithms;

it was used to break an instance of the cipher HFE (Hidden Field Equations) in just over

48 hours on a standard computer [FJ03]. In this experiment, 80 quadratic equations in 80

variables over F2 were solved by adding new equations, representing the system as a huge

matrix and converting this matrix into a simple form, much like the XL technique. As an

illustration of the magnitude of this problem, the largest matrix encountered when breaking

HFE had dimensions 307, 126 × 1, 667, 009, which would require about 60 GB to be stored

(if no compression is applied).

It is suggested that XL is closely related to some known Gröbner basis attacks [SKI04],

which may imply that the attacks are equivalent.

2.4.4 SAT-solvers

The previous attacks are all focused on solving a multivariate equation system that de-

scribes a cipher. However, an alternative description of a cipher is as an instance of k-SAT,

as is exploited in the proof of Theorem 2.3. A different attack is then to solve the instance

of k-SAT that describes a cipher, and many algorithms (called SAT-solvers) have been sug-

gested. Most of these algorithms traverse the space of all possible solutions in an “optimal”

way, often based on the Davis-Putnam algorithm [DP60]. The same motivation as for the

MQ-solvers applies: although it is believed that random k-SAT is very difficult, the instance

describing a typical cipher may be much less complex.

A recent SAT-solver that has drawn quite some interest, mainly due to its elegant de-

scription, is MiniSAT [ES03]. The behavior of k-SAT-solvers for small values of k is studied

in [Iwa04]. Note that strictly speaking, this is a logical and not an algebraic attack as it is

not fully based on the theory of algebra. However, since the problems SAT and MQ are so

closely linked, this type of attack is commonly referred to as algebraic nonetheless.

In this thesis, we present a new type of equation that can be used to attack a large class of

cryptosystems that satisfy a certain requirement. These equations have some linear proper-

ties, which as we will see does not necessarily imply that they are easy to work with. We

present a possible algorithm for solving a system of such equations and study its behav-

ior when applied to many different systems of equations. When compared to some known

techniques, we believe that this new approach makes an interesting subject for future re-

search.
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Multiple right-hand side equations

This section will introduce multiple right-hand side equations and describe a general al-

gorithm for solving them. Details of a particular implementation of this algorithm can be

found in Chapter 4.

3.1 Systems of algebraic equations

Let X = {x1, . . . , xn} be a set of ordered variables with values in Fq. Let Xi ⊂ X with

|Xi| = ki ≤ k for i = 1, . . . ,M and some k < n. Further, let fi : F
ki
q → Fq be functions with

variables in Xi (given as multivariate polynomials and/or explicitly by means of function

tables). Consider a system of M algebraic equations

f1(X1) = 0, . . . , fM (XM ) = 0 (3.1)

whose solution set is defined as

Ω = {X ∈ F
n
q | fi(Xi) = 0 for all i = 1, . . . ,M}.

If q = 2, the variables and equations are called Boolean. As mentioned before, such a system

may fully represent a particular cipher.

Although there are numerous methods to solve such systems, this section will focus on

the approach suggested by Raddum and Semaev in [RS06, Rad04] and introduced indepen-

dently by Zakrevskij and Vasilkova in [ZV00]. Their suggestion is not to use the functions

fi explicitly, but to manipulate their individual solutions called configurations:

Definition 3.1. A configuration for an equation f(X) is an assignment of values to the variables

X such that f(X) = 0.

Now, in order to extract a solution for Equation (3.1), each function fi is represented by its

corresponding symbol Si := Sfi
as defined below.

Definition 3.2. A symbol Sf = (X,L) corresponding to a function f consists of an ordered set of

variables X = X(Sf ) and a list L = L(Sf ) of all configurations for f(X).

The set Li = L(Si) is commonly referred to as the (algebraic) variety of fi in F
ki
q [BW93,

pp. 312].
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Without using the explicit form of fi, the list L(Si) of configurations can only be com-

piled by an exhaustive search. So, for this approach to be practical it is required that the

number of variables per equation, i.e. k, is relatively small. For equation systems describing

block ciphers this is generally the case.

Example 3.1. Consider the functions fi : F
4
2 → F2 given by

f1(x1, x2, x3, x4) = x1x2 + x2x4 + 1,

f2(x1, x2, x3, x4) = x1 + x1x3x4.

We may then attempt to solve the joint problem of finding a simultaneous root of f1 and f2

directly (e.g. by using a Gröbner-basis method), but instead we describe the equations by

their corresponding symbols:

X(S1) = (x1, x2, x4),

X(S2) = (x1, x3, x4),

L(S1) = {(0, 1, 1), (1, 1, 0)},

L(S2) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 1)}.

It is important to note the variables that are present in these configuration lists. For instance,

although (0, 1, 1) is an element of both configuration lists, it represents different variables,

indicated by X(S1) and X(S2), respectively.

Now, from the first symbol it follows that any simultaneous root of f1 and f2 must satisfy

x1 + x4 = 1 (in this particular case, a condition in the form of a linear equation can be

extracted, but this is not generally true). Now, any configuration in L(S2) that does not

satisfy this condition can not contribute to a solution of the joint problem, since it contradicts

the first symbol, and may therefore be disregarded. In this case, all but the second and fourth

elements of L(S2) can be deleted.

After this step the configuration lists are

L(S1) = {(0, 1, 1), (1, 1, 0)},

L(S2) = {(0, 0, 1), (0, 1, 1)}.

Obviously, the sets of involved variables X(S1) and X(S2) remain unchanged. Then, the

second element of L(S1) can be deleted, since it coincides with no configuration for S2. Fi-

nally, no more configurations can be deleted; the symbols are said to agree (cf. Section 3.3.2).

Indeed, the final configuration lists correspond directly to the solutions of the joint problem:

L(S1) = {(0, 1, 1)},

L(S2) = {(0, 0, 1), (0, 1, 1)},

which correspond to the joint solutions (0, 1, 0, 1) and (0, 1, 1, 1).

The example illustrates the main idea behind the (pairwise) agreeing procedure de-

scribed in [RS06]: to sequentially delete configurations in Si that do not coincide with any

of the configurations in Sj . If the joint problem has a unique solution (which is highly prob-

able for the equation systems that describe the ciphers we will consider, cf. Chapter 5), this

solution can be easily extracted if each configuration list has exactly one element. When

more than two symbols are considered, configurations can be deleted by agreeing each pair

of symbols until all pairs agree. If at any point in the algorithm one of the symbols con-

tains an empty configuration list, no solution exists. In any other case, no conclusion can be
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drawn and another procedure has to be applied to solve the system. The straightforward

procedure to achieve this is to “join” together two symbols by combining their configuration

and variable lists into larger lists, effectively considering a new symbol. This new symbol

then replaces the two original ones, and the agreeing procedure can be applied again to

possibly delete obsolete configurations, etc.

An in-depth analysis of this approach for solving sparse (i.e. depending on a low num-

ber of variables) algebraic equation systems can be found in [Sem07]. This thesis will, how-

ever, focus on a variant that uses multiple right-hand side equations, as proposed in [RS07].

Although there is a simple correspondence between both problem descriptions (i.e. given

an algebraic equation f(X) = 0 and a particular solution X̄ , there exists a MRHS equation

S to which X̄ is a solution, and vice versa, cf. 3.2.1), the analysis of the latter is a bit more

intuitive as it exploits known results from linear algebra. For example, we will be able to

define a very elegant procedure for agreeing a pair of multiple right-hand side equations.

3.2 Definition

Let q be a prime power and let X be a set of n variables, represented as a column vector. A

multiple right-hand side equation is defined as follows:

Definition 3.3. An equation of the form

S : AX = [L],

with A a k ×n matrix of full rank and L a set of s column vectors of length k, represented as a k × s

matrix, is a multiple right-hand side (MRHS) equation. Its solution set is given by

ΩS =
s
⋃

j=1

{X ∈ F
n
q | AX = lj} (3.2a)

= {X ∈ F
n
q | AX ∈ L}, (3.2b)

where l1, . . . , ls (the “right-hand sides”) are the elements of L. The matrix A may be referred to as

the coefficient matrix of S.

Note that the matrix L is written in square brackets to avoid possible confusion with a clas-

sical matrix (i.e. L does not represent a linear transformation in any sense). It is important

to realize that it is an ordered set of columns, merely represented as a matrix. We will, how-

ever, refer to an element of L as a column of L, as in Equation (3.2b), and denote it as, for

instance, L1. If s = 1, an ordinary system of linear equations is obtained, and the brackets

may be omitted. For completeness, we stress that there are three types of equations used in

this thesis.

• Algebraic equations, i.e. equations of the form f(X) = 0, where f is an algebraic

function.

• Linear equations, which are algebraic equations for which f is a linear function.

• MRHS equations, as in Definition 3.3.

Note that linear equations are considerably easier to solve than the other two types.

We will alternatively refer to a MRHS equation S : AX = [L] as a symbol. Note that if

each row of A has exactly one non-zero element, the corresponding MRHS equation can be
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regarded as a symbol as described in Definition 3.2. Unless stated otherwise, the dimensions

of matrix A are k × n, with k ≤ n. The dimensions of L are k × s. Also we will assume that

elements of L have multiplicity 1 (i.e. L consists of unique elements), which is reasonable

since a duplicate element does not contain any additional information. Similarly, note that

the coefficient matrix A has full rank, so the linear system AX = l can be solved for any

column l ∈ L.

3.2.1 MRHS vs. algebraic equations

Two equations are said to be equivalent if their solution sets are equal. As mentioned, given

an algebraic equation we can determine an equivalent MRHS equation, and vice versa. To

prove this, we introduce, given a function f : F
n
q −→ Fq , the set G(f) as

G(f) = {b ∈ F
n
q | f(X + b) = f(X) for all X ∈ F

n
q }.

It is an easy exercise to check that G(f) is actually a subspace of F
n
q , for which we have

to ensure that it is closed under addition and scalar multiplication, cf. Section 1.2:

• Let b1, b2 ∈ G(f), then for all X ∈ F
n
q it holds that

f(X + b1 + b2) = f(X + b1) = f(X),

where the first equality holds since b2 ∈ G(f) and X + b1 ∈ F
n
q .

• Let b ∈ G(f) and α ∈ Fq, then for all X ∈ F
n
q it holds that

f(X + αb) = f(X + (α − 1)b + b)

= f(X + (α − 1)b)

= f(X + (α − 2)b)

...

= f(X + b)

= f(X).

Because it is a space, G(f) has a dimension, say m ≤ n, and a basis {b1, . . . , bm}. Let

{a1, . . . , ak} be an independent set of k = n − m vectors that satisfy 〈ai, bj〉 = 0 for all i and

j. Denote the k × n matrix whose rows are a1, . . . , ak by A, so for all j it holds that Abj = 0.

Finally, define g as

g(Y ) = f(X)

for Y = AX . We then prove the following statement

Lemma 3.1. The function g is properly defined and f(X) = g(AX).

Proof. Let Y ∈ F
k
q and consider g(Y ). Since the matrix A possibly consists of more columns

than rows, there may exist X1 and X2, with X1 6= X2, such that

AX1 = AX2 = Y,

in which case it is not clear whether g(Y ) = f(X1) or f(X2). So, for arbitrary matrices A,

the function g is not properly defined. However, this particular choice of A implies that

f(X1) = f(X2), which ensures that g is a function.
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To see this, consider distinct X1 and X2 for which AX1 = AX2, and observe that

AX1 = AX2 ⇔ A(X1 − X2) = 0

⇔ X1 − X2 ∈ G(f),

since G(f) is the space whose elements b have the property that Ab = 0 (it is called the

nullspace of A). But then

f(X1) = f(X1 + X2 − X2) = f(X2 + (X1 − X2)) = f(X2),

which finishes the proof, since f(X) = g(AX) is obvious.

Let us look at this lemma a bit closer. It states that for any not necessarily linear function

f in n variables, we can determine a function g in k ≤ n variables and a linear function

A : F
n
q → F

k
q (defined by A(X) = AX) such that f(X) = g(A(X)). So if k < n, instead of

processing the function f directly, we may split this function into a linear function A and a

non-linear function g in less variables than f , and focus on these functions instead. If the

described method for constructing A and g is used, it is ensured that the number of variables

in g is minimal. Splitting a function into a linear part and a non-linear part is illustrated in

Figure 3.1.

F
n
q

F
k
q

Fq

f

gA

Figure 3.1: Splitting a function f .

Essentially, Lemma 3.1 describes the approach we suggest in this thesis. Instead of an-

alyzing ciphers using a representation in (mostly non-linear) algebraic equations, we split

these equations into a linear part (the coefficient matrices) and a non-linear part (the right-

hand side matrices) and analyze these alternative functions. In practice, as we will describe

in Section 5.1, the coefficient and right-hand side matrices that represent ciphers can be

easily determined without using this inefficient construction, i.e. we do not need the repre-

sentation in algebraic equations to construct the corresponding MRHS equations.

We can now prove the following theorems that link algebraic equations to MRHS equations

and vice versa.

Theorem 3.2. Given a function f : F
n
q → Fq , there exists a symbol S that is equivalent to the

equation f(X) = 0.

Proof. A trivial equivalent symbol is obtained if we use the identity matrix In as the coeffi-

cient matrix A and the matrix consisting of the elements X ∈ F
n
q that satisfy f(X) = 0 as

the right-hand side matrix L. However, this representation has n rows. If we apply Lemma

3.1, we may find a more efficient representation with k < n rows.
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Following the described construction, we determine the space G(f) and its dimension

m. If m = n the trivial representation is optimal: we can not describe the equation using less

rows. But if m < n, we determine the matrix A and the function g. Then, let L be the variety

of the function g, i.e. the set consisting of all vectors Y ∈ F
k
q for which g(Y ) = 0. Then it

holds that f(X) = 0 if and only if AX = [L]. This follows from the simple observation that

f(X) = 0 ⇔ g(AX) = 0

⇔ AX ∈ L

⇔ AX = [L],

where the last equivalence follows from Definition 3.3. Note that this representation has

only k rows. This equivalence is illustrated in Example 3.2.

Theorem 3.3. Given an MRHS equation S : AX = [L] there exists an algebraic function

f : F
n
q → Fq such that the equation f(X) = 0 is equivalent to S.

Proof. Consider the MRHS equation AX = [L]. Define the algebraic function g : F
k
q → Fq

by means of a function table:

g(Y ) =

{

0 if Y is a column of L,

1 otherwise,

and define the function f : F
n
q → Fq as

f(X) = g(AX).

Then f(X) = 0 is an algebraic equation in n variables, and any solution to f(X) = 0 is a

solution to S and vice versa. The proof of this statement is identical to that in the proof of

Theorem 3.2.

In fact, we can set g(Y ) equal to any non-zero element of Fq in case Y is not a column of

L, and the resulting function will still be equivalent to the symbol S. This implies that the

construction for transforming a symbol into an algebraic equation is not generally bijective,

unless q = 2. Similarly, several MRHS equations correspond to a given algebraic equation,

depending on the particular choice for the matrix A.

Example 3.2. Following (for q = 2) the constructions described in the proof of Theorem 3.2,

the function

f2(x1, x3, x4) = x1 + x1x3x4

of Example 3.1 corresponds to the trivial MRHS equation given by

S
′
2 :









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









X =









0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1 0 1

0 0 1 1 0 0 1 1 1 1

0 1 0 1 0 1 0 1 1 1









in the four variables X = (x1, x2, x3, x4). But, it is also equivalent to the smaller symbol

S2 :





0 0 0 1

0 0 1 0

1 0 0 0



X =





0 0 1 1 1

0 1 0 1 1

0 0 0 0 1



 .
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The all-zero column in the coefficient matrix indicates that the corresponding algebraic equa-

tion is independent of x2.

Similarly, if

f1(x1, x2, x4) = x1x2 + x2x4 + 1

from Example 3.1 is considered, the resulting MRHS equation has a unique right-hand side:

S1 :

(

1 0 0 1

0 1 0 0

)

X =

[

1

1

]

,

in other words the linear equations x1 + x4 = 1 and x2 = 1 are obtained. Note that this

symbol corresponds to the factorization of f1 described by

f1(x1, x2, x4) = x2(x1 + x4) + 1.

Analogously, the procedure described in the proof of Theorem 3.3 can be used to determine

the algebraic equation that corresponds to the MRHS equations S1 and S2. Since q = 2, these

algebraic equations are uniquely defined and we obtain the function tables for f1 and f2,

respectively.

Since the number of variables in these cases is very low, the equivalences are easily verified.

3.3 Systems of MRHS equations

From Section 1.5, we recall that a system of (ordinary) linear equations is consistent if at

least one simultaneous solution exists. Consider a symbol S : AX = [L]. Since we have

assumed that A has full rank, the system AX = l is consistent for all l ∈ L. Also, if the

rank of A is denoted by ρ(A) and s = 1, the symbol S (which, in this case, is a system of

linear equations) has qn−ρ(A) solutions. Hence, for a general number of s right-hand sides,

the number of solutions to S is given by

| ΩS |= sqn−ρ(A) = sqn−k,

which can be a very large number. However, if we consider M symbols simultaneously, i.e.

the system

S1 : A1X = [L1], . . . , SM : AMX = [LM ] (3.3)

whose solution set is given by

Ω =

M
⋂

i=1

ΩSi
,

the number of solutions will be considerably lower. In fact, as mentioned before, for equa-

tion systems derived from ciphers it is reasonable to assume that there is a unique solution,

in which case | Ω |= 1. From now on, this assumption shall be made without mention.

To extract the solution to (3.3), this section will introduce four procedures to manipulate

a system of MRHS equations. Some suggested implementations of these procedures and an

analysis of their corresponding time and memory requirements can be found in Chapter 4.

Some words on notation: from now on, the dimensions of Ai are ki × n, and the dimen-

sions of Li are ki × si. Both matrices contain elements of Fq . The number of rows ki is

upper-bounded by k < n. Since Li contains unique elements, the number of right-hand

sides si is at most qki ≤ qk.
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3.3.1 Procedure 1: Extracting linear equations

In order to solve a system of symbols in n variables, the goal is to obtain an equivalent

system of n independent linear equations. Assuming a unique solution exists, this solution

can then easily be found by solving this extracted system of linear equations. Obviously, if

any symbol Si contains only one right-hand side, ρ(Ai) = ki linear equations can be directly

read from the symbol as illustrated by Example 3.2. But there is another method to extract

less obvious linear equations from a single symbol.

Consider symbol Si : AiX = [Li]. From Equation (3.2a) it follows that a symbol can

be solved by subsequently solving the systems of linear equations AiX = Ll, where l runs

through the set {1, . . . , si}. Note that for any vector t ∈ F
k
q

AiX = Ll ⇒ tAiX = tLl

which can be translated into (using Definitions 3.2a and 3.2b)

AiX = [Li] ⇒ tAiX = [tLi]. (3.4)

We will now use the following definition.

Definition 3.4. The k-row matrix A is said to generate the vector v if there exists a non-zero t ∈ F
k
q

such that tA = v. Alternatively, v is said to be generated by A.

Now, let X be a solution to the symbol Si and assume Li generates the vector r · 1 =

(r, . . . , r), with r ∈ Fq . Then there exists a t ∈ F
k
q\{0} such that

tAiX = [r · 1]

by Equation (3.4), which implies the linear equation tAiX = r. This linear equation forms a

necessary, but not generally sufficient condition for X (cf. Example 3.3).

Note that several independent equations may be extracted satisfying r = 0 (i.e. homo-

geneous equations), but that extracting one equation for r 6= 0 suffices (a non-homogeneous

equation). Every non-homogeneous equation (with arbitrary r) can then be expressed as a

linear combination of the homogeneous equations and the selected non-homogeneous one.

If ki ≥ si, at least one linear equation can be extracted, since in that case 0 is generated by

Li.

The generation of all-r vectors can be extended to formulate a procedure that is more

probabilistic. This is discussed in Section 6.2.1.

Example 3.3. Consider the symbol over F2 given by

Si :









1 0 1 1 1

0 0 0 0 1

1 0 0 1 1

1 0 0 0 1









X =









0 0 1

1 0 0

0 0 1

0 1 0









and note that Li generates both 0 (for t1 = (1, 0, 1, 0)) and 1 (for t2 = (1, 1, 0, 1)). Then, by

considering t1AiX and t2AiX respectively, the linear equations x3 = 0 and x3 +x4 +x5 = 1

can be extracted.

It is an easy check that all vectors (x1, . . . , x5) that satisfy Si also satisfy these linear equa-

tions. The converse, however, is not true. For instance, the vector (0, 0, 0, 0, 1) satisfies both

linear equations, but

Ai(0, 0, 0, 0, 1)T = (1, 1, 1, 1)T 6∈ Li.
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After a linear equation has been extracted, one involved variable becomes “fixed” (ei-

ther its value or its dependence on a number of other variables), so it may be disregarded.

Although there is a more direct method to implement this elimination, the method pro-

posed in this thesis uses a procedure that has not been introduced yet. Therefore, we will

return to this feature in Section 3.3.4.

3.3.2 Procedure 2: Agreeing

In Section 3.2.1 we showed the connection between MRHS and “ordinary” (algebraic) equa-

tions. Naturally, this connection extends to systems of equations, and in the introduction

to this chapter we already briefly mentioned the method for solving a system of algebraic

equations by removing all information that does not contribute to the solution of the system.

In this section, a simple yet effective MRHS-version of this method is described.

Consider a pair of symbols

Si : AiX = [Li] and Sj : AjX = [Lj ],

with 1 ≤ i, j ≤ m and i 6= j. We then define (pairwise) agreement as follows:

Definition 3.5. Two symbols Si and Sj agree if and only if

• for all l1 ∈ Li there exists an l2 ∈ Lj such that the simultaneous linear system

AiX = l1 and AjX = l2 (3.5)

is consistent, and

• for all l2 ∈ Lj there exists an l1 ∈ Li such that Equation (3.5) is consistent.

Alternatively, we say that Si and Sj are in agreement, or that Si agrees with Sj or vice versa2. In

any other case the symbols disagree or are in disagreement.

Now, suppose there exists an l1 ∈ Li such that S′
i : AiX = l1 and Sj do not agree. In

other words, there is no assignment of values to the variables X such that both S′
i and Sj

are satisfied. Then l1 can be deleted from Lj , since it does not contribute to the solution of

Equation (3.3). Similarly, any column in Lj that causes disagreement can be deleted.

The procedure of comparing two symbols while deleting columns that cause disagree-

ment forms the second procedure, called (pairwise) agreeing. Note that after deleting a

column from Li, say, there may be a third symbol Sk that no longer agrees with Si, in which

case either another column from Li or a column from Lk can be deleted. Continuing this

procedure, there may be a “chain reaction” of deleted columns. If at some point all right-

hand sides of a particular symbol have been deleted, the initial system has no solution.

Example 3.4. Consider the two symbols over F2 of Example 3.2, given by

S1 :

(

1 0 0 1

0 1 0 0

)

X =

[

1

1

]

and

S2 :





0 0 0 1

0 0 1 0

1 0 0 0



X =





0 0 1 1 1

0 1 0 1 1

0 0 0 0 1



 .

2Which is an equivalent statement, since agreement clearly is a symmetric property.
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Then S1 states that a simultaneous solution to S1 and S2 must satisfy x1 +x4 = 1 and x2 = 1.

Since S2 is independent of x2, this second linear equation will not cause the deletion of any

columns in L2, but the first equation will.

To realize this, consider S′
2 : A2X = l2 where l2 is the first column of L2. Then any solution

to S′
2 satisfies x1 = x4 = 0 and can therefore not satisfy the constraints that are induced by

S1. We can not expect to find a simultaneous solution to S1 and S′
2, and column l2 ∈ L2 can

be deleted.

It is an easy exercise to continue this process and conclude that all but the third and fourth

column of L2 can be deleted to obtain the new symbol Ŝ2, given by

Ŝ2 :





0 0 0 1

0 0 1 0

1 0 0 0



X =





1 1

0 1

0 0



 .

This implies the additional (i.e. independent of the two extracted earlier) linear equation

x1 = 0, or, alternatively, x4 = 1. Both symbols now agree, and no fourth linear equation can

be extracted. So, the solution set corresponding to the initial system S1, S2 is described by

the linear equations






x1 + x4 = 1

x2 = 1

x1 = 0

The analogy with the agreeing procedure illustrated in Example 3.1 is obvious.

Note that if Si and Sj effectively operate on disjoint variable sets (i.e. the joint coefficient

matrix
(

Ai

Aj

)

has full rank), no columns can be deleted, regardless of the contents of Li and

Lj .

If the agreeing procedure alone is not powerful enough, e.g. if there is insufficient over-

lap among the coefficient matrices or if the number of right-hand sides is simply too large,

deletions may be incited by extracting linear equations (and consequently, eliminating vari-

ables) and removing right-hand sides that do not satisfy these equations. If at any point a

linear equation is extracted that contradicts one or more equations found earlier, we con-

clude that a solution to the system does not exist.

3.3.3 Procedure 3: Gluing

In practice, the solution to Equation (3.3) can not be found by consecutively agreeing each

pair of symbols and extracting linear equations alone. In order to delete additional columns,

multiple (i.e. more than two) symbols have to be compared simultaneously to find inconsis-

tencies. The simplest way to achieve this is by joining two symbols Si and Sj into a single

new symbol Sij = Si ◦ Sj (called the gluing of Si and Sj) which contains all information

contained in both Si and Sj . So the solution set of Sij is given by

ΩSij
= ΩSi

∩ ΩSj
, (3.6)

for 1 ≤ i, j ≤ m and i 6= j. If the two symbols Si and Sj are replaced by the single symbol

Sij , agreeing the updated system

Sij , S1, . . . , Si−1, Si+1, . . . , Sj−1, Sj+1, . . . , SM

(which now contains one symbol less) may be useful. If not, another pair of symbols can be

glued to enhance deletions, etc. Since any solution to Si and Sj is a solution to the gluing
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Sij , any solution to the updated system is a solution to the initial system. Hence, no vital

information is lost by gluing.

The details of a basic gluing procedure are rather straightforward. The coefficient ma-

trix Aij of Sij is given by Aij =
(

Ai

Aj

)

. Note that there is a distinct probability that Aij

contains duplicate or, at least, linearly dependent rows, a property that will be exploited in

the detailed implementation described in Chapter 4. For now, Aij will remain in this simple,

possibly overdetermined form. The set of right-hand sides Lij is formed by concatenating

all columns of Li and Lj , so

Lij = {(li || lj) | li ∈ Li, lj ∈ Lj}.

This fully describes both symbols Si and Sj , and Equation (3.6) is easily verified. Using this

approach, the dimensions of the coefficient matrix Aij are (ki + kj)× n and the dimensions

of Lij are (ki + kj) × sisj .

However, the number of right-hand sides of Sij , denoted by sij , can be greatly reduced

by observing inconsistencies: if the joint system of linear equations described in Equa-

tion (3.5) is inconsistent for a certain l1 ∈ Li and l2 ∈ Lj , the vector (l1, l2) can be excluded

from Lij since it does not describe a common solution to Si and Sj . Hence, sij satisfies

sij ≤ sisj .

When gluing, the same restrictions as for agreeing apply: only if Aij has non-full rank

we can expect to find inconsistencies. Otherwise the number of right-hand sides will achieve

the upper bound sij = sisj . Obviously, gluing Si and Sj also agrees them: if l1 ∈ Li such

that no l2 ∈ Lj exists for which Equation (3.5) is consistent, l1 will not appear in the set of

right-hand sides of Sij and effectively is deleted. Gluing is a bit more powerful though, as

it even describes which choices of (l1, l2) result in a consistent linear system.

Example 3.5. Consider the symbols S1 and S2 introduced in Example 3.2. Then the straight-

forward gluing of S1 and S2 is given by

S12 :













1 0 0 1

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0













X =













1 1

1 1

1 1

0 1

0 0













,

from which the joint solutions to S1 and S2 can be directly extracted. Note that we effectively

glue the symbols S1 and Ŝ2 of Example 3.4.

As mentioned earlier, the fact that this coefficient matrix is overdetermined is not exploited

in this basic procedure.

It is important to realize that even though gluing produces very specific results, it is a

rather expensive procedure in terms of memory requirements and time complexity, as the

number of right-hand sides can increase drastically. In practice, gluing is only affordable if

the resulting number of right-hand sides is below some fixed threshold, mainly determined

by the available amount of system memory and desired running time. This will be further

discussed in Section 4.3.
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3.3.4 Procedure 4: Guessing and eliminating variables

If all symbols agree and gluing is too expensive (i.e. there are no two symbols whose gluing

“fits” in the available system memory), another procedure is needed to enhance deletions

of columns by the agreeing algorithm. The simplest method to achieve this is by guessing

the value of some variable(s).

In essence, guessing the values of the variables xi1 , . . . , xiN
introduces the linear equa-

tions xir
= vir

, where v = (vi1 , . . . , viN
) ∈ F

N
q are the values of the guesses3. These linear

equations can be regarded as an N -row symbol S0 with a single right-hand side v (viewed

as a column vector). In fact, this newly formed symbol can also be used to store any linear

equation that is extracted from the system. If the symbol S0 is then glued to a symbol Si,

only those columns of Li that do not contradict the linear equations contained in S0 survive.

Since s0 (the number of right-hand sides of S0) equals one, this gluing introduces an effi-

cient method for eliminating variables, once a linear equation has been extracted (cf. 3.3.1).

In practice, we only need to glue new rows of S0, which further improves the efficiency of

this elimination procedure.

Using the symbol S0, an algorithm for solving Equation (3.3) should run until one of

the following conditions is true:

• C1. One of the symbols S1, . . . , SM has no right-hand sides;

• C2. An extracted linear equation contradicts one or more of the equations

induced by S0;

• C3. The symbol S0 contains n linearly independent equations.

If C1 or C2 is true, the system has no solution. If C3 holds, any new rows of the symbol

S0 are glued to all remaining symbols, and if the resulting system does not satisfy C1, the

solution to the initial system of MRHS equations can be easily extracted by solving the

equations contained in S0. Otherwise we can conclude that the system has no solution.

3.4 The algorithm SOLVEMRHS

The four described procedures suffice to define an algorithm for solving any system of

MRHS equations. The algorithm used in this thesis is adapted such that it always outputs

the solution, which exists by assumption. It is depicted in Algorithm 3.1.

Here, changesmade is a Boolean variable (initial value true) that is set to true if the pre-

vious iteration of the main loop changed the system (i.e. if at least one column was deleted,

a new linear equation was extracted or two symbols were glued), and false otherwise. The

procedure LinSolve is a procedure for solving a system of linear equations (e.g. using Gaus-

sian elimination).

Only when the main loop fails to alter the system one variable is guessed. We will

see that the number of guesses needed to solve the system is affected by which particular

variables are guessed and in which order. If after t guesses either C1 or C2 holds, it can

be concluded that the guess was wrong (since we assume the initial system can be solved

uniquely). In that case the system is reset to the situation after t − 1 guesses and another

t-th guess is made. If none of these t-th guesses produce a solution, the (t − 1)-th guess

is rejected, etc. Using this method, a q-ary deterministic search tree with backtracking is

traversed until the solution is found [Woo92].

3The same analysis applies if not the value of a single variable but of a linear combination of variables is
guessed, i.e. to guesses of the general form

∑n
j=1 αjxj = vir

, where the αj ∈ Fq are not all equal to zero.
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Algorithm 3.1: The algorithm SOLVEMRHS.

Input: A system of MRHS equations S1, . . . , SM

Output: The solution

repeat

while changesmade do

// begin main loop
agree all symbols

extract new linear equations and add to S0

glue new rows of S0 to all symbols

glue one pair of symbols (if possible)

// end main loop

guess one variable

until C1 or C2 or C3

if C3 then
glue new rows of S0 to all symbols

if C1 or C2 then
reject guess; backtrack

else
LinSolve(S0)
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4

Procedure details and analysis

After having properly introduced multiple-right hand side equations, this chapter will sug-

gest and analyze implementations of the described procedures for solving them. These

implementations were used to obtain the results described in Chapter 5. An example is

included at the end of each section to clarify the details of the procedures. The implemen-

tations are generalizations of those previously described in [RS07].

A word on notation. In the following, the r-row identity matrix is denoted by Ir and

O indicates the all-zero matrix, whose dimensions follow from the context. For r > 0, the

submatrix of A formed by its first r rows is denoted by A(r), whereas A(−r) consists of the

last r rows of A. The all-zero vector is denoted by 0, the all-one vector by 1 and in general

r ·1 = (r, . . . , r). As before, the number of variables is n and the dimensions of Ai are ki ×n,

where ki < k for some k. The dimensions of Li are ki × si.

4.1 Procedure 1: EXTRACTLINEAR

The first procedure EXTRACTLINEAR attempts to extract ordinary linear equations (i.e. linear

equations with a single right-hand side) from a given symbol. If successful, one involved

variable per extracted equation can be eliminated.

Consider a single symbol S : AX = [L]. The main step in extracting linear equations from

S is to determine a maximal set of independent vectors t1, . . . , tN such that

tlL = 0 (4.1a)

for l = 1, . . . , N − 1 and

tNL = r · 1 (4.1b)

for some r 6= 0. As mentioned in section 3.3.1, any vector r′ ·1 = (r′, . . . , r′) is then generated

by L using a vector t′ that can be written as a linear combination of t1, . . . , tN . Once the

solutions to Equations (4.1a) and (4.1b) are known, the linear equations induced by S are

easily extracted.

The suggested implementation is Algorithm 4.1 outlined below. Note that if s = 1, the

linear equations can be read out from the symbol directly and the algorithm is not required.

In this algorithm, Equation (4.1b) is further specified by setting r = 1.

29
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Algorithm 4.1: EXTRACTLINEAR(S).

Input: A symbol S : AX = [L] with s > 1

Output: The set of linear equations induced by S

concatenate A and L (row-wise) to create B = (L || A)

B′ = (L′ || A′) = Gauss(B)

l = k

while row l of L′ equals 0 do

// output homogeneous equations
return row l of A′

l = l − 1

if
∑l

j=1 row j of L′ = 1 then

// output non-homogeneous equation

return
∑l

j=1 row j of A′

Here Gauss is an implementation of the Gaussian elimination procedure with backward

substitution. Note that the dimensions of L′ and A′ equal those of L and A, respectively.

Further, note that EXTRACTLINEAR outputs equations as vectors of coefficients, i.e. the linear

equation x1 +2x4 = 0 in the variables (x1, x2, x3, x4) is returned as (1, 0, 0, 2) in the first part

of the algorithm.

The algorithm initializes by forming the matrix B, which consists of corresponding

rows of L and A. This matrix is then transformed into reduced row echelon form (RREF).

A direct consequence of the RREF of B′ is that L generates the all-zero vector only if the

portion of B′ that corresponds to L (named L′ in the algorithm, which is also in RREF)

has all-zeroes in its last rows. Hence, starting at the bottom, the coefficient lists of all ho-

mogeneous equations can be directly read from A′, as long as the corresponding row of L′

contains only zeroes.

After using the bottom rows to determine the homogeneous linear equations from B′,

we can use the remaining rows in the second part of the algorithm. At this point, the value

l indicates the highest index such that L′

l is non-zero. Naturally, if L generates 1, so does L′

and vice versa. But since L′ is in RREF, this property is very easy to check: if L′ generates 1,

the rows of L′ must sum to 1. If this property holds, the corresponding linear equation can

be easily determined by summing the appropriate rows of A′.

This gives a simple construction for extracting linear equations from the symbol S, by

transforming its right-hand side matrix L into reduced row echelon form. If a linear equa-

tion is extracted from a symbol, one involved variable can be eliminated. We will return to

the details of elimination of variables later.

It is known that the Gaussian elimination of an l × m matrix requires O(l2m) operations

[Mey01]. Although there are more efficient algorithms available, these are not employed

in this thesis [Str69, CW87]. Since the time complexity of the other steps in Algorithm 4.1

is obviously lower than that of the Gaussian elimination step, we obtain (after substituting

the appropriate parameters)

O(k2(s + n))

as the time complexity of EXTRACTLINEAR. There is no significant memory requirement for
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this procedure, other than the memory required for storing the involved symbols.

Example 4.1. Consider for q = 2 the symbol S : AX = [L] given by

S :





1 1 0 0 0

0 1 0 1 0

0 0 1 1 0



X =





0 1

1 1

1 0



 .

We then run EXTRACTLINEAR(S) to determine which (if any) linear equations are induced

by S. To this end we create the matrix B as

B =





0 1 1 1 0 0 0

1 1 0 1 0 1 0

1 0 0 0 1 1 0





and reduce this into RREF to obtain

B
′ =





1 0 0 0 1 1 0

0 1 0 1 1 0 0

0 0 1 0 1 0 0



 =
(

L
′ || A

′
)

.

It immediately follows that L generates 0, and the first part of the algorithm will produce

the last row of A′, which represents the linear equation x1 + x3 = 0. The second part of

the algorithm will produce the vector (0, 1, 0, 1, 0), which represents the non-homogeneous

linear equation x2 + x4 = 1, as is implied by adding the first and second rows of B′. Note

that in this simple case, this linear equation could have been read from the second row of B

directly.

4.2 Procedure 2: AGREE

This section will introduce the procedure AGREE, which pairwise agrees a set of symbols.

To this end, several subprocedures are introduced to facilitate the implementation. In par-

ticular, we are able to improve the performance of the algorithm in case the underlying field

is F2.

4.2.1 The function U(A)

As mentioned in section 3.3.2, agreeing symbols Si and Sj can only lead to the deletion of

columns if the joint coefficient matrix A defined by

A =

(

Ai

Aj

)

has non-full rank, i.e. if ρ(A) < κ, where κ = ki + kj . To exploit this fact, we use a function

U(A) that returns a square, non-singular matrix U , such that

• U1. UA has exactly ρ(A) independent non-zero rows, and

• U2. any zero row of UA is below all its non-zero rows.

The suggested implementation of U(A) is Algorithm 4.2.

The function Gauss ′(A) is the first part of the function Gauss used before, i.e. we apply

Gaussian elimination but not backward substitution, as this is not required. In fact, we
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Algorithm 4.2: U(A).

Input: Any κ-row matrix A

Output: A matrix U , such that U1 and U2

B = (A || Iκ)

B′ = Gauss ′(B) = (A′ || U)

return U

manipulate A such that the result UA is upper-triangular. So, if we set U = U(A) using this

algorithm, the product UA has zero rows at the bottom and ρ(A) independent rows on top:

conditions U1 and U2 are clearly satisfied. It is important to realize that UA also satisfies an

additional condition (i.e. that the leading coefficient of a row is always strictly to the right of

the leading coefficient of the row above it), which is not directly necessary for this method

to work.

4.2.2 Agreeing a pair of symbols

We can now employ the function U(A) to agree a pair of symbols. The suggested imple-

mentation is the algorithm AGREEPAIR. Note that S′
i ⊂ Si means that A′

i = Ai and L′
i ⊂ Li.

Algorithm 4.3: AGREEPAIR(Si, Sj).

Input: Two (possibly disagreeing) symbols Si and Sj

Output: Two agreed symbols S′
i ⊂ Si and S′

j ⊂ Sj

A =
(

Ai

Aj

)

κ = ki + kj // number of rows in A
U = U(A)

r = number of zero rows in UA

if r 6= 0 then

set Ti =
(

Li

O

)

and Tj =
(

O

Lj

)

such that Ti and Tj have κ rows

determine Pi = (UTi)
(−r) and Pj = (UTj)

(−r)

for l = 1, . . . , si do

if −P l
i 6∈ Pj then

remove the l-th column from Li

l = l + 1

for l = 1, . . . , sj do

if −P l
j 6∈ Pi then

remove the l-th column from Lj

l = l + 1

S′
i : AiX = [Li]; S′

j : AjX = [Lj ]

return (S′
i, S

′
j)

Recall that the notation (UTi)
(−r), since r > 0, indicates the submatrix of UTi formed

by its last r rows. Further, note that Pi and Pj are, like Li and Lj , regarded as sets of

columns. So, we a statement a ∈ Pi means “a is a column of Pi”. It is important to realize

that, although this is assumed impossible for Li, the set Pi may contain duplicate elements.
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Also, since the l-th element of Pi corresponds to the l-th element of Li, it is only permitted

to change the order of the elements of Pi if the same ordering is applied to the elements of

Li. These remarks also hold for Pj and Lj , naturally.

This algorithm is a vital part of the final procedure for solving MRHS equations, used

to obtain the results described in Chapter 5. Therefore, it is very important to understand

its details.

AGREEPAIR initializes by constructing the joint coefficient matrix A and U = U(A) using

Algorithm 4.2. The number of all-zero rows of UA is denoted by r (note that r = κ − ρ(A)).

If r 6= 0, we determine the matrices Ti and Tj , and multiply these by U . As the analysis

will focus on the last r rows of UTi and UTj , we facilitate notation by referring to these

submatrices as Pi and Pj , respectively. The details of AGREEPAIR are then clarified by the

following theorem.

Theorem 4.1. Two symbols Si and Sj agree if and only if either r = 0 or

• for all p1 ∈ Pi there exists a p2 ∈ Pj such that p1 = −p2 and

• for all p2 ∈ Pj there exists a p1 ∈ Pi such that p2 = −p1.

Proof. Recall that the coefficient matrices Ai and Aj individually have full rank, hence for

all l1 ∈ Li and for all l2 ∈ Lj , the linear systems AiX = l1 and AjX = l2 are consistent

(which does not necessarily imply the existence of a simultaneous solution). If r = 0, i.e. if

A has full rank, the symbols Si and Sj effectively operate on disjoint variable sets. So the

simultaneous linear system

AiX = l1 and AjX = l2, (4.2)

with l1 ∈ Li and l2 ∈ Lj is consistent if and only if the individual equations AiX = l1 and

AjX = l2 are consistent, which is true by definition. In that case the symbols Si and Sj

agree and no columns can be deleted. So for the case r = 0 the proof is obvious.

Now, suppose r 6= 0, and assume that the conditions in Theorem 4.1 hold. We then prove

that it is equivalent to state that Si and Sj agree, by introducing intermediate equivalences.

Let p1 ∈ Pi. Then by the first condition there is a column p2 ∈ Pj such that p1 = −p2.

Let α1 be the index of p1 in Pi, so p1 = Pα1

i . Similarly, let α2 be the index of p2 in Pj , thus

Pα1

i = −Pα2

j . (4.3)

Since the transformation matrix U is such that UA has zeroes in its last r rows, we can

alternatively state that

0 = (UA)(−r)X = Pα1

i + Pα2

j ,

which can be rewritten as

(UA)(−r)X = U (−r)Tα1

i + U (−r)Tα2

j . (4.4)

Also, it is known by conditions U1 and U2 that UA has rank ρ(A) and that all its zero

rows are below the non-zero rows. This implies that the submatrix (UA)(ρ(A)) has full rank,

so any linear equation that has this submatrix as coefficient matrix and an arbitrary right-

hand side can be solved, in particular

(UA)
(ρ(A))

X = U (ρ(A))(Tα1

i + Tα2

j ). (4.5)
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Finally, observe that the number of rows of UA is κ, and that κ = ρ(A) + r. So we can

combine Equations (4.4) and (4.5) and obtain

UAX = U(Tα1

i + Tα2

j ),

which after multiplication with the inverse of U (which exists since U is non-singular by

definition) proves the consistency of

AX = Tα1

i + Tα2

j =

(

l1
l2

)

, (4.6)

where l1 = Lα1

i and l2 = Lα2

j . Note that (4.6) is equivalent to (4.2), and that a similar

analysis applies if we start with p2 ∈ Pj . This implies that the corresponding symbols Si

and Sj agree. Since all described steps are equivalences, this proves the theorem.

The algorithm is designed to remove columns that cause disagreement using the con-

ditions introduced in Theorem 4.1. For the equation systems we consider, the number r is

very low, making these conditions for agreement particularly easy to check.

4.2.3 Agreeing a pair of symbols in F2

If q = 2, as is the case for the equation systems we will consider, the algorithm for agreeing

a pair of symbols can be simplified by observing that Equation (4.3) is then equivalent to

Pα1

i = Pα2

j .

Hence the minus signs in Algorithm 4.3 vanish, and the improved Algorithm 4.4 can be

used.

Note that, since Pi and Pj are regarded as sets, the statement P = Pi ∩ Pj makes sense.

For fixed p1 ∈ Pi, the algorithm runs through the elements of the set P (which has at most

2r elements), rather than the elements of the set Pj (with sj elements, which may be larger

than 2r) to check which columns of Li cause disagreement. We may even further speed up

this search for identical elements by using sorted versions of the lists Pi and Pj .

This alternative algorithm is designed to remove columns according to the conditions

for agreement in F2 described in the following corollary, which is immediately clear after

noting that for q = 2 the minus signs in Theorem 4.1 can be omitted.

Corollary 4.2. Two symbols Si and Sj over F2 agree if and only if r = 0 or Pi = Pj .

Note that Algorithms 4.3 and 4.4 can be significantly improved by allowing precompu-

tations. Since the matrices U = U(A) and the values r are independent of the right-hand

side matrices, these are not affected by agreeing and need only be computed once. Fur-

thermore, we only need to compute the matrices Pi and Pj once if we, upon deletion of a

column from Li, also delete the corresponding column in Pi, etc.

4.2.4 Agreeing a set of symbols

Once an implementation of pairwise agreeing is available, a set of M symbols can be agreed

by sequentially applying AGREEPAIR until each pair of symbols agrees. This simple process

is described in Algorithm 4.5.
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Algorithm 4.4: AGREEPAIR(Si, Sj) in F2.

Input: Two (possibly disagreeing) symbols Si and Sj over F2

Output: Two agreeing symbols S′
i ⊂ Si and S′

j ⊂ Sj

A =
(

Ai

Aj

)

κ = ki + kj // number of rows in A
U = U(A)

r = number of zero rows in UA

if r 6= 0 then

set Ti =
(

Li

O

)

and Tj =
(

O

Lj

)

determine Pi = (UTi)
(−r) and Pj = (UTj)

(−r)

if Pi 6= Pj then
determine P = Pi ∩ Pj

for l = 1, . . . , si do

if P l
i 6∈ P then
remove column l from Li

l = l + 1

for l = 1, . . . , sj do

if P l
j 6∈ P then
remove column l from Lj

l = l + 1

S′
i : AiX = [Li]; S′

j : AjX = [Lj ]

return (S′
i, S

′
j)

Algorithm 4.5: AGREE(S1, . . . , SM )

Input: A set of symbols S1, . . . , SM that possibly disagree

Output: The set of agreed symbols S′
i ⊂ Si, for i = 1, . . . ,M

for i = 1, . . . ,M − 1 do
j = i + 1

while j ≤ M do
(Si, Sj) = AGREEPAIR(Si, Sj)

if columnsdeleted then
i = 0; break

else
j = j + 1

i = i + 1

for i = 1, . . . ,M do
return S′

i = Si; i = i + 1

Here columnsdeleted is a Boolean variable that is set to true whenever AGREEPAIR(Si, Sj)

deletes at least one column, and false otherwise. The command “break” returns the algo-

rithm directly to the end of the closest current loop. In this case, if one or more columns

are deleted from any right-hand side matrix, the pairwise agreeing starts over by checking

symbols S1 and S2, then S1 and S3, etc. Note that, since agreement is both a symmetric and

Eindhoven University of Technology // University of Bergen



36 PROCEDURE DETAILS AND ANALYSIS

a reflexive (i.e. any symbol agrees with itself) property by definition, there is no need for

j to run through {1, . . . , i}. Depending on the value of q, Algorithm 4.3 or 4.4 is used as

implementation of AGREEPAIR(Si, Sj).

Although in this particular implementation pairs of symbols are checked in the most

straightforward order, the actual order in which symbols are compared and agreed does

not affect the outcome of an agreeing procedure [RS07, Lemma 3.1].

4.2.5 Complexity issues

The average time complexity of Algorithm 4.5 is obviously very hard to determine, as it

depends strongly on the particular coefficient and right-hand side matrices. Some rigorous

estimates are available in [Sem07]. We can, however, obtain an upper bound on the time

complexity by reasoning as follows. Recall that the number of symbols is M , and that each

symbol contains at most k rows.

In the worst case (in terms of time complexity), Algorithm 4.5 deletes one column per

iteration, and runs until there are no columns left. To delete a column, the algorithm tries

to agree all pairs of symbols until a pair of disagreeing symbols is found, i.e. we need to

compare at most
M(M − 1)

2
= O(M2) (4.7)

pairs of symbols. If precomputations are allowed, the main step in AGREEPAIR(Si, Sj) is to

find p1 ∈ Pi such that −p1 does not occur in Pj , and similarly for p2 ∈ Pj . This can be done

by sorting Pi and Pj , after which an element that can be deleted is easily found. The most

efficient algorithm for sorting a list is the MergeSort algorithm [Knu98, pp. 158-168], which

requires O(N log N) operations if the list contains N elements. Since Pi and Pj contain

at most qk elements, agreeing a pair of symbols takes at most O(qk log qk) operations on

vectors of r ≤ k bits. Hence the number of Fq-operations required for agreeing two symbols

(disregarding the cost of any precomputations) is bounded by

O(kqk log qk). (4.8)

In practice, k is relatively small, in which case Algorithm 4.3 behaves (roughly) exponential

in the worst case. However, since the exponent k is considerably smaller than the number

of variables n, in some cases the implementation suggested in this chapter may find the key

used for encryption faster than an exhaustive search, whose time complexity is O(qn). We

will return to this in Section 5.3.4.

An upper bound for the time complexity of Algorithm 4.5 is found by combining Equa-

tions (4.7) and (4.8) and multiplying by the maximal number of right-hand sides, which is

Mqk. We obtain

O(M3kq2k log qk)

as the maximal time complexity of AGREE(S1, . . . , SM ), which in F2 translates into

O(M3k222k).

The precomputations consist of the computations of the transformation matrices U =

U(A) for A =
(

Ai

Aj

)

and some less costly matrix operations. The main step in Algorithm 4.2 is

the Gaussian elimination step, which takes O(κ2(n+κ)) operations, where κ = ki +kj ≤ 2k.

Hence, the time complexity of the precomputations is at most

O(M2k2(n + k)).
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Clearly allowing precomputations requires some additional memory. When agreeing

symbols Si and Sj , the lists Pi and Pj are used. Both lists contain at most kqk elements

of Fq, and there are O(M2) pairs of symbols to be compared. Note that the other matrices

used in the precomputations are not actually needed in the main algorithm. The additional

memory required for Algorithm 4.5 is then at most

O(M2kqk)

elements of Fq .

Besides Algorithm 4.5, [RS07] describes the alternative Agreeing2 algorithm for agreeing a

set of symbols over F2. This algorithm uses a precomputation stage of similar time complex-

ity, but its main loop is significantly faster: using Agreeing2, a set of symbols can be agreed

in at most O(M2k22k) bit operations and O(M22k) table look-ups. The additional memory

needed is only marginal compared to Algorithm 4.5. Although the analysis presented only

proves that it is more efficient than Algorithm 4.5 in the worst case, our experiments indi-

cate that Agreeing2 is also favorable on the average, at least for equation systems derived

from ciphers.

Example 4.2. Consider for q = 2 the symbols S1 : A1X = [L1] and S2 : A2X = [L2] given

by

S1 :





1 1 0 0 0

0 1 0 1 0

0 0 1 1 0



X =





0 0 1 1

0 1 0 1

1 1 1 0



 and S2 :





0 0 1 0 1

0 1 0 1 0

0 1 1 0 0



X =





0 0 1 1

0 1 0 1

0 0 0 1





and run AGREEPAIR(S1, S2), for which we can use Algorithm 4.4 since q = 2. Then we

compute the joint coefficient matrix A =
(

A1

A2

)

, the transformation matrix U = U(A) and the

product UA to obtain

A =



















1 1 0 0 0

0 1 0 1 0

0 0 1 1 0

0 0 1 0 1

0 1 0 1 0

0 1 1 0 0



















, U =



















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

0 1 1 0 0 1



















, UA =



















1 1 0 0 0

0 1 0 1 0

0 0 1 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0



















.

Indeed UA is upper-triangular. Then we determine the matrices UT 1 = U
(

L1

O

)

and UT 2 =

U
(

O

L2

)

:

UT 1 =



















0 0 1 1

0 1 0 1

1 1 1 0

1 1 1 0

0 1 0 1

1 0 1 1



















, UT 2 =



















0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 1

0 0 0 1



















.

Since r = 2 (as the last two rows of UA are all-zero) the matrices P1 and P2 are given by the

last 2 rows of UT 1 and UT 2, respectively:

P1 =

(

0 1 0 1

1 0 1 1

)

, P2 =

(

0 1 0 1

0 0 0 1

)

.
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So P = {
(

1
0

)

,
(

1
1

)

}, and the first and third columns of both L1 and L2 can be deleted to obtain

the symbols

S
′
1 :





1 1 0 0 0

0 1 0 1 0

0 0 1 1 0



X =





0 1

1 1

1 0



 and S
′
2 :





0 0 1 0 1

0 1 0 1 0

0 1 1 0 0



X =





0 1

1 1

0 1



 .

4.3 Procedure 3: GLUE

The procedure GLUE describes how to join two symbols, by extending the procedure AGREE.

In practice, the usability of this procedure will turn out to be rather limited.

4.3.1 Gluing a pair of symbols

In Section 3.3.3 we defined the gluing of two symbols Si and Sj . By using the basic proce-

dure described there we find the gluing Si ◦ Sj : AX = [L], where

A =

(

Ai

Aj

)

, (4.9)

L = {(l1 || l2) | l1 ∈ Li, l2 ∈ Lj}. (4.10)

But if the linear system

AX =

(

l1
l2

)

is inconsistent, the column (l1, l2) can be deleted from Lij as it does not contribute to a

joint solution of Si and Sj . So, there may be a more efficient approach to construct L in

case the joint coefficient matrix has non-full rank (i.e. if there exists a matrix U such that

UA has at least one all-zero row). The suggested approach is very similar to the algorithm

AGREEPAIR(Si, Sj), it is depicted in Algorithm 4.6.

Indeed, if the joint coefficient matrix has full rank (i.e. r = 0), GLUE(Si, Sj) returns the

gluing according to Equations (4.9) and (4.10). But if r > 0, the algorithm returns only those

right-hand sides for which a joint solution actually exists.

4.3.2 Complexity analysis

In Section 4.2.5 we estimated the time complexity of agreeing a pair of symbols by using

the sorting algorithm MergeSort. This allowed us to give an upper bound on the time com-

plexity of AGREE. A similar approach can be used to determine an upper bound on the time

complexity of GLUE.

First, we sort the lists Pi and Pj using MergeSort. The algorithm then consists of the

computation of a number of lists (with negligible complexity), the sortings of Pi and Pj and

the computation of a column of L, in case a particular condition is satisfied. Let the number

of columns of L be denoted by s, then Algorithm 4.6 requires

O(si log si + sj log sj + s)

elementary operations on vectors of length at most κ ≤ 2k. Hence, the time complexity of

GLUE(Si, Sj) is upper bounded by

O(k(si log si + sj log sj + s)). (4.11)
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Algorithm 4.6: GLUE(Si, Sj).

Input: A pair of symbols (Si, Sj)

Output: The gluing Sij = Si ◦ Sj

A =
(

Ai

Aj

)

κ = ki + kj // number of rows in A
U = U(A)

r = number of zero rows in UA

if r 6= 0 then

set Ti =
(

Li

O

)

and Tj =
(

O

Lj

)

determine Pi = (UTi)
(−r) and Pj = (UTj)

(−r)

determine Ri = (UTi)
(κ−r) and Rj = (UTj)

(κ−r)

L = empty set

for l = 1, . . . , si do

for m = 1, . . . , sj do

if (Pi)
l = −(Pj)

m then
add {(Ri)

l + (Rj)
m} to L

m = m + 1
l = l + 1

return Sij : (UA)κ−rX = [L]

else
set L = {(l1, l2) | l1 ∈ Li, l2 ∈ Lj}
return Sij : AX = [L]

A full run of the algorithm requires, besides the initial memory needed to store the input

symbols, the storage of the lists UTi and UTj . Furthermore, the list of right-hand sides L

needs to be stored. The memory requirement of GLUE(Si, Sj) is therefore

O(κ(si + sj) + (κ − r)s) ' O(k(si + sj + s)). (4.12)

elements of Fq .

4.3.3 Practical issues

The main drawback of Algorithm 4.6 (or any other gluing procedure, for that matter) is the

fact that the number of right-hand sides s may increase drastically, which clearly affects the

time complexity and the memory requirement of the algorithm (illustrated by the fact that

Equations (4.11) and (4.12) depend on s). In practice, s may be much larger than si + sj ,

which is the number of right-hand sides before gluing. In fact, this is the reason we can

not simply glue all symbols to solve the whole system, as that process involves too many

right-hand sides (although, in the end, only one will remain). We will only glue the pair

of symbols that results in the lowest number of right-hand sides, provided this number is

below some pre-set threshold Θ. After gluing we may try to agree the new set of symbols

or extract linear equations, etc.

The value of the threshold Θ, mainly determined by the available amount of system

memory and the desired maximal running time of the algorithm, is a very important pa-

rameter when solving a system of MRHS equations. We will see that a higher Θ results in
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a lower number of guesses needed to uniquely solve the system. This is more or less what

we would expect, as the algorithm can then run longer before making any guesses, with a

higher probability of deleting columns. We will even see that, for the equation systems de-

rived from the ciphers we consider, there is a peculiar yet very interesting trade-off between

the value of Θ and the number of required guesses. This notion will be discussed further

when the results are presented in Chapter 5.

Example 4.3. Consider for q = 2 the agreed symbols S′
1 and S′

2 from Example 4.2. The goal

is to produce the gluing S12 = S′
1◦S′

2. Note that we employ the already determined matrices

from Example 4.2.

The coefficient matrix A12 is found by computing UA and selecting the non-zero rows, hence

A12 =









1 1 0 0 0

0 1 0 1 0

0 0 1 1 0

0 0 0 1 1









,

which is a full rank matrix by condition U1 (cf. 4.2.1) of the transformation matrix U .

The right-hand sides are found by computing the sum of those pairs of a column of UT 1 and

a column of UT 2 whose last r coordinates coincide. The last r coordinates of the sum are

disregarded. In this case we obtain the matrix

L12 =









0 1

1 1

1 0

1 0









+









0 0

0 0

0 0

0 1









=









0 1

1 1

1 0

1 1









.

Note that there is no actual need to agree the symbols before gluing them. If GLUE had been

applied to the symbols S1 and S2 defined at the beginning of Example 4.2, we would have

obtained the same A12 and L12.

4.4 Guessing and eliminating variables

We already described how the additional symbol S0 : A0X = l0 can be used to keep track of

extracted linear equations and guessed variables. Now, assume the first part of EXTRACT-

LINEAR(Si) returns the vector a, i.e. a is the coefficient vector of a homogeneous linear

equation induced by Si. Then it should be checked that

• a is not already induced by S0, and

• a does not contradict S0.

If a can be written as a linear combination of the equations already present in S0 (in which

case the former condition is not satisfied), it is discarded as it does not contain any new

information. If the latter condition is not satisfied, we can conclude that a made guess was

wrong and reject guesses accordingly. Finally, if both conditions are satisfied, the extracted

linear equation should be added to S0 by adding the vector a to A0 and a zero to l0. Similarly,

if the second part of EXTRACTLINEAR(Si) returns a vector a and both conditions hold, we

add a to A0 and a one to l0.

Now, when all symbols pairwise agree, no new or contradicting linear equations can be

extracted and gluing is too costly, a guessing procedure is needed in order to possibly delete
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some columns and move towards finding the solution to the system. Obviously, a guess is

added to S0 in a similar manner: if α1x1 + . . . + αnxn = v is the intended guess, the vector

(α1, . . . , αn) is added to A0 and the constant v is added to l0. Note that it should be ensured

that the guess satisfies both requirements described above.

Once a linear equation or guess has been added to S0, one involved variable can be

eliminated by gluing the addition to S0 to all symbols. Since S0 has only one right-hand

side, eliminating a variable does not increase the total number of right-hand sides. In fact,

this number is even likely to decrease, as only those right-hand sides that satisfy the linear

equations induced by S0 will survive.

Eindhoven University of Technology // University of Bergen



42



5

MRHS equation systems from

ciphers

This chapter will describe how a large class of ciphers can be represented as a system of mul-

tiple right-hand side equations. Solving this system by applying the procedures of Chapter

4 is then a method to retrieve the used encryption key, and as such is an algebraic attack on

the cipher. This type of attack is the focus of this chapter, and will be referred to as “our”

attack.

Besides a general description of suitable ciphers, we will give explicit details and results

of this new type of attack applied to scaled versions of DES and AES. Unless indicated

otherwise, the presented results were obtained independently of those published earlier,

e.g. in [RS07] and [Rad07].

5.1 Suitable ciphers

Consider an iterated block4 cipher, i.e. a cipher that consists of a round function F : F
b
q ×

F
λ
q → F

b
q, where b is the block length, that is applied recursively R times. Input to the i-th

application of the round function is the internal state of the cipher and a round key Ki ∈ F
λ
q ,

which is derived from the main key K only (i.e. it is independent of the plaintext and any

external parameters) in a process called the key schedule. In order for decryption to be

possible, the round function F should be injective if the second argument (i.e. the round

key) is fixed. In other words there should exist a function F ′ (called the inverse of F ) such

that

F ′(F (x,Ki),Ki) = x

for all x and Ki [Sti05].

In practice, the round function F often consists of a linear part L and a non-linear part N

which are applied sequentially. The encryption, often denoted by means of the encryption

function EK , can then be described by the following recursion (where we use the interme-

4As our analysis will focus on block ciphers only, we will omit the term block from now on.
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diate states Xi to describe the output of the i-th round function)

EK(p) :







X0 = p,

Xi = N(L(Xi−1,Ki)) for i = 1, . . . , R,

XR = c.

(5.1)

Here, p and c are the plain- and ciphertext blocks, respectively. The recursion can be graph-

ically represented as in Figure 5.1.

p L N . . . L N

K1 KR

c
X1 XR−1

Figure 5.1: Iterated block cipher.

As we have assumed the known plaintext setting, we will not be concerned with the

corresponding decryption DK(c). Instead, the objective is to determine the key5 K given

only one plaintext p and ciphertext c that satisfy c = EK(p). Note that most block ciphers

are designed such that given a plaintext p, each key K results (after encryption) in a distinct

ciphertext c such that c = EK(p). This justifies the assumption made earlier that the key

corresponding to a given plain-/ciphertext pair is unique.

Most modern ciphers have this general form, although there may be variations. For

example, the transformations L and N may vary for different rounds, their order may be

reversed, or there may be some initial or final operations applied. However, to allow for

an efficient implementation, most cipher designs only employ a very low number of oper-

ations, so these variations are often only marginal. The AES, for example, which contains

four different operations, has an initial operation and a last round that slightly differs from

the intermediate rounds (cf. 5.4.1).

The non-linear transformation N is commonly implemented as a co-called S-box (or a

series of S-boxes):

Definition 5.1. An l × m or l-to-m S-box or substitution box is a component of a cipher that maps

an element of F
l
q to an element of F

m
q .

In practice, S-boxes are non-linear transformations, but this is not required by definition.

It is important to realize that it is essentially the non-linear portion of the round function

that determines a cipher’s resistance against algebraic attacks, as linear operations (which

can be written as matrix-vector multiplications and additions) are relatively easy to invert.

Therefore, in practice S-boxes are carefully designed to make it difficult, if not infeasible,

to find a linear function that behaves approximately the same as the S-box (so-called linear

approximation). Many successful algebraic attacks have a linear approximation at their

core. S-box design is a very interesting and dynamic subfield in cryptography, but it goes

beyond the scope of this thesis to discuss it in detail.

5Actually, it suffices to determine the round keys Ki, but it is generally a simple task to determine K once these
are known.
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As will be shown in Section 5.2, all iterated block ciphers in which the only non-linear

components are S-boxes can be represented as a system of MRHS equations (we will refer to

such ciphers as suitable). In particular, this requirement must also hold for the key schedule:

if the encryption process (5.1) satisfies the requirement, but the key schedule contains a

non-linear transformation that can not be viewed as an S-box, the cipher is unsuited for our

attack. Most modern ciphers (not necessarily block ciphers) are suitable, although designers

do not consistently use the term S-box. Some descriptions simply use the term non-linear

function. However, if this function has a fixed-length input and output, it is essentially an

S-box and the cipher satisfies the requirements (e.g. the cipher KeeLoq [BDI08] employs the

non-linear function NLF that has five bits of input and one bit of output; essentially this is

an S-box, making KeeLoq suitable for our attack).

The straightforward example of a non-linear transformation that can not be represented

by an S-box is a hash function [MOV96, Ch. 9], as that takes a variable length vector as input,

i.e. the value of l in Definition 5.1 is not fixed. We are able to represent a hash function

using MRHS equations if we introduce some restrictions, for example by only considering

messages of a fixed length. Although this representation does not describe the whole cipher,

it may provide some insight into possible weaknesses of the studied hash function. Note

that many hash functions have a block cipher-like internal structure, which does make them

suitable for our representation.

5.2 Constructing the equations

Assume the studied cipher satisfies the requirements above. We then introduce variables to

enable a description of the cipher using MRHS equations. Defining variables is a very im-

portant step in constructing MRHS equations: since an algorithm for solving the equations

will run more efficiently if the number of variables (denoted by n) is small, the objective is

to introduce a minimal number of variables that allows for a full description of the cipher.

For iterated ciphers, it is often useful to introduce, for i = 1, . . . , R, the state variables

Xi = (x1
i , . . . , x

b
i ) to describe either the inputs or the outputs of the round functions, and the

round key variables Ki = (K1
i , . . . ,Kλ

i ) to describe the round keys. For now, let Xi describe

the output of the i-th round function as illustrated in Figure 5.1. Note that we may omit the

variables XR, since XR = c is known.

Denote the vector of all variables by X , so X = (K1, . . . ,KR,X1, . . . ,XR−1). An en-

cryption process corresponds to a unique assignment of values to the variables X (i.e. there

is exactly one vector X such that (5.1) holds) by assumption, and the objective is to retrieve

this assignment given one plain-/ciphertext pair, which we may consider known constants.

Focus on an S-box S (cf. Figure 5.2) that is employed in a certain round, and observe

(since we assumed there are no other non-linear operations involved) that its input vector

u = (u1, . . . , ul) can be written as a linear combination of the variables X and the known

constants C = (p, c), so we can determine the coefficient vectors αt and βt such that

u :



















u1 = 〈α1,X〉 + 〈β1, C〉
u2 = 〈α2,X〉 + 〈β2, C〉

...

ul = 〈αl,X〉 + 〈βl, C〉

(5.2a)

where 〈x, y〉 denotes the inner product of vectors x and y. Similarly, the output vector
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. . . . . .S

u1

u2

ul−1

ul

v1

v2

vm−1

vm

Figure 5.2: General S-box.

v = (v1, . . . , vm) of S can be written as

v :



















v1 = 〈γ1,X〉 + 〈δ1, C〉
v2 = 〈γ2,X〉 + 〈δ2, C〉

...

vm = 〈γm,X〉 + 〈δm, C〉

(5.2b)

by using the coefficient vectors γt and δt. Now consider the (l + m) × n matrices

A =





















α1

...

αl

γ1

...

γm





















and B =





















β1

...

βl

δ1

...

δm





















(5.3)

and observe that Equations (5.2a) and (5.2b) are equivalent to

(u || v)T = AX + BC,

where BC is a known constant vector.

Viewed as AX +BC, the vector (u || v) can have any of ql+m possible values. However,

since v is the image of u under S, it holds that

(u || v)T = (u || S(u))T .

There are only ql possible choices for u (i.e. inputs to the S-box), so this is the actual number

of choices for (u || v). In other words, if X corresponds to a full encryption, then the vector

AX + BC can be written as (x || S(x)) for some x. So, AX is an element of the set

L = {(x || S(x))T − BC | x ∈ F
l
q}.

That implies that X satisfies the MRHS equation

S : AX = [L],

which has l + m rows and ql right-hand sides.
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The input and output of a specific S-box typically depend on a small fraction of the vari-

ables X only. For instance, an S-box involved in round i of the encryption process has an

input that only depends on Xi−1 and Ki, and its output only determines the values of the

variables Xi. In this case only the columns in the coefficient matrix A that correspond to

these particular variables are non-zero. So, if we consider a single symbol S there may be

a huge number of possible solutions. However, recall that the encryption is fully described

by X and that we assumed that X is unique. Hence, there will be a single solution if we set

up a symbol Sj for each S-box involved in the encryption process and the key schedule and

consider the so-formed system of symbols

S1, . . . , SM ,

where M is the total number of S-boxes in the cipher, typically R times the number of S-

boxes involved in a single round of encryption (including the key schedule). This is the idea

of the algebraic attack described in this paper: construct one MRHS equation for each non-

linear component involved in the encryption process and key schedule, and simultaneously

solve the obtained symbols using Algorithm 3.1.

The specific implementations described in Chapter 4 have been extensively tested on

scaled versions of DES and AES. The next sections will describe these ciphers, their repre-

sentations using MRHS equations and the results obtained by running the algorithm. The

primary interest of our research is the number of guesses needed to uniquely solve the sys-

tem, as this number is independent of the used implementation of agreeing and gluing and

only depends on the allowed number of right-hand sides Θ. Even if a significantly faster

implementation of these general procedures is available, the required number of guesses

will remain unchanged.

Since both DES and AES are binary ciphers, from now on it will be assumed that q = 2.

5.3 Experiments on DES-variants

The Data Encryption Standard (DES) was designed in 1975 by Ehrsam et al. [EMP75] and

was published as Federal Information Processing Standard (FIPS) 46 in 1977 [Nat99]. It has

been used in several applications, and there is a vast amount of information on possible

attacks (cf. 5.3.2). Mainly due to its relatively small (effective) key length of 56 bits, it was

superseded by the Advanced Encryption Standard (AES) in 2002 and eventually withdrawn

as a standard in May, 2005. The closely related cipher Triple DES (which basically consists

of three DES operations with two or three distinct keys) is still used in electronic banking.

5.3.1 Cipher description

DES is a block cipher operating on blocks of 64 bits that has an effective key length of 56 bits

(8 bits of the 64-bit encryption key are used for parity checking only). It contains sixteen

rounds of encryption. However, in practice the cipher is often analyzed using reduced-

round variants, i.e. variants that use a lower number of rounds for encryption. Although

the name DES is reserved for the full-round version, we may refer to the reduced-round

variants as DES nonetheless. If required, we will mention the number of used rounds,

denoted by R, explicitly. The encryption process is summarized in Figure 5.3.

Before applying the round function, the plaintext p is permuted using the permutation

IP and split into two 32-bit half-blocks, say pl and pr. If the input to round i is denoted by
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⊕

⊕

⊕

K1

K2

KR

...
...

pl pr

cl cr

X1

X2

XR

F

F

F

p

c

IP

FP

⊕ XiE

Ki

S1

S8

. . .

. . .

P

Figure 5.3: DES encryption overview (left) and round function.

Xi, the encryption process is then recursively defined by

EDES

K (p) :







(X0 || X1) = (pl || pr)

Xi = F (Xi−1,Ki−1) ⊕ Xi−2 for i = 2, . . . , R + 1,

(XR+1 || XR) = (cl || cr),

(5.4)

where ⊕ is the bitwise xor-operation. We will describe the key schedule for extracting the

round keys K1, . . . ,KR from K below. The ciphertext is finally obtained by concatenating

cl and cr and applying the final permutation FP , which is the inverse of IP .

The DES round function F operates on 32-bit half-blocks and consists of four stages:

(i) Expansion. The 32-bit half-block is expanded into a 48-bit vector using a permutation

E. Some input bits are used twice.

(ii) Round key addition. The 48-bit round key is added to this 48-bit vector.

(iii) Substitution. The resulting 48-bit vector is split into eight equal parts and part j is fed

through a 6 × 4 S-box Sj , for j = 1, . . . , 8.

(iv) Permutation. The eight 4-bit S-box outputs are concatenated and permuted using a

permutation P , resulting in the 32-bit output of F

The key schedule is illustrated in Figure 5.4. It initializes by compressing the 64-bit

key K into 56 effective bits by applying the permutation PC 1, note that eight bits of K are
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K

PC 1

PC 2

PC 2

<< <<

<<<<

...
...

K1

KR

Figure 5.4: DES key schedule.

simply discarded. Then, the resulting 56-bit effective key is split into two equal halves, and

both halves are treated separately. The extraction of a round key has two stages:

(i) Rotation. The 28-bit vectors are cyclically rotated to the left by either one (for rounds

1, 2, 9 and 16) or two positions.

(ii) Permutation. The two rotated 28-bit vectors are concatenated and compressed into a

48-bit round key by using the permutation PC 2, 24 bits are selected from each of the

input vectors.

The details of the used permutations and S-boxes can be found in Appendix A.

As is clear from the above cipher description, DES consists of linear operations only

(permutations, additions and cyclic rotations), except for the substitution stage (iii) in en-

cryption. Since this stage is described using only S-boxes as non-linear components, DES

satisfies the requirements for a suitable cipher, and we are able to describe it by means of

MRHS equations.

5.3.2 Previous attacks

Before we go into the exact description of the attack on DES proposed in this paper, we

mention some previous results in order to obtain some historic perspective.

Differential cryptanalysis

After several studies without mentionable results, e.g. [HMS76], the first reported attack on

DES-like ciphers was claimed by Biham and Shamir in 1991 [BS91]. Their attack employs

the newly introduced concept of differential cryptanalysis (a study of how small changes

in the plaintext affect the resulting ciphertext when encrypted using the same key) to break

reduced-round variants of DES. For fifteen rounds, their attack is still slightly faster than
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O(256), which is the time complexity of the exhaustive search. However, it requires a huge

amount of O(251) chosen plaintext pairs. For sixteen rounds, the time complexity of the

attack is higher than the exhaustive search, although a variant that was able to break the

full cipher slightly faster than exhaustive search was published in 1992 [BS92]. This latter

attack requires O(247) chosen plaintexts.

The designers of DES have since claimed that the cipher was designed to resist this type

of attack, indicating that differential cryptanalysis was already known at the time DES was

introduced.

Linear cryptanalysis

In 1993, Matsui [Mat93] published an attack on DES, based on linear approximations of the

S-boxes. The attack has an average time complexity of O(242) for sixteen-round DES, mak-

ing it still the best analytical method to break the full-round cipher faster than the exhaustive

search, although its data requirement of O(243) known plaintexts makes it hardly practical.

Some improvements on the required amount of known plaintexts have been published, the

best of which require about one fourth of the initial number.

Davies’ attack

Where the previously described attacks are general in nature and may be applied to any

cipher (with varying results), the attack suggested by Davies and Murphy in 1987 [BB97] is

designed to exploit properties that are unique to DES. This attack focuses on the outputs of

pairs of adjacent S-boxes, which turns out to have interesting statistical properties. Where

the other attacks rely heavily on algebraic techniques, Davies’ attack has a more probabilis-

tic nature. The best improved version of the attack requires O(249) operations using O(250)

known plaintexts.

Brute force attacks

As it has a relatively low effective key length of 56 bits and with computing power ever

increasing, DES has become more and more vulnerable to the brute force attack, i.e. try-

ing each possible key until the correct key has been identified. Using huge networks of

computers and/or highly efficient but costly machines designed specifically for this task,

the current record for recovering a DES key given one known plaintext dates from January,

1999, and stands at just over 22 hours.

Although DES’ vulnerability to the brute force attack has been shown, it is important to

realize that no practical algebraic attack exists. For this reason it is still an interesting cipher

for algebraic analysis, and many newly suggested attacks are applied to DES as well as to

ciphers that are considered more secure.

5.3.3 Representation using MRHS equations

This section will describe how R-round DES can be described using MRHS equations only.

Recall that we set up one symbol for each S-box encountered. As there are eight S-boxes

involved in each round, we will need 8R symbols.

Before constructing the equations, note that the permutations IP , FP have no actual

cryptographic meaning, as their inputs and outputs can be easily described as linear com-

binations of the plaintext p and the ciphertext c, which are known. The same more or less
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holds for the permutation PC 1 employed in the key schedule, as that only controls which

bits of the encryption key K are used and in which order. Hence, these three permutations

are commonly disregarded when analyzing the cipher.

We introduce variables to describe the inputs and outputs to all S-boxes. First, we note

that the round key Ki in round i consists of certain bits of the encryption key: for each

round key a different set of bits is selected. This implies that we do not need any addi-

tional variables to describe the round keys, and we can represent all round keys by the key

variables

K = (k1, . . . , k56).

To describe the intermediate states of the encryption process, we introduce the additional

variables

Xi = (x1
i , . . . , x

32
i )

for i = 2, . . . , R − 1, where Xi is the 32-bit input to the i-th round function as illustrated

in Figure 5.3 and Equation (5.4). An alternative is to introduce variables that describe the

output of the round function, which would lead to the same number of variables and an

equivalent analysis. This is, however, the minimal number of variables needed to describe

R-round DES. Note that we do not need X1, XR and XR+1, as those are already known.

Using these n = 56 + 32(R − 2) variables and M = 8R symbols, we can fully describe the

cipher using ten-row symbols with 26 = 64 right-hand sides. This is illustrated in Examples

5.1 and 5.2.

Example 5.1. Consider DES’ third round function (assume R > 4), whose input is given by

X3 = (x1
3, . . . , x

32
3 ).

This is then first expanded into 48 bits by the permutation E, after which the third roundkey

is added. The first six bits of this result are sent to S-box S1, etc. Combining this with the

details of DES given in Appendix A, we obtain

u = (x32
3 , x

1
3, x

2
3, x

3
3, x

4
3, x

5
3) ⊕ (k18, k21, k15, k28, k5, k9)

as the input to S1 in the third round of encryption.

To express the output of S1 as a linear combination of the available variables, observe

that Equation (5.4) implies that

F (X3, K3) = X2 ⊕ X4.

If we denote the inverse of the permutation P by P ′, the output bits of S1 are then given by

the first four bits of P ′(F (X3, K3)) = P ′(X2 ⊕ X4). Using the details of P , we obtain

v = (x9
2, x

17
2 , x

23
2 , x

31
2 ) ⊕ (x9

4, x
17
4 , x

23
4 , x

31
4 )

as the output of S1.

In terms of Section 5.2, we have determined the coefficient vectors αt and γt. For exam-

ple, α1 has all-zeroes, except at those positions corresponding to the variables x32
3 and k18,

where it has a one. Since both the input and output of S1 in the third round are independent

of any constants, the coefficients βt and δt are zero. By Equation (5.3), the coefficient matrix
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A is given by

A =























α1

...

α6

γ1

...

γ4























so AX = (u, v) describes the input and output of S1 in terms of the variables. On the other

hand, the vector (u, v) also satisfies (u, v) ∈ L1, where L1 is the right-hand side matrix

associated with S1, i.e.

L1 = {(x,S1(x)) | x ∈ F
6
2}.

This leads to the symbol

AX = [L1],

which fully describes the third round S-box S1.

For R = 6, the coefficient matrix A is the 10 × 184 matrix depicted in Figure 5.5, where

each dot indicates a one. The variables in this case are sorted as X = (K, X2, . . . , X5). The

coefficients in the first block correspond to K, those in the second block to X2, etc.

Figure 5.5: Third round DES coefficient matrix (R = 6).

Following this procedure for each of the S-boxes, we obtain 8R symbols describing the

cipher. Note that symbols describing the S-boxes from rounds 1, 2, R − 1 and R depend on

the known constants p and c as well, but on less (10 for the rounds 1 and R, 16 for rounds 2

and R−1) variables than the intermediate rounds (which depend on 20 variables). In case a

round function depends on one or more of the known constants, the analysis is comparable

to that illustrated in Example 5.1, as is illustrated below.

Example 5.2. Consider the second round function (assume R > 3), whose input is given by

X2 = (x1
2, . . . , x

32
2 ).

Applying the permutation E and the round key addition, we obtain

u = (x32
2 , x

1
2, x

2
2, x

3
2, x

4
2, x

5
2) ⊕ (k16, k19, k13, k26, k3, k7)

as the input to S1.

The main difference is in the output of the round function. Equation (5.4) implies that

F (X2, K2) = p
r ⊕ X3,

as X1 = pr is known. Using P ′ from Example 5.1, the output bits v of S1 are now the first

four bits of P ′(F (X2, K2)) = P ′(pr ⊕ X3), hence

v = (pr9
, p

r17
, p

r23
, p

r31) ⊕ (x9
3, x

17
3 , x

23
3 , x

31
3 ).

Note that the first term of this expression is known.
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In this case, only the coefficient vectors βt are all-zero, so we determine both matrices A

and B. Using the right-hand side matrix L1 of Example 5.1, we obtain the symbol

AX = [L′
1]

with

L
′
1 = {Lj

1 ⊕ BC | j = 1, . . . , 26}.

For R = 6, the coefficient matrix A is depicted in Figure 5.6, with the same ordering of

the variables as before.

Figure 5.6: Second round DES coefficient matrix (R = 6).

5.3.4 Experimental results

The algorithms and their implementations described in Chapters 3 and 4 have been exten-

sively applied to systems of symbols corresponding to DES encryptions for various values

of R. Our main interest was how the number of guesses needed to uniquely solve the sys-

tems is affected if the value of the threshold Θ is varied. As mentioned in 5.2, this behavior

is implementation-independent as long as the SOLVEMRHS algorithm of Section 3.4 is used

to solve the system.

It is important to think about which variables to guess, and in which order. As the

main objective of solving a system of symbols is to retrieve the encryption key, it makes

sense to guess key variables. In the case of DES these are the variables in K = (k1, . . . , k56).

However, it is known that DES has the property that some key bits are used more often than

others, so we may expect better results if guessing is done in order of usage: the most used

variables first, etc. This method is referred to as method G1. The straightforward alternative

is method G2: to guess the values of key variables in their ascending order, so k1, k2, etc.

For Θ = 28 and Θ = 216, the results described in Table 5.1 were obtained. For com-

parison, the results for Θ = 218 published earlier by Raddum in [Rad07] are also included.

As can be seen, the results for Θ = 28 and 216 support Raddum’s results. As described in

Section 3.4, the algorithm traverses a binary search tree with backtracking, until correctly

guessing the required number of variables solves the system. Our simulations indicate that

the number of guesses needed to make the algorithm halt is not higher (typically, it is one

less) than the number of correct guesses needed to solve the system. Hence, we never need

more than the indicated number of guesses to either solve the system or reject a made guess.

To speed up the simulations, we did not let the algorithm traverse the whole search tree, but

made sure that each made guess was the correct one. For instance, with Θ = 28, we simply

fed the algorithm with the correct fourteen guesses required to solve four-round DES (using

guessing method G2), instead of trying all 214 possible guesses.

As it turns out, the method of guessing the most used key bits first (method G1) is less

efficient than the straightforward approach of guessing key bits in ascending order. This

somewhat contradicts our expectations, and a possible reason may be the specific form of

the DES key schedule, as is argued in [Rad07, pp. 240].

Also, the first row of the table implies that the algorithm can extract the solution without

guessing any variables for three-round DES. As that is not a very complex cipher, this result

is hardly interesting. For larger values of R, the number of required guesses increases quite
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Θ = 28 Θ = 216 Θ = 218

R method G1 method G2 method G1 method G2 method G1 method G2

3 0 0 0 0

4 15 14 6 6 3 3

5 32 28 28 20 26 17

6 48 46 36 34 34 28

7 48 48 44 40 38 38

8 48 48 45 40 38 38

9 48 48 45 40

10 49 48 45 40 38 38

11 49 48 45 40

12 49 48 45 40 38 38

13 50 48 45 40

14 50 48 45 41

15 51 48 45 41

16 51 49 46 41 41 38

Table 5.1: Number of guesses for R-round DES-systems for various values of Θ.

rapidly, until reaching some maximum at about seven rounds, after which the number of

guesses stagnates.

However, arguably the most interesting conjecture is that there seems to be a trade-off

between the number of guesses and the allowed number of right-hand sides Θ, summarized

in the following hypothesis.

Hypothesis 5.1. If Θ = 2l right-hand sides are allowed, then R-round DES, for 7 ≤ R ≤ 16,

can be broken by guessing 56 − l key bits, provided variables are guessed according to

method G2.

Several values of Θ have been tested to try to contradict this hypothesis, but the only coun-

terexamples found still roughly satisfy this hypothesis, e.g. when we set Θ = 216, we need

41 guesses instead of 40 to break fourteen rounds or more. An overview of some values

of Θ and the corresponding number of guesses needed for R = 16 is summarized in Table

5.2. Note that the value of Θ largely determines the amount of memory and time needed

Θ 26 28 212 216 218 220

Number of guesses 50 49 45 41 38 36

Table 5.2: Trade-off for various values of Θ.

to run Algorithm 3.1, which would imply some sort of “time-memory-number of guesses”

tradeoff, possibly comparable to [Hel80].

If Hypothesis 5.1 is true, this does not imply a break of the R-round (with R ≥ 7) DES,

as the main loop (i.e. agreeing-gluing-extracting linear equations) of SOLVEMRHS with Θ

right-hand sides requires at least Θ operations. To see this, observe that each right-hand

side is to be checked at least once (i.e. when it is deleted). In practice, the time complexity of

SOLVEMRHS may be much higher, unfortunately there are no estimates available yet. It is

expected that it can be written as O(aΘ), where a is a constant that depends on the number

of symbols and variables, but not on the value of Θ.
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The hypothesis may imply a break of one of the smaller variants of DES. If we let Θ =

218 and assume that the main loop of the algorithm requires less than 228 operations (i.e. 210

times the maximal number of right-hand sides), the time complexity of breaking six-round

DES, for which we need to guess 28 key bits, is trictly lower than

O(228 · 228) = O(256),

which implies a break faster than the brute force attack. For the five and four-round vari-

ants these results are even better. Note that this attack is carried out using only one plain-

/ciphertext pair. However, as long as the time complexity of the algorithm is not properly

estimated, we can not formally claim to have successfully broken these DES variants.

5.4 Experiments on AES-variants

In January, 1997, the National Institute of Standards and Technology (NIST) publicly re-

quested proposals for a successor of DES, to be named the Advanced Encryption Standard

(AES) . After an extensive process of selecting and testing candidates suggested by the cryp-

tographic community, the Rijndael-cipher [DR02] designed by Daemen and Rijmen was se-

lected as the official successor to DES in October, 2000. It was formally presented as FIPS

197 [Nat01] in November, 2001, and has been used in numerous applications since.

Satisfying the requirements set by the NIST, AES6 is a cipher that operates on blocks of

128 bits, and it supports key lengths of 128, 192 and 256 bits, making a brute force attack

infeasible for now and the near future (at least, according to the NIST). Its details are remark-

ably simple, containing only one S-box. This makes it an ideal candidate for our approach.

As DES, it is commonly studied by using smaller variants. Although there are several vari-

ants available, the one considered here is the cipher SR*(R,Nr ,Nc) from [CMR05], which

will also be referred to as simply SR*.

5.4.1 Cipher description

Where DES is mainly based on table lookups, SR* depends more on finite field arithmetic. It

operates on an array of bytes (i.e. vectors of eight bits) called the internal state, where the to-

tal number of bits in the internal state equals the block length b. The cipher is parametrized

as follows:

• R is the number of rounds, 3 ≤ R ≤ 10,

• Nr is the number of rows in the internal state, Nr = 1, 2 or 4,

• Nc is the number of columns in the internal state, Nc = 1, 2 or 4.

Observe that

b = 8NrNc. (5.5)

Calculations are performed in the finite field F28 , which is defined as

F28 =
F2[X]

(X8 + X4 + X3 + X + 1)
= F2(θ),

where θ is a root of the polynomial X8 + X4 + X3 + X + 1.

6We refer to Rijndael as the AES, although there are some formal differences.
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In the encryption process, the plaintext block is written as an Nr × Nc array of bytes,

which is then further manipulated to obtain the Nr × Nc ciphertext block array after R

rounds. For example, if Nr = Nc = 2, the block length of SR* equals 2 · 2 · 8 = 32 bits. From

the possible values of Nr and Nc, it follows that SR* has a block length of either 8, 16, 32, 64

or 128 bits. The key length is equal to the block length, and, like the plain- and ciphertext,

the key is regarded as an Nr × Nc array. The same holds for the round keys.

The round function of SR*(R,Nr ,Nc) contains four operations, that are applied sequen-

tially. Further details can be found in Appendix B.

1. SubBytes - The only non-linear operation, which employs the 8 × 8 S-box S. This

S-box is generated by determining the multiplicative inverse of the input (viewed as a

polynomial), multiplying this element of F28 by a matrix MSB and adding a constant

CSB . Each element of the internal state is fed through S separately, resulting in an

Nr × Nc array of S-box outputs, which forms the output of SubBytes.

2. ShiftRows - Row i of the internal state is cyclically rotated to the left by i − 1 po-

sitions, for i = 1, . . . ,Nr . Note that the top row is left unchanged (and even the full

state if Nr = 1).

3. MixColumns - The internal state is multiplied by the matrix MC , which depends on

the specific value of Nr .

4. AddRoundKey - The Nr ×Nc round key is xor-ed to the internal state. The key sched-

ule itself will be described later.

Formally, the i-th round function Fi is defined as

Fi(X) =

{

AddRoundKey(MixColumns(ShiftRows(SubBytes(X))),Ki) for i < R,

AddRoundKey(ShiftRows(SubBytes(X)),Ki) for i = R,

where X is an Nr × Nc array of bytes. Furthermore, an initial AddRoundKey is applied

before running the round functions.

Graphically, an SR*-encryption can be represented as in Figure 5.7, where the opera-

tion names are abbreviated in the straightforward manner (i.e. SB is SubBytes, etc.), and

AddRoundKey, as that is basically a bitwise xor, is denoted by ⊕.

p c⊕ ⊕ ⊕. . .SB SR MC SB SR

K0 K1 KR

Figure 5.7: SR* encryption process.

The SR* key schedule uses the same non-linear operation as the round function, so there

is actually only one S-box involved in the whole cipher. It also employs an additional round

constant RC i, whose value depends on the round index i. The input to the key schedule is

the b-bit encryption key K, regarded as an Nr × Nc array of bytes. This key, also denoted

by K0, is added to the plaintext in the initial application of AddRoundKey. The round keys

are then defined recursively, depending on the value of Nc. The detailed recursions can be

found in Appendix B.
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The AES with 128-bit key length is then equal to SR*(10, 4, 4). The AES versions with

key lengths 192 and 256 bits are defined in a slightly different manner and are not consid-

ered here.

Example 5.3. Consider the second round of SR*(4, 2, 2), and assume its input is given by

(

11011010 01101001

01011000 00001111

)

=

(

DA 69
58 0F

)

,

and the round key K2 by

K2 =

(

00000101 11001101

11101010 10000001

)

=

(

05 CD
EA 81

)

.

Then the output of the round function is obtained as follows:

(

DA 69
58 0F

)

SB
−→

(

57 F9
6A 76

)

SR
−→

(

57 F9
76 6A

)

MC
−→

(

8F 7A
CD 47

)

⊕K2−→

(

8A B7
27 C6

)

To determine the first (i.e. leftmost) column of the third round key, we need the S-box S and

the round constant RC 3 = 04:

K
1
3 =

(

S(81)

S(CD)

)

+

(

04

00

)

+

(

05

EA

)

=

(

0D

57

)

.

The second column is determined by adding the second column of K2 to the first column of

K3:

K
2
3 =

(

0D

57

)

+

(

CD

81

)

=

(

C0

26

)

.

Hence, the third round key is

K3 = (K1
3 K

2
3 ) =

(

0D C0
57 26

)

.

5.4.2 Previous attacks

The AES has been the subject of numerous articles, in which its security is analyzed using

both existing and new techniques. We summarize some of the most notable ones.

Related key attacks

The related key attack was first introduced by Biham in [Bih93]. In this type of attack, it is

assumed that the attacker has access to several plain-/ciphertext pairs that were encrypted

using unknown keys that have a certain known relation (e.g. the last 20 bits may be the

same). The version described in [FKL00] can break nine-round AES-256 (i.e. the AES version

with a key length of 256 bits) using O(285) chosen plaintexts. It has a time complexity of

O(2224), which is considerably faster than the exhaustive search. Note that this version of

AES has fourteen rounds.
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Integral cryptanalysis

Another type of attack suggested by Ferguson et al. is integral cryptanalysis, although it is

also referred to as the saturation, structural or partial sum attack [FKL00]. It was introduced

by Knudsen in an attack on the cipher Square [DKR97], upon which the AES was based.

Integral cryptanalysis can be seen as an extension of differential cryptanalysis (cf. 5.3.2),

which uses sets of chosen plaintexts of which a particular part is held constant, while the

rest runs through all possibilities. At present, the best implementation can break the seven-

round version of AES-128 and the eight-round versions of AES-192 and AES-256. The attack

on AES-128 requires O(2120) operations and O(2122) chosen plaintexts.

Multivariate equations analysis

As already mentioned in Chapter 2, a typical cipher can be described as a huge system

of multivariate algebraic equations. Because of the particular form of AES’ S-box, the cor-

responding equations for AES are quadratic (i.e. the equations describing AES contain no

products of three or more variables). Solving the equation system essentially breaks the ci-

pher, but is generally very hard to perform. Numerous articles describe algorithms for solv-

ing multivariate quadratic equations, which includes the XSL (eXtended Sparse Lineariza-

tion) attack by Courtois and Pieprzyk [CP02] that has been the source of a lot of controversy

in the cryptographic society. Although it was presented as a ground breaking attack that

might be able to break AES, this claim has never been taken too seriously.

In [CMR05], the small scale AES-variant SR* is embedded into a new, larger cipher

called BES (Big Encryption System), which is supposedly easier to break than SR* itself.

The equations are then solved by a Gröbner basis-approach. The paper does not give any

estimates on the time complexity of the attack, but some experimental timing results are

available, which indicate that this approach is not very useful from a practical point of view.

For example, using this attack, the eight-bit cipher SR*(R, 1, 1) is broken for R = 4 after

over 20,000 seconds of computation. For comparison, the method using MRHS equations

can break this cipher for any value of R in less than a second.

5.4.3 Representation using MRHS equations

To describe the cipher using MRHS equations, we introduce suitable variables. Since the

key schedule contains a non-linear operation, we are unable to simply write each round

key bit as a linear combination of the bits in the encryption key K. However, note that the

l-th (with l 6= 1) column of round key Ki is defined in (B.1) as

Kl
i = K1

i ⊕ K2
i−1 ⊕ . . . ⊕ Kl

i−1,

so each of these columns can be written as a linear combination of K1
i (the first column

of round key Ki), and columns of the previous round key Ki−1. This implies that if we

introduce the variables

K0 = (k1
0, . . . , k

b
0)

to describe the initial round key (which is equal to the encryption key K), and the additional

variables

K1
i = (k1

i , . . . , k8Nr

i ) for i = 1, . . . , R

to describe the first columns of the remaining round keys, we can fully describe any round

key as a linear combination of the variables. Hence, the number of variables and symbols
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required to represent the key schedule is

nkey = b + 8RNr = 8Nr(Nc + R),

Mkey = RNr .

The internal state is described by introducing the state variables

Xi = (xi,1, . . . , xi,b) for i = 1, . . . , R,

which represent the outputs of the non-linear operations SubBytes contained in the round

functions. However, we may omit the state variables XR, if we note that the output of

SubBytes in the last round can be written as a linear combination of the last round key

and the ciphertext c, which is known. The number of required variables and symbols for

the encryption process is therefore

nenc = (R − 1)b = 8(R − 1)NrNc,

Menc = RNrNc.

Hence, the total number of variables and symbols needed to describe SR*(R,Nr ,Nc) is

n = nenc + nkey = 8RNr(Nc + 1),

M = Menc + Mkey = RNr(Nc + 1).

Setting up the equations requires a bit more attention than in the case of DES, but is still a

relatively easy task, if we keep track of which variables go into and come out of the S-boxes.

Example 5.4. Consider SR*(R, 2, 2), and the operation SubBytes employed in the second

round function. Note that each round function uses the S-box four times, once for each entry

in the 2×2 internal state array. In this case, the output of SubBytes is given by the variables

X2, represented as

X2 =

(

x1
2 . . . x8

2 x17
2 . . . x24

2

x9
2 . . . x16

2 x25
2 . . . x32

2

)

. (5.6)

To determine its input, we start at the last known internal state (which is just after SubBytes
in the first round function) and apply the operations accordingly.

The internal state after ShiftRows in the first round function can be easily determined by

(

x1
1 . . . x8

1 x17
1 . . . x24

1

x9
1 . . . x16

1 x25
1 . . . x32

1

)

SR
−→

(

x1
1 . . . x8

1 x17
1 . . . x24

1

x25
1 . . . x32

1 x9
1 . . . x16

1

)

.

The application of MixColumns requires some more attention. To apply this operation, we

multiply the internal state with the matrix MC . Note that the left column of the internal state

at this point equals

B =

(

x1
1, . . . , x

8
1

x25
1 , . . . , x32

1

)

=

(

x1
1θ

7 + . . . + x7
1θ + x8

1

x25
1 θ7 + . . . + x31

1 θ + x32
1

)

=

(

B1

B2

)

and the left column of the output of MixColumns is given by

MC .B =

(

(θ + 1)B1 + B2

B1 + (θ + 1)B2

)

.
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If we expand this and use that θ8 = θ4 +θ3 +θ+1 by the definition of θ, this column is equal

to the product HB , where

H =





























































1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1





























































=

(

H ′ I8

I8 H ′

)

.

Using the matrix H ′, we can describe the output of MixColumns as a linear combination

of the variables X1. Since AddRoundKey is a simple bitwise xor, we can describe the input

to the S-box when used to determine the top left entry of the output of the second round

function as

u = H
′(x1

1, . . . , x
8
1) ⊕ (x25

1 , . . . , x
32
1 ) ⊕ (k1

1 , . . . , k
8
1).

This describes the input to the S-box in terms of the variables, the output v is determined by

the top left entry of Equation (5.6), hence

v = (x1
2, . . . , x

8
2).

Since there are no constants involved, the vector (u, v) must satisfy

(u, v) = [LS ],

where

LS = {(x,S(x)) | x ∈ F
8
2}

is the right-hand side matrix associated with the S-box S. This leads to an MRHS equation

with 8 + 8 = 16 rows and 28 = 256 right-hand sides.

For R = 3, the 16 × 144 coefficient matrix of this MRHS equation is depicted in Figure 5.8.

The indicated blocks correspond to the variables K0, K
1
1 , K1

2 , K1
3 , X1 and X2, respectively.

The matrix H ′ is clearly visible. The operation ShiftRows is illustrated by the fact that the

H ′ and I8 block acting on the variables X1 are separated. If ShiftRows were omitted from

the round function, these blocks would be adjacent.

Figure 5.8: SR*(3, 2, 2) second round coefficient matrix.
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5.4.4 Experimental results

For different values of the gluing threshold Θ and the cipher parameters R, Nr and Nc

(except for Nr = Nc = 4, which could not be simulated due to limitations in the used

hardware), we have applied SOLVEMRHS to the systems of MRHS equations derived from

SR*(R,Nr ,Nc). For guessing method G2 (i.e. guessing key variables in their ascending or-

der k1
0, k

2
0, . . .) the results are summarized in Table 5.3, which confirms the results published

earlier in [RS07]. For the sake of completeness, the results for SR*(R, 4, 4) from that article

are also included. Several other guessing methods produced less favorable results which

are not presented here. As an illustration, we mention that all eight-bit variants SR*(R, 1, 1)

were solved in less than a second, which is significantly faster than the Gröbner-basis ap-

proach suggested in [CMR05]. We will return to this in Section 6.1.

Θ = 28 Θ = 216

SR*(R, 1, 1) SR*(R, 2, 1) SR*(R, 2, 2) SR*(R, 2, 4) SR*(R, 4, 2) SR*(R, 4, 4)

R 8-bit key 16-bit key 32-bit key 64-bit key 64-bit key 128-bit key

3 0 5 16 48 48 112

4 0 8 16 48 48 112

5 0 8 16 48 48 112

6 0 8 16 48 48 112

7 0 8 16 48 48 112

8 0 8 16 48 48 112

9 0 8 16 48 48 112

10 0 8 16 48 48 112

Table 5.3: Number of guesses for SR* for various values of Θ.

As for the DES variants, there seems to be a trade-off between the allowed number of

right-hand sides and the number of keybits needed to solve the system. In fact, there is only

one case in which the following hypothesis does not precisely hold.

Hypothesis 5.2. If Θ = 2l right-hand sides are allowed, then any instance of SR*(R,Nr ,Nc)

can be broken by guessing b−l key bits, provided variables are guessed according to method

G2.

Note that the block length b is as in Equation (5.5).

We have tried many possible settings for the threshold Θ and the cipher parameters

(R,Nr ,Nc), but have not been able to find any contradiction to this hypothesis except

SR*(3, 2, 1) with Θ = 28. Again, this does not yet imply a break of any of these ciphers

as each of the O(Θ) right-hand sides needs to be checked at least once, but the trade-offs

found for both DES and SR* are certainly remarkable.

The fact that we have not found any significant contradictions to Hypotheses 5.1 and 5.2

does not imply that a similar statement may be made for any suitable cipher. In fact, recently

started research on our method applied to small-scale versions of the ciphers Noekeon

[DPA00] and the already mentioned KeeLoq shows much weaker results, indicating that

the attack is less efficient than the brute force attack, even for a very low number of rounds.

On the other hand, the first results for reduced-round versions of the stream cipher Trivium

[CP06] are actually better than those obtained for the DES and AES variants. However, the

research on these ciphers is still ongoing, and we will not formally present the results here
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as they have not yet been fully validated.
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Conclusions and future work

We conclude this thesis with an overview of the presented material. Furthermore, we de-

scribe some topics for future research, including an alternative problem description that

may provide an interesting perspective.

6.1 Conclusions

In this thesis, we have presented multiple right-hand side (MRHS) equations, and their

possible use in the analysis of iterated block ciphers that consist of linear operations and S-

boxes (like DES and AES). By introducing variables to describe the round keys and the state

of the cipher at certain points during the encryption process, we can efficiently represent

any involved S-box as an MRHS equation, where the number of right-hand sides equals the

number of possible inputs to the S-box. Setting up such an equation for each S-box in the

encryption process and key schedule gives a new representation of the cipher, which we

believe is an interesting new tool for cryptanalysis, to compete (or possibly be combined)

with already known approaches that either involve the solution of large systems of non-

linear equations or SAT-instances.

The main advantage of our approach when compared to known techniques appears to

be the fact that, although they are quite different from (ordinary) linear equations, MRHS

equations have two linear properties:

• Elementary row operations may be applied to the involved matrices at any point, as

long as the same operation is applied to both the coefficient and right-hand side ma-

trices. This does not affect the solution set that corresponds to the particular equation;

• All relations are described using only linear combinations of the variables, i.e. no

products of variables are involved.

The former is quite a useful observation when designing an algorithm for solving MRHS

equation systems, since it may be possible that a particular sequence of row operations

transforms an equation into an equation that is easier to solve. For example, the procedure

for extracting linear equations described in Section 3.3.1 is based on this principle.

Another advantage is the fact that the size of the equations is not affected when the S-

boxes become more intricate, provided the number of possible inputs and outputs remains

the same. Typically, the efficiency of algorithms for solving multivariate algebraic equation
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systems that represent ciphers is affected if the involved S-boxes become more complex: the

more complex the S-boxes are, the more complex the corresponding equation system will

be. The MRHS representation does not suffer from this drawback.

Finally, we mention the advantage of being able to efficiently extract linear equations

that may be hidden in the cipher. To our knowledge, there is no similar procedure for alge-

braic equation systems.

It is important to realize that the algorithm SOLVEMRHS described in Section 3.4 with

the particular implementation specified in Chapter 4 was not designed to solve a system

of MRHS equations in the most efficient manner. Our first concern was to determine how

many guesses are needed to obtain the solution, since this number is independent of the

chosen implementation of SOLVEMRHS. The initial experimental results obtained for small-

scale variants of DES and AES indicate that there is an interesting tradeoff between the

maximum number of right-hand sides allowed when gluing the equations and the number

of guesses that is needed to uniquely solve the system. Although this particular tradeoff

was only found for variants of DES and AES, there may be more ciphers that have this

interesting property.

As there are no practical estimates on the complexity of the studied algorithm available,

at this point this tradeoff does not imply a successful attack on either DES or AES. On the

contrary, the complexity of the algorithm is at least in the order of the number of allowed

right-hand sides, since each of these must be processed at least once, in which case the

complexity of our attack is at least equal to that of the exhaustive search.

But, when applied to the simple eight-bit AES-variant SR*(n, 1, 1), our method, which

solves the corresponding MRHS equation system in less than a second, significantly over-

comes the Gröbner basis approach suggested in [CMR05], which requires over 20,000 sec-

onds to solve the equivalent quadratic equation system. Although this difference is promis-

ing, it is important to realize that it gives hardly any information on the behavior of the

algorithm when applied to larger, more complex systems. However, this comparison and

the fact that many ciphers can be efficiently represented by a system of MRHS equations

do support our belief that the study of this new type of equation makes an interesting and

useful subject for future research, and that an MRHS representation is possibly more suit-

able for S-box based ciphers than a representation using algebraic equations, even though

another breakthrough (most likely a more efficient procedure for agreeing) is needed to de-

fine a really useful attack based on this representation. The fact that, so far, practical attacks

on real-life ciphers using algebraic equations have more or less failed to materialize has not

discouraged the cryptographic community to keep research on this topic ongoing, and we

see no reason why the same should not hold for attacks involving MRHS equations.

6.2 Future work

In this section, we describe some possible topics for further research.

6.2.1 Higher-probability guessing

If agreeing, gluing and extracting linear equations do not produce any new results, the

algorithm applies the straightforward approach of simply guessing the value of a particular

variable or linear combination of variables. Our results indicate that guessing the value of

key variables in their ascending order is most helpful, at least for DES and AES variants. The
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value of this guess is fully random, as there is no reason to assume that the probability that a

particular key bit is zero is higher than the probability that it is one, or lower for that matter.

We would like to be able to use guesses that have a higher probability of being correct. An

improvement that comes to mind is to extend the procedure for extracting linear equations

(that hold with certainty) into a procedure for extracting linear equations that hold with a

specific probability. This is possible if we make an assumption involving the right-hand

sides in the studied MRHS equation system.

Let

S1 : A1X = [L1], . . . , SM : AMX = [LM ] (6.1)

be a system of MRHS equations that fully describes a particular cipher. Recall that the

number of right-hand sides in symbol Si is denoted by si. We have already assumed that

this system has a unique solution X , which implies that there is a unique set of columns

{l1, . . . , lM}, where li ∈ Li, such that

A1X = l1, . . . , AMX = lM ,

since the right-hand side matrices do not contain duplicate elements. Note that determin-

ing these columns is equivalent to solving system (6.1). We then assume that the index of

column li is uniformly distributed over the set {1, . . . , si} for i = 1, . . . ,M . In other words,

it is assumed that

Pr(li = Lj) =
1

si

for j = 1, . . . , si. Note that if the assumption does not hold, this implies that the indices are

biased, a property that may possibly be exploited in another improvement of the algorithm.

From now on, we will make this assumption without mention.

Now, observe the procedure for extracting linear equations from symbol S over Fq . It

basically applies elementary row operations (described by the vector t) to the right-hand

side matrix L, and in case tL equals the all-r vector it outputs the linear equation

tAX = r, (6.2)

which holds with certainty. However, suppose there exists a t such that tL contains a frac-

tion of r’s that is significantly larger than 1
q

. Then, by the above assumption, the probability

that (6.2) holds is equal to this fraction, and in particular larger than 1
q

. That implies that

(6.2) has a higher probability of being correct than simply guessing the value of a variable

randomly, which is correct with probability 1
q

. A linear equation that holds with maximal

probability (unequal to one) will be referred to as a most likely guess. The straightforward

but very inefficient way to determine a most likely guess is to try all possible vectors t and

determine which lead to a tL with a maximal number of r’s, with r ∈ Fq. Note that there

may be more than one most likely guess, as illustrated in the following example.

Example 6.1. Consider the symbol over F2 given by

S :





1 1 0 0 1

0 1 1 1 0

0 0 0 1 1



X =





0 0 1 1

1 0 1 1

0 1 1 0





and observe that no linear equations can be extracted, since the right-hand side matrix does

not generate either 0 or 1. However, from the second row we can extract the linear equation

x2 + x3 + x4 = 1,
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which holds with probability 3
4

, and there are more equations that hold with this probability.

The set of all most likely guesses in this case is given by















x2 + x3 + x4 = 1

x1 + x3 + x4 + x5 = 0

x2 + x3 + x5 = 1

x1 + x3 = 1.

It is possible that the set of most likely guesses forms an inconsistent equation system (as

is the case here). We should always check whether a most likely guess contradicts linear

equations extracted or guessed earlier. If so, the guess is immediately rejected.

Note that it is not straightforward to determine a vector t such that tL has a maxi-

mal number of, say, zeroes, which would correspond to a most likely guess with value

zero. Readers familiar with coding theory may recognize this problem as closely related

to the problem of determining the minimum Hamming distance of the linear code that has

L as its generator matrix. This latter problem is notoriously difficult, and was proven to

be NP-hard in [Var97]. The most likely guess with arbitrary value r among a set of sym-

bols S1, . . . , SM is even harder to determine. In fact, the straightforward method described

above may be the most efficient way to determine the most likely guess, and we should

be aware that incorporating this procedure in an alternative algorithm for solving MRHS

equation systems will lead to a considerable increase in time complexity. We can not expect

to find an algorithm that finds a most likely guess in polynomial time, as the existence of

such an algorithm would contradict Vardy’s result.

We already observed (cf. Table 5.1) that the number of required guesses greatly depends

on which particular variables are guessed. Hence, it is not unlikely that, even though the

probability that a made guess is correct is increased by this method, so is the number of

guesses needed to solve the system. From this, combined with the inevitable increase in

time complexity required to determine the most likely guess(es), we may actually expect an

algorithm that is less efficient than the one that guesses the values of variables randomly.

Initial experimental results on DES and AES equation systems, where we determined the

most likely guesses by the straightforward and costly method described earlier, confirm this

expectation: the made guesses did have a larger probability of being correct, but we needed

considerably more guesses to solve the systems. The cost for using most likely guesses

was simply too high, even when disregarding the additional complexity of determining the

most likely guesses.

Based on these observations, we expect that transforming the current “random-value”

guessing procedure into a procedure that uses most likely guesses instead will affect the

workload of the algorithm too severely, and is therefore not a practical option to improve

our attack.

6.2.2 t-agreeing

One of the main drawbacks of the current algorithm is that pairwise agreeing is typically

unable to delete sufficiently many columns, making gluing of symbols necessary. Since the

number of right-hand sides tends to explode when symbols are glued, we are interested

in a procedure that is able to detect more inconsistencies than pairwise agreeing, possibly

avoiding the use of the gluing procedure altogether. The natural candidate is to extend

pairwise agreeing into a new procedure, which we will call t-agreeing.
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Recall Definition 3.5 of pairwise agreement. We can easily extend this definition into a

definition of t-agreement as follows.

Definition 6.1. A set of symbols S1, . . . , St t-agrees if and only if for all s ∈ {1, . . . , t} it holds that

for all li ∈ Li with i 6= s, there exists an ls ∈ Ls such that the simultaneous linear equation system

A1X = l1 and . . . and AtX = lt

is consistent. A set of M > t symbols t-agrees if and only if each subset of t symbols t-agrees.

For a set of t symbols, this induces t conditions for agreement (one for each possible value

of s). Note that this definition for t = 2 is equivalent to Definition 3.5.

If a particular right-hand side in one of the involved symbols is fixed, we essentially

put a number of constraints on the allowed solutions. By fixing more right-hand sides, we

increase the number of constraints. So the number of possible solutions decreases, unless

the new constraints are linear combinations of the already set constraints, in which case

the number of solutions remains the same. In fact, if the number of constraints is made

sufficiently large, there is an increasing probability that no solution exists. In the extreme

case of t = M , there is only one set of columns that results in a consistent system (as there

is a unique solution to the initial system). Hence, the probability that fixing t − 1 columns

leads to an inconsistent system approaches 1 for t → M . Even though t-agreeing is clearly a

more complex procedure than the current 2-agreeing, the probability that it is able to detect

inconsistencies becomes higher for increasing t, so the additional computational cost may

be acceptable.

The idea of exploiting t-agreement in an improved version of the algorithm is straight-

forward at first sight: check each set of t symbols for inconsistencies and delete columns

accordingly. Since the probability of finding inconsistencies increases for t → M , the prob-

ability of being able to delete columns also increases, so we should be able to create an

algorithm for solving MRHS equations that uses t-agreeing and extracting linear equations,

but not gluing, as was our intent. There is, however, one huge advantage pairwise agreeing

has over all other cases: only if t = 2 we can delete columns if inconsistencies are encoun-

tered.

For example, imagine the 2-agreeing of symbols Si and Sj , and suppose that for the first

column of Li there exists no column in Lj such that the resulting linear system is consistent.

We have already established that the first column of Li may then be deleted, as it can not

contribute to the solution. Now, we 3-agree the symbols Si, Sj and Sk to illustrate the

difference. Suppose that we find an inconsistency if the first columns of Li and Lj have been

fixed. This implies that this combination of columns does not contribute to the solution, but

we can conclude nothing about the columns individually. So, instead of deleting a whole

column, we have to somehow mark the pair (L1
i , L

1
j ), to indicate that this combination does

not contribute to the solution. Hence, t-agreeing does not affect the right-hand side matrices

directly, and we will have to keep track of which combinations of right-hand sides lead to

consistent systems and which do not.

At this point we do not present an efficient algorithm for t-agreeing, but introduce it as

a useful improvement to the SOLVEMRHS algorithm. As an initial proposal, we analyze an

extension of the pairwise agreeing algorithm AGREEPAIR of Section 4.2. By setting t = M ,

we obtain an alternative problem description which may provide an interesting perspective

on the problem of solving MRHS equation systems.
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6.2.3 Alternative problem description

Consider the problem of solving a set of M symbols as in (6.1). Now, define the joint coeffi-

cient matrix A as

A =







A1

...

AM







and let κ =
∑M

j=1 kj denote the number of rows of A. Then, determine the κ × si matrices

Ti =





O
Li

O





for i = 1, . . . ,M , where the number of rows in the top O-block is
∑i−1

j=1 kj . So

T1 =











L1

O
...

O











, T2 =











O
L2

...

O











. . . , TM =











O
...

O
LM











.

Now, compute the matrix U = U (A) such that UA has all its

r = κ − ρ(A)

zero-rows at the bottom. Since it is natural to assume that each of the n variables is involved

in at least one of the symbols (otherwise it can be eliminated first) and that A contains

more than n rows (otherwise there need not be a unique solution), we may conclude that

ρ(A) = n. Now, let the matrices Pi be given by the last r rows of UT i, i.e.

Pi = (UTi)
(−r).

Finally, let α = (α1, . . . , αM ) be such that

M
∑

i=1

Pαi

i = 0. (6.3)

We may then use this equation in an alternative problem description.

Theorem 6.1. Solving (6.3) for α is equivalent to solving (6.1) for X .

Proof. The proof of this statement is similar to the proof of Theorem 4.1, with pi = Pαi

i and

li = Lαi

i for i = 1, . . . ,M .

Let us study this alternative description a bit closer. Roughly it says that given a set of

matrices of κ rows over Fq, we must select exactly one column from each matrix such that

the mod-q sum of these columns equals the zero-vector. By the equivalence to the problem

of solving an MRHS equation system, this alternative problem has a unique solution. The

challenge is now to devise an algorithm that finds this solution significantly faster than

simply trying all possible combinations of columns. Since matrix Pi contains si columns,

the number of possible combinations is

M
∏

j=1

sj ,
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which may be a huge number.

The problem of finding the combination of columns that sum to zero is clearly a very

difficult problem; it is not unlikely that it can be proven to be NP-hard. However, it is

important to realize that the matrices Pi are not random, as they are derived from equa-

tions that describe a cipher. For this reason, the problem of solving Equation (6.3) for

α = (α1, . . . , αM ) may be a much simpler problem than the version in which the Pi are

random.

To illustrate the fact that the matrices Pi are, in fact, far from random, consider the four-

round DES variant described in Section 5.3, which results in an MRHS equation system

of M = 32 symbols, each of which has 26 = 64 right-hand sides and ten rows. We then

determine the matrices Pi, which have dimensions 200× 64. It turns out that these matrices

contain a lot of zero-rows. Furthermore, the location of these zero-rows is independent

of the initial right-hand side matrices Li, which implies that they are independent of the

particular plain-/ciphertext pair used in the corresponding attack. Hence, this observation

holds for all MRHS equation systems derived from four-round DES, and in fact we can

describe a similar observation for all variants of DES and even AES. For several values of

j, we have summarized this for four-round DES in Table 6.1, which gives the indices of the

matrices Pi whose j-th row is non-zero. For example, there are only two matrices, P16 and

P32, whose first four rows are non-zero.

Row index j Matrix indices i

1 16, 32

2 16, 32

3 16, 32

4 16, 32

5 5, 32

19 6, 15, 31

20 7, 31

85 2, 12, 15,24

86 8, 15, 24

139 5, 9, 10, 19

140 3, 13, 19

Table 6.1: Four-round DES matrices Pi that have a non-zero row j.

For four-round DES, the maximum number of matrices that have a non-zero row j is

four (which is obtained for j = 85, 139, 147 and 148), the minimum number is two and the

average, over all j, is 2.48. Note that if the matrices Pi were fully random, these numbers

would all be 32 (the number of symbols) with probability close to 1. For the full version of

DES, these numbers are 10, 2 and 6.03, respectively. For random matrices, these would be

128 with high probability.

This illustrates that the matrices Pi are far from random, and that the problem of solving

(6.3) for instances derived from ciphers is possibly not as hard as may be expected. The

fact that this alternative problem is equivalent to the original problem of solving an MRHS

equation system may provide a new perspective that turns out useful when designing a

more efficient version of the SOLVEMRHS algorithm.
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6.2.4 Further topics

Without going into too much detail, we suggest some additional projects in arbitrary order.

Further experiments using the current algorithm

A straightforward subject is to keep applying our method to other ciphers, and possibly

encounter the “time-memory-number of guesses” tradeoff for these other instances as well.

Since we have already tried a number of block ciphers, we are especially interested in the

behavior of our attack when applied to stream ciphers, which are also suitable for this type

of attack, provided the involved non-linear functions can be viewed as an S-box.

Increase the number of known plaintexts

In this thesis and most of the literature on the subject of MRHS equations in cryptanalysis,

only one known plain-/ciphertext pair is used to attack the investigated cipher. There is

a distinct probability that increasing this number may result in a more efficient attack, in

which less key variables need to be guessed, or the probability that a particular guess is

correct can be improved. The addition of one or more plain-/ciphertext pairs that have

been encrypted using the same encryption key will lead to an increase of the number of

internal state variables, but not of the number of (round) key variables. The number of

equations will increase linearly, e.g. if the number of plain-/ciphertext pairs is doubled, so

is the number of equations.

Estimate complexities

As already mentioned, we are very interested in an estimate of the time complexity (and

to a lesser extent the memory requirement) of our algorithm. Although we are aware that

it is currently not strictly faster than the exhaustive search for larger systems, we will be

able to formally compare our method to known approaches once a complexity estimate is

available.

Exploit properties of coefficient matrices

Typically, the coefficient matrices describing S-boxes contain only a very low number of

non-zero elements (they are said to be very sparse). For example, for six-round DES the

matrices Ai contain about 1% ones or less, and for higher-round DES this number is even

lower. This is due to the fact that the in- and outputs of an S-box only depend on a low

number of variables, for instance the variables describing two internal states and one round

key. At the very least, this implies that the memory requirements for solving MRHS equa-

tion systems that describe ciphers can be improved considerably by using more efficient

methods for storing the coefficient matrices.

However, the theory of sparse matrices is quite a well-known topic in linear algebra,

e.g. [DER89], and there exist numerous algorithms for efficiently processing them. It may

be possible to exploit one of the techniques from this field in our attack. The algorithm

suggested in this thesis does not explicitly use the sparseness of the coefficient matrices at

all, and we expect there is room for improvement.
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Exploit properties of right-hand side matrices

Likewise, we may exploit some of the properties of the right-hand side matrices, as these

are not fully random, given a set of symbols. For example, the right-hand side matrices de-

scribing one of the AES variants are all equal up to the addition of a vector that depends on

the value of the plain- and/or ciphertext. Besides the obvious improvement in the storage

of these matrices, there may be an efficient way of simultaneously processing them.

Hybrid systems

Our algorithm does not use the fact that the operations of the involved S-boxes may be

explicitly known in an algebraic form (as is the case for AES). There may be a way to incor-

porate this explicit form in a hybrid system of equations, in which both MRHS and algebraic

equations are used to describe the cipher. This system will no longer have the linear prop-

erties described in Section 6.1, but may be more efficiently solvable nonetheless.
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DES details

The following pages specify the permutations and S-boxes used in the Data Encryption

Standard (DES) as described in Section 5.3.

Before applying the round functions, the 64-bit plaintext block p is permuted using IP to

obtain (pl, pr). After running the round functions, the ciphertext is obtained by applying

FP (which is the inverse of IP ).

The round function itself contains the S-boxes S1, . . . ,S8 and the two additional permu-

tations E and P . The expansion permutation E transforms a 32-bit half-block into 48 bits,

which are subsequently split into eight equally-sized parts that are sent to the S-boxes. Note

that 16 of the 32 bits of the input to E occur twice in its output. The mixing permutation P

shuffles the 32 bits coming from the S-boxes to produce the output of the round function.

The key schedule employs two permutations PC 1 and PC 2 and a cyclic rotation. The

former specifies which 56 bits of the 64-bit encryption key form the left and right parts of

the key schedule and in which order, whereas the latter shuffles cyclically rotated versions

of these halves and outputs the 48-bit round keys themselves. The number of rotations

depends on the round index and is also specified.

The permutation tables describe which bit of the input occurs at which position(s) in the

output. For example, the first output bit of IP is given by the 58-th bit of its input. The S-box

tables should be read as follows: the row of the table is determined by the outer two bits

of the input, i.e. the first row is selected if the input is of the form 0xxxx0, the second row

if it is 0xxxx1, etc. Similarly, the column is determined by the inner four bits of the input.

The output of the S-box is then the value in the table, converted into the binary format. For

example, S3(011010) = 1011.
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58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

Initial permutation IP Final permutation FP

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

Expansion permutation E Mixing permutation P

57 49 41 33 25 17 9

Left 1 58 50 42 34 26 18

part 10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

Right 7 62 54 46 38 30 22

part 14 6 61 53 45 37 29

21 13 5 28 20 12 4

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

Key schedule permutation PC 1 Key schedule permutation PC 2

Round index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of rotations 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Number of rotations in the key schedule
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S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2

15 1 8 14 6 1 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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B

SR* details

This appendix contains details of the cipher SR*(R,Nr ,Nc) of Section 5.4.

The plaintext is viewed as an Nr × Nc array of bytes, and an initial round key (equal to

the encryption key) is added before the R round functions are applied. The round function

contains a round key addition, a cyclic shift, a matrix multiplication and an S-box. The latter

two operations will be specified below.

• MixColumns. This operation is performed by viewing the internal state as an Nr×Nc

matrix of polynomials over F2 with degree at most 7. The output is then determined

by multiplying this matrix by the matrix MC , whose value depends on the number of

rows as specified in Table B.1.

Number of rows MC

Nr = 1
(

1
)

Nr = 2

(

θ + 1 1

1 θ + 1

)

Nr = 4









θ θ + 1 1 1

1 θ θ + 1 1

1 1 θ θ + 1

θ + 1 1 1 θ









Table B.1: MC for possible choices of Nr .

Remember that MixColumns is omitted from the last round function.

• SubBytes. This operation is the non-linear part of the round function, and it is essen-

tially an 8 × 8 S-box, applied to each entry of the internal state array. The S-box itself

is generated by applying three simple steps, of which the first is non-linear:

1. View the input as a polynomial and determine its multiplicative inverse in F28 ,

where the inverse of the polynomial 0 is defined to be 0;

2. Regard this inverse as an 8-bit vector, and multiply with
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MSB =



























1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1



























;

3. Add the constant vector CSB = (011000011) = 63 to obtain the output of the

S-box.

Note that MSB differs from the matrix given in the official specification [Nat01], as we

use a different method for ordering the bits in a byte, cf. 1.1. However, the resulting

lookup table, depicted in Table B.2, is identical. It is to be read as follows: the first four

bits (in hexadecimal) of the input determine the row of the output; the last four bits

determine the column. So, S(DA) = 57 and S(58) = 6A.

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
0_ 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1_ CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2_ B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3_ 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4_ 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5_ 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6_ D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7_ 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8_ CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9_ 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A_ E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B_ E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C_ BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D_ 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E_ E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F_ 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table B.2: SR* S-box (in hexadecimals)

The key schedule is defined recursively, depending on the particular value of Nc. It

employs the operation SubBytes and the round constants

RCi = θi−1.

Let i denote the round index, and let K0 = K be the initial round key. Recall that the l-th

column of round key Ki is denoted by Kl
i . Then the recursion is as follows:

- One column (Nc = 1):

K1
i = SubBytes(K1

i−1) ⊕ RC ′

i.
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- More than one column (Nc 6= 1):

Kl
i =

{

SubBytes(R(KNc
i−1)) ⊕ RC ′

i ⊕ K1
i−1 for l = 1,

Kl−1
i ⊕ Kl

i−1 for l = 2, . . . ,Nc.
(B.1)

Here, R is an operator that cyclically shifts its input upwards by one byte, e.g.









α1

α2

α3

α4









R−−−→









α2

α3

α4

α1









(B.2)

where α1, . . . , α4 are bytes. Note that the definition of the operator R in (B.2) slightly differs

from the one used in [CMR05], in which R reverses its input. However, only if we use R
as described here will the cipher SR*(10, 4, 4) be equivalent to the AES. The round constant

vectors RC ′

i are determined by the value of Nr as summarized in Table B.3.

Number of rows RC ′

i

Nr = 1
(

RC i

)

Nr = 2

(

RC i

0

)

Nr = 4









RC i

0

0

0









Table B.3: RC ′

i for possible choices of Nr .
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C

Reference code

This appendix contains some of the code used to obtain most of the results described in

Chapter 5. All experiments were run on a 3.0 GHz personal computer with 1 GB of RAM.

Note that for the larger experiments (i.e. those with 212 right-hand sides or more), a more

efficient alternative implementation was used. However, for readability, we only include

the basic code, which has not been optimized in any sense.

The simulation was written in Mathematica, and even though the overhead of using this

sofware is considerable, the results were obtained in a reasonable amount of time. For the

sake of completeness, we mention that the results contained herein are independent of those

mentioned in any earlier publications. Where already published results have been included,

this is indicated explicitly.
It is important to note that in our simulations, the right-hand side matrices are repre-

sented as lists of rows, instead of columns. So, strictly speaking, we use the transposes of
the right-hand side matrices. Symbols are represented by two-dimensional lists, where the
first entry is the coefficient matrix and the second entry is the (transpose of the) right-hand
side matrix. Finally, note that we have implemented the case q = 2 only. For the considered
ciphers this suffices. The procedure names are self-explanatory.

The particular implementation of the function U(A) slightly differs from the one described
in Section 4.2.1. Instead of applying the first part of Gaussian elimination, we let Mathe-
matica determine the nullspace of the matrix A, and replace rows of an intermediate matrix
(which is initially an identity matrix) with the vectors of this nullspace, such that the re-
sulting matrix U is non-singular and the product UA satisfies requirements U1 and U2. The
same holds for the procedure EXTRACTLINEAR, where we prefer to let Mathematica solve the
linear equations directly, instead of explicitly transforming involved matrices into reduced
row echelon form. These procedures are considerably faster than those in which the built-in
command RowReduce for Gaussian elimination was used.

U[min_]:=Module[{},
mat=IdentityMatrix[Length[min]];
R=NullSpace[Transpose[min],Modulus->2];

For[s=1,s<=Length[R],
rr=Length[min];
While[R[[s,rr]]==0,rr--];
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(*Find appropriate location*)
mat=Delete[mat,rr];
mat=Append[mat,R[[s]]];

(*Insert nullspace-vector at the bottom*)
s++];

Return[{mat,Length[R]}];
]

Agree[in1_,in2_]:=Module[{},
M=Join[in1[[1]],in2[[1]]];
out1=in1[[2]];
out2=in2[[2]];
{u,r}=U[M];

If[r>0,
T1=Transpose[Table[PadRight[in1[[2,i]],Length[u]],
{i,Length[in1[[2]]]}]];
T2=Transpose[Table[PadLeft[in2[[2,i]],Length[u]],
{i,Length[in2[[2]]]}]];
Pr1=Transpose[Take[Mod[u.T1,2],-r]];
Pr2=Transpose[Take[Mod[u.T2,2],-r]];
C1=Complement[Pr1,Pr2];
C2=Complement[Pr2,Pr1];
If[C1=!={}||C2=!={},
out1=Delete[in1[[2]],Flatten[Table[Position[Pr1,C1[[i]]],
{i,Length[C1]}],1]];
out2=Delete[in2[[2]],Flatten[Table[Position[Pr2,C2[[i]]],
{i,Length[C2]}],1]];
status=2,status=1],

(*status=2: columns were deleted*)
(*status=1: no columns were deleted*)

status=1;
];

Return[{status,{in1[[1]],out1},{in2[[1]],out2}}]
]

AgreeSet[in_]:=Module[{},
l=Length[in];
out=in;
changed=True;

While[changed,
changed=False;
Do[{a,out[[i]],out[[j]]}=Agree[in[[i]],in[[j]]];
If[a==2,changed=True;
Break[]],
{i,l},{j,i+1,l}]];

Eindhoven University of Technology // University of Bergen



REFERENCE CODE 85

Print[Table[Length[out[[i,2]]],{i,l}]];
(*prints the number of right-hand sides in*)
(*each symbol after agreeing the set*)

Return[out];
]

ExtractLinear[in_]:=Module[{},
Quiet[
HS=DeleteCases[Mod[NullSpace[in[[2]],Modulus->2].in[[1]],2],
Table[0,{Length[in[[1,1]]]}]];

NHS=Mod[LinearSolve[in[[2]],Table[1,{Length[in[[2]]]}],
Modulus->2].in[[1]],2]];

Return[{If[Head[HS]=!=Mod&&HS=!={},HS],If[Head[NHS]=!=Mod,NHS]}]
(*returns coefficient lists of linear equations formatted as*)
(*{{homogeneous equations},{non-homogeneous equations}}*)

]

Glue[in1_,in2_]:=Module[{},
M=Join[in1[[1]],in2[[1]]];
{u,r}=U[M];

T1=Mod[Transpose[u.Table[PadRight[in1[[2,i]],Length[M]],
{i,Length[in1[[2]]]}]],2];
T2=Mod[Transpose[u.Table[PadLeft[in2[[2,i]],Length[M]],
{i,Length[in2[[2]]]}]],2];
If[r=!=0,
B=Drop[Mod[u.M,2],-r];

(*remove zero-rows*)
Pr1=Transpose[Take[T1,-r]];
Pr2=Transpose[Take[T2,-r]];
P=Table[Flatten[Position[Pr2,Pr1[[i]]],1],{i,Length[Pr1]}];

(*indices of those elements of Pr2 that equal Pr1[[i]]*)
LL=
Flatten[Table[Drop[BitXor[Transpose[T1][[i]],
Transpose[T2][[P[[i,j]]]]],-r],{i,Length[T1[[1]]]},
{j,Length[P[[i]]]}],1],

(*if r=!=0, add those elements T1[[i]] and T2[[j]] for which*)
(*Pr1[[i]]=Pr2[[j]], disregarding last r entries*)

B=M;
LL=Flatten[Table[BitXor[Transpose[T1][[i]],Transpose[T2][[j]]],
{i,Length[T1[[1]]]},{j,Length[T2[[1]]]}],1]];

(*if r=0, simply combine all possible pairs of elements*)

Return[{B,LL}]
]
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Used notations and parameters

A or Ai Left-hand side or coefficient matrix

b Block length

C Set of ordered constants

Fq Finite field of q elements

K Encryption key

Ki Round key for round i

k

- for algebraic equations Maximal number of involved variables per equation

- for MRHS equations Maximal number of rows

ki

- for algebraic equations Number of variables involved in equation i

- for MRHS equations Number of rows in equation i

L or Li Right-hand side matrix

M Number of equations

Nc Number of columns in the AES internal state array

Nr Number of rows in the AES internal state array

n Number of variables

q Number of elements in the used finite field

R Number of rounds of the studied block cipher

S or Si Symbol, i.e. S : AX = [L] or Si : AiX = [Li]

S or Si S-box

s or si Number of right-hand sides in symbol S or Si

X Set of ordered variables {x1, . . . , xn}
λ Round key length

Ω Set of solutions, may be indexed to indicate the corresponding

equation, e.g. ΩSi

ρ(A) (Row) rank of matrix A

Θ Maximal number of right-hand sides allowed when gluing

O All-zero matrix, dimensions determined by context

⊕ Bitwise xor, i.e. addition modulo 2
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0 All-zero vector, length determined by context

1 All-one vector, length determined by context

Ir r × r identity matrix

(x || y) Concatenation of vectors x and y

〈x, y〉 Inner product of vectors x and y

Si ◦ Sj Gluing of symbols Si and Sj

for l ≥ 1:

Al Row l of matrix A

Al Column l of matrix A

A(l) Submatrix formed by the first l rows of A

A(−l) Submatrix formed by the last l rows of A

O( ) if f(n)/g(n) → constant as n → ∞, then f(n) = O(g(n))

The dimensions of the coefficient matrices Ai are ki × n, the dimensions of the right-hand

side matrices Li are ki × si.
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