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Abstract

In this paper, we discuss the properties of mixed graphs which visualize
causal relationships between the components of multivariate time series. In
these Granger-causality graphs, the vertices, representing the components of
the time series, are connected by arrows according to the Granger-causality
relations between the variables whereas lines correspond to contemporane-
ous conditional association. We show that the concept of Granger-causality
graphs provides a framework for the derivation of general noncausality rela-
tions relative to reduced information sets by performing sequences of simple
operations on the graphs. We briefly discuss the implications for the identi-
fication of causal relationships. Finally we provide an extension of the linear
concept to strong Granger-causality.
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Keywords: Granger-causality, graphical models, spurious causality, multivari-
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1 Introduction

One of the central concepts in the discussion of economic laws and econometric
models is that of causality. There exist various formal definitions of causality in
the econometric literature and for a critical survey we refer to Zellner (1979). In
this paper we are concerned with the concept of Granger-causality which has been
introduced by Granger (1969). This concept is defined in terms of predictability and
exploits the direction of the flow of time to achieve a causal ordering of associated
variables. Since it does not rely on the specification of an econometric model it
is particularly suited for empirical model building strategies as such suggested by
Sims (1980). A comprehensive survey of the literature on Granger-causality has
been provided by Geweke (1984).

In the original definition of Granger it is supposed that all relevant information is
available and included in the analysis. In practice, only a subset of this information
may have been observed and omission of important variables could lead to spurious
causalities between the variables. Hsiao (1982) addressed this issue formally by
introducing concepts for indirect and spurious causality in a trivariate model. In
particular, it has been shown that a certain type of spurious causality vanishes if
the information set is reduced. This observation led to a strengthened definition of
(direct) causality by requiring an improvement in prediction irrespective of the used
information set. The work of Hsiao has made clear that for a better understanding



of the causal structure of a multivariate time series it is important to study not only
noncausality relative to the full information set, but also more general noncausality
relations. However, for models with more than three variables the number of possible
causal patterns soon becomes too large for a similar, complete characterization in
terms of such general noncausality relations.

The objective of the present paper is to introduce a new graphical approach for
the modelling, identification and visualization of the causal relationships between the
components of a multivariate time series. This approach has been motivated by the
idea of graphical models in multivariate statistics. Graphical models have been used
sucessfully as a general framework for modelling conditional independence relations
between variables. For an introduction to the theory of graphical models we refer
to the monographs of Whittaker (1990), Cox and Wermuth (1996), and Lauritzen
(1996). More recently, directed acyclic graphs which correspond to factorizations of
the joint probability distribution have been associated with concepts for the inference
of cause-effect relationships (Pearl, 1995, 2000; Lauritzen, 2000). However, these
concepts, which formalize the notion of controlled experiments, often rely on an a
priori knowledge of the direction of a possible cause.

The essential feature of the proposed graphical modelling approach is to merge
the notion of Granger-causality with graphs. For this we define a new class of
mixed graphs for time series in which vertices representing the components of the
process are connected by directed edges according to the Granger-causality rela-
tions between the variables. Likewise the contemporaneous conditional association
structure is given by undirected edges between the vertices. Although such graphs
have previously been used to visualize the pairwise causal relations of a multivariate
time series, their properties have not yet been discussed in the literature. We can
show that these graphs are related to general noncausality relations of a time series.
Allowing latent variables to be represented by additional vertices in the graph, the
graphical modelling approach can be used for the investigation of spurious causality
and thus enables us to gain a better understanding of the causal structure of the
time series. In particular, it leads to sufficient conditions for the identification of
causal effects. We note that similar graphs with multiple edges allowed between
two vertices have been considered by Koster (1996, 1999) in the discussion of the
Markov properties of path diagrams of linear structural equation systems.

The paper is organized as follows. In Section 2 we give the definition of Granger-
causality graphs. We further consider vector autoregressive processes constrained
to a given graph as an important class of graphical time series models. In Section 3
the properties of Granger-causality graphs are discussed. In particular, we develop
a method for the derivation of general causal relationships (relative to reduced infor-
mation sets) which are implied by the graph. This method is based on a concept of
separation of vertices and can be executed by a sequence of simple operations on the
graph. In Section 4 the results are used to characterize noncausality at all horizons
(Dufour and Renault, 1998). Furthermore, we briefly discuss the problem of identifi-
cation of causal effects. Section 5 provides a generalization of the introduced concept
to strong Granger-causality which allows the investigation of nonlinear causal rela-
tionships between the studied variables. As an example of a nonlinear graphical
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time series model we consider a special multivariate ARCH model. The final section
gives some concluding remarks. In the appendix we summarize the properties of
conditional orthogonality in a Hilbert space. In the second part of the appendix the
proofs for the results presented in this paper are collected.

2 Granger-causality graphs

The concepts introduced in this paper are based on the notion of causality in mul-
tivariate stochastic processes which has been introduced by Granger (1969). While
the original definition has been formulated in terms of mean square prediction we
adapt a linear framework previously considered by Hosoya (1977) and Florens and
Mourchart (1985). Here noncausality is defined in terms of conditional orthogo-
nality of subspaces in a Hilbert space of square integrable random variables with
inner product 〈X, Y 〉 = E(XY ). This Hilbert space of real random variables on a
common probability space (Ω,F ,P) is denoted by L 2 = L 2(Ω,F ,P).

Let X = {X(t), t ∈ Z, t > τ} be a vector-valued process in L 2 with X(t) =
(X1(t), . . . , Xd(t))

′. We are interested in the causal relations between the com-
ponents of X relative to some information set given by a nondecreasing sequence
I = {I(t), t ∈ Z, t > τ} of linear subspaces in L 2. Here I(t) represents the infor-
mation available at time t. We assume that I is conformable with X in the sense
that the past and present of X at time t are included in the information set I(t).
Denoting by X(τ, t ] the closed linear subspace spanned by {X(s), τ < s ≤ t} we
thus have X(τ, t ] ⊆ I(t). For simplicity we consider information sets of the form
IY (t) = U + Y (τ, t ] where U is some closed subspace of L 2 which contains all in-
formation available at any time t > τ such as constants, deterministic variables, or
initial conditions (on X or other variables). Further Y = (X,Z) is a multivariate
process such that the variables in Z are exogenous for X. An example would be a
model for a small open economy where Z are the foreign country variables.

We assume that the conditional variance var((X(τ + 1)′, . . . , X(t)′)′|IY \X(t)) is
positive definite for all t > τ where conditional variance is taken to be the variance
about the linear projection. By this deterministic linear relations between the vari-
ables are excluded since otherwise the causal effects from different variables might
not be identifiable. In the case where X is a weakly stationary process with starting
time τ = −∞ we assume that also the joint process Y is weakly stationary with
spectral matrix fY (λ) and that there exists c > 0 such that c−1In ≤ fY (λ) ≤ cIn for
all λ ∈ [−π, π].

Within this framework the definition of (linear) Granger-noncausality can be
rewritten as follows:

Definition 2.1 (Granger-noncausality) The process Xa is noncausal for the pro-
cess Xb relative to the information set IY , denoted by Xa 9 Xb [IY ], if

Xb(t+ 1) ⊥ Xa(τ, t ] | IY \Xa(t) for all t > τ.

This definition can be retained for vector processes XA and XB since for A =
{a1, . . . , am} and B = {b1, . . . , bn} we have the following composition and decom-
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Figure 2.1: Causality patterns: (a) direct causality, (b) direct feedback, (c) indirect causality, (d)
spurious causality of type II, and (e) spurious causality of type I.

position property (e.g. Boudjellaba et al., 1992, Corollary 2)

XA 9 XB [IY ] ⇔ Xaj 9 Xbk [IY ] ∀ j = 1, . . . ,m ∀ k = 1, . . . , n.

For processes X with more than two variables the pairwise causality structure
of X can be visualized by linking the variables by arrows representing the causal
relations. Although this graphical representation seems very natural and allows
an intuitive interpretation of the causal structure in terms of feedback, indirect
causality, or spurious causality, the exact properties of the graph thus obtained have
not yet been discussed in the literature.

For a formal definition of this graph we consider graphs G given by an ordered
pair G = (V,E) where V is a finite set of elements called vertices and E is a set of
directed or undirected edges which belong to the classes {a−→ b|a, b ∈ V, a 6= b} and
{a −− b|a, b ∈ V, a 6= b}, respectively. Here we make no distinction between a −− b
and b−−a. Since multiple edges of the same type and orientation are not permitted
two vertices in the graph may be connected by up to three edges. A graph is called a
mixed graph if it contains both types of edges, otherwise the graph is either directed
or undirected.

In our context the vertex set will be V = {1, . . . , d}, i.e. each vertex a in the
graph represents one component Xa of the process. Although our primary interest
are the causal relations between the variables it will be crucial for the analysis
in the next section to model also the contemporaneous (conditional) association
between the variables. We say that Xa and Xb are contemporaneously conditionally
orthogonal relative to the information set IY , denoted by Xa � Xb [IY ], if

Xa(t+ 1) ⊥ Xb(t+ 1) | IY (t) + IY \X{a,b}(t+ 1).

With this definition the dependence structure of X can now be described by the
following graph.

Definition 2.2 (Granger-causality graph) The causality graph of a process X rel-
ative to the information set IY is given by the mixed graph G = (V,E) with vertices
V = {1, . . . , d} and edges E such that for all a, b ∈ V with a 6= b

(i) a−→ b /∈ E ⇔ Xa 9 Xb [IY ],

(ii) a−− b /∈ E ⇔ Xa � Xb [IY ].

For simplicity we will only speak of causality and causality graphs instead of
Granger-causality resp. Granger-causality graphs. The directed edges in the causal-
ity graph correspond to direct causal relations between the components ofX (relative
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to the chosen information set) whereas causality patterns like spurious or indirect
causal relations lead to more complex configurations. The simplest examples of such
configurations involving only three variables are depicted in Figure 2.1 (c) and (d).
We note that in a bivariate analysis of X{a,b} these two configurations may lead to
a directed egde a −→ b and thus would be indistinguishable from configuration (a).
Figure 2.1 (e) depicts a configuration where Xb becomes causal for Xa only after
including Xc in the information set (assuming that d represents a latent variable).
This spurious causality can be detected only by examination of general noncausality
relations relative to reduced information sets.

Example 2.3 (VAR-processes) Let X be a weakly stationary vector autoregressive
process of order p,

X(t) = A(1)X(t− 1) + . . .+ A(p)X(t− p) + ε(t),

where A(j) are d×dmatrices and the ε(t) are independent and identically distributed
innovations with mean zero and nonsingular covariance matrix Σ. Setting IX(t) =
X(−∞, t ] it is well known (cf. Tjøstheim, 1981; Hsiao, 1982) that Xa is noncausal
for Xb if and only if the corresponding entries Aba(j) vanish in all matrices A(j), i.e.

Xa 9 Xb [IX ] ⇔ Aba(j) = 0 ∀j ∈ {1, . . . , p}. (2.1)

Further, Xa and Xb are contemporaneously conditionally orthogonal if and only
if the corresponding error components εa(t) and εb(t) are conditionally orthogonal
given all remaining components εV \{a,b}(t). It then follows from the inverse variance
lemma (e.g. Whittaker, 1990, Prop. 5.7.3) that contemporaneous conditional or-
thogonality between the components of X is given by zeros in the inverse covariance
matrix K = Σ−1. More precisely, we have

Xa � Xb [IX ] ⇔ εa(t) ⊥ εb(t) | εV \{a,b}(t) ⇔ kab = kba = 0. (2.2)

In the case of normally distributed innovations ε(t) these conditions correspond to
a covariance selection model (Dempster, 1972) for the innovations.

As an example, we consider a five-dimensional VAR(1)-process with parameters

A(1) =


a11 0 a13 0 0
0 a22 0 a24 0
a31 a32 a33 0 0
0 0 a43 a44 a45

0 0 a53 0 a55

 , K =


k11 k12 k13 0 0
k21 k22 k23 0 0
k31 k32 k33 0 0
0 0 0 k44 0
0 0 0 0 k55

 .

According to conditions (2.1) and (2.2) the zeros in these matrices now correspond
to missing edges in the causality graph. The resulting graph is shown in Figure
2.2. From this graph, we immediately can see that for example X1 is noncausal for
X4 relative to the full information set IX . The graph further contains a directed
path from vertex 1 to 4 (via 3 or via 3 and 5) which indicates that X1 causes X4

indirectly. However, since every directed path intersects vertex 3 this suggests that
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Figure 2.2: Causality graph for the vector autoregressive process in Example 2.3.

X1 provides no additional information for the prediction of X4 if X3 is included in
the information set, i.e. X1 9 X4 [IX{1,3,4} ]. Such general noncausality relations
can indeed be derived from the causality graph as will be shown in the next section.

Now suppose that a detailed analysis of the time series showed that X{1,3} were
noncausal for X4 after removing X5 from the information set. Since this general
noncausality relation cannot be derived from the graph in Figure 2.2 we would like
to know whether this additional knowledge can be used for a modification of the
graph such that the noncausality relation holds in the modified graph.

3 Properties of Granger-causality graphs

Granger-causality graphs visualize the pairwise causal relationships between the
components of a process X. However, for a better understanding of the causal
structure implied by the graph we are interested in the general causality relations
relative to reduced information sets. For this we will introduce a concept of sepa-
ration for mixed graphs which allows to state whether or not in a graph two given
subsets of vertices are separated by a third subset of vertices. We then show that
all valid separation statements can be linked to general noncausality relations. In
the literature on graphical models there are two main approaches for introducing
separation in graphs which contain directed edges. The first approach is based on
path-oriented criteria as the d-separation for directed acyclic graphs (Pearl, 1988),
while the second approach, defined in Frydenberg (1990) for the class of chain graphs,
utilizes graph separation in undirected graphs by applying the operation of moral-
ization to subgraphs induced by certain subsets of vertices. In the present paper we
follow the latter approach. We start by giving the necessary definitions from graph
theory.

3.1 Graph-theoretic definitions

Let G = (V,E) be a mixed graph with vertices V and edges E. Two vertices a and
b which are joined by an edge are said to be adjacent. If a and b are connected by
an undirected edge a−− b they are said to be neighbours. The set of all neighbours
of a in G is denoted by neG(a). If there is a directed edge a −→ b in G then a is
a parent of b and b is a child of a. The sets of all parents and of all children are
denoted by paG(a) and chG(a), respectively. Finally, a vertex b is said to be an
ancestor of a if there exists a directed path b−→ · · · −→ a in G, and anG(a) = {v ∈
V |v −→ · · · −→ a in G or v = a} denotes the set of all ancestors of a. If it is clear
which graph G is meant we simple use ne(a), pa(a), ch(a), and an(a).
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Let S be a subset of V . The expressions ch(S), pa(S), and an(S) denote the
collection of children, parents, families, and ancestors, respectively, of vertices in S,
that is e.g. ch(S) = ∪s∈Sch(s). A subset S is called an ancestral set if it contains all
its ancestors, i.e. an(S) = S. Further a subset S is complete if all pairs of vertices
in S are adjacent.

From a mixed graph G, the undirected subgraph Gu = (V,Eu) is obtained by
removing all directed edges, i.e. Eu = {e ∈ E|e is undirected}. Further, if S is a
subset of V it induces a subgraph GS = (S,ES) where ES is obtained from E by
keeping edges with both endpoints in S.

Finally, we need the concept of separation in undirected graphs. Let G = (V,E)
be an undirected graph and A, B, and S disjoint subsets of V . Then the set S
separates the sets A and B, denoted by A 1 B |S, if every path a −− · · · −− b
from an element a in A to an element b in B intersects S. We note that the
separation in undirected graphs formally satisfies the properties listed in Proposition
A.1 (e.g. Lauritzen, 1996).

3.2 Moralization in causality graphs

The essential feature of the graphical modelling approach is to relate the conditional
association structure of a multivariate random variable to a graph. One particu-
larly simple, but important class of graphs are the undirected independence graphs
G = (V,E) where E consists of undirected edges between all pairs of variables that
are not conditionally independent given all other variables. In a linear framework
conditional independence may be replaced by conditional orthogonality. In this case
we say that the random variable satisfies the pairwise linear Markov property with
respect to the graph G. For the interpretation of such graphs one is more interested
in a stronger property which holds e.g. under the assumptions of Lemma A.2. Let
G be the independence graph of a random vector η. Then the separation proper-
ties in G can directly be translated into conditional orthogonality relations between
subsets of η. More precisely, if A 1 B|C [G] holds for disjoint subsets A, B, and C
of V then ηA ⊥ ηB | ηC (e.g. Lauritzen, 1996). This property is known as the global
(linear) Markov property for undirected graphs.

In order to exploit the global Markov property for undirected graphs we now
introduce a concept of moralization of mixed graphs which yields an undirected
graph which in the case of causality graphs reflects certain conditional orthogonality
relations of the process X. The key to this concept of moralization is the following
theorem.

Theorem 3.1 Let G = (V,E) be the causality graph of X relative to IY . If for
a, b ∈ V the causality graph G satisfies the following conditions

(a) a /∈ ne(b);

(b) a /∈ ch(b) and b /∈ ch(a);

(c) ne(a) ∩ ch(b) = ∅ and ch(a) ∩ ne(b) = ∅;

(d) ch(a) ∩ ch(b) = ∅;
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Figure 3.1: Configurations in the mixed graph which lead to an edge between vertices a and b in
the moral graph: (a) neighbours, (b) parent and child, (c) flag, (d) immorality, and (e) 2-biflag.

(e) ne(ch(a)) ∩ ch(b) = ∅

then we have Xa(τ, t ] ⊥ Xb(τ, t ] | IY \X{a,b}(t).

Let a, b, c, and d be distinct vertices in V . As in Andersson et al. (2001) the
subgraph induced by {a, b, c} is called a flag (or an immorality) in G if in this
graph a and b are not adjacent and therefore satisfy conditions (a) and (b) whereas
condition (c) (or condition (d) in the case of an immorality) is violated. Further the
subgraph induced by {a, b, c, d} forms a 2-biflag if again a and b are not adjacent in
the induced subgraph but condition (e) does not hold. These subgraphs are depicted
in Figure 3.1. We note that except for an edge between vertices a and b all vertices
may be joined by further edges.

Theorem 3.1 now suggests the following definition of a moral graph with edges
inserted whenever one of the conditions (c) to (e) is violated. We note that a similar
definition is given in Andersson et al. (2001) in the context of chain graphs satisfying
the so-called Alternative Markov property, whereas the definition differs from the
concept of moralization commonly used for chain graphs (Frydenberg, 1990).

Definition 3.2 Let G = (V,E) be a mixed graph. The moral graph Gm = (V,Em)
derived from G is defined as the undirected graph obtained by completing all im-
moralities, flags, and 2-biflags in G and then converting all directed edges in G to
undirected edges.

With this definition Theorem 3.1 is equivalent to the statement that the random
vector η = (ηa)a∈V with components ηa = Xa(τ, t ] satisfies the pairwise linear
Markov property with respect to the moral graph Gm.

We note that for weakly stationary time series X undirected graphs which
describe the dependence structure of the series have already been considered by
Dahlhaus (2000). More precisely an edge a−− b is absent in the partial correlation
graph Gpc of X if and only if Xa(t) and Xb(s) are uncorrelated for all t, s ∈ Z after
removing the linear effects of all other components XV \{a,b}. Theorem 3.1 now shows
that the partial corrleation graph and the causality graph of a time series are linked
by the operation of moralization.

Corollary 3.3 Let G = (V,E) be the causality graph and Gpc = (V,Epc) be the
partial correlation graph of a weakly stationary process X. Then Gpc is a subgraph
of Gm, Gpc ⊆ Gm.

Although the two graphs in Corollary 3.3 are identical for most processes this is not
always true as shown in the next example.
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Figure 3.2: Moral graph Gm for the vector autoregressive process in Example 2.3.

Example 3.4 We consider again the vector autoregressive process in Example 2.3.
In the corresponding causality graph shown in Figure 2.2 the subgraph induced by
the vertices {1, 2, 4} forms a flag since vertices 1 and 4 are not adjacent. Similarly
the subgraph induced by {1, 2, 3, 4} is a 2-biflag. Therefore the moral graph Gm in
Figure 3.2 is obtained by completion of these two subgraphs which results in the
insertion of one additional edge joining vertices 1 and 4.

In the partial correlation graph Gpc, on the other hand, an edge a−− b is absent
if and only if there is a zero at the corresponding position in the inverse spectral
matrix f(λ)−1 (cf. Dahlhaus, 2000) which is equivalent to the following parameter
constraints (with K = Σ−1 and A(1) = (aij))(

kab +
5∑

j,k=1

kjkajaakb

)
= 0,

5∑
k=1

kakakb = 0, and
5∑

k=1

kbkaka = 0.

Obviously these constraints are satisfied for all pairs a, b for which conditions (a) to
(e) in Theorem 3.1 hold or equivalently for which a−− b /∈ Gm. Further conditional
orthogonalities are possible only under additional restriction on the parameters. For
example, the edge 1 −− 2 is absent in Gpc if k12 = −a31k33a32, k13 = −k12a22/a32,
and k23 = −k12a11/a31. In general such constraints only characterize a null set in
the parameter space and the two graphs Gm and Gpc are identical for almost all
vector autoregressive processes.

3.3 General noncausality relations

We return now to the original problem of identifying the general noncausality rela-
tions relative to reduced information sets which are implied by a causality graph.
The identification method presented here is based on an extension of the concept of
moralization discussed in the previous section. Although the results in this section
also hold with exogenous variables Z included in the information set IY , we suppress
them for the remainder of this section for notational convenience and set Y = X.

We first consider subprocesses XS where S is an ancestral subset of V . In this
case the variables in XV \S are not explanatory for the subprocess XS and their
removal from the analysis does not lead to new indirect or spurious causalities.
Therefore the directed edges in the causality graph of XS can be obtained from G
by simply keeping all directed edges e ∈ E with both endpoints in S. Likewise the
reduction of the information set does not lead to additional spurious instantaneous
causalities (cf. Granger, 1988) and thus the contemporaneous conditional association
structure of Xs can be determined solely from the undirected edges in the full graph
G. However two vertices a and b should be joined by an undirected edge a−− b in
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the causality graph of XS not only if the edge already exists in the full graph G but
also if they are connected by an undirected path a−− c1−− . . .−− cn−− b where the
intermediate vertices cj are not in S. The next proposition states that the mixed
graph thus obtained indeed represents the pairwise noncausality relations relative
to IXS .

Proposition 3.5 Let G = (V,E) be the causality graph of X relative to IX . For a
subset S of V we define G〈S〉 = (an(S), E〈S〉) as the mixed graph derived from G
such that for all a, b ∈ an(S)

(i) a−→ b /∈ E〈S〉 ⇔ a−→ b /∈ E,

(ii) a−− b /∈ E〈S〉 ⇔ {a} 1 {b} |S\{a, b} [Gu].

Then G〈S〉 contains the causality graph of Xan(S).

For general subsets S of V the removal of intermediate or explanatory variables
may lead to indirect resp. spurious causality. In this case it is not immediately
clear how the causality graph for the subprocess can be derived from the full graph.
Instead we consider the larger subprocess Xan(S) which includes all explanatory
variables and then use moralization and the global Markov property for undirected
graphs for the derivation of noncausality relations between the subsets of interest.
However, moral graphs as defined in the previous section have an intrinsically sym-
metric interpretation and therefore do not allow the identification of unidirectional
causal relationships (i.e. XA noncausal for XB but not vice versa). More precisely, we
have as a consequence of Theorem 3.1 and Proposition 3.5 that for disjoint subsets
A, B, and C of an(S)

A 1 B |C [G〈S〉m] ⇒ XA(τ, t ] ⊥ XB(τ, t ] | IXC (t). (3.1)

Therefore we introduce an extended concept of moralization for causality graphs
which is based on the idea of splitting the past and the present (at time t + 1) of
certain variables and considering them together in one graph. Suppose we want
to know whether XA 9 XB [IXS ] holds for disjoint subsets A and B of S. The
corresponding orthogonality relation

XB(t+ 1) ⊥ XA(τ, t ] | IXS\A(t) (3.2)

involves besides the history of XS up to time t also the value of XB one step ahead.
We therefore seek to modify the moral graph G〈S〉m such that it includes also the
process XB at time t + 1. Then the orthogonality relation (3.2) can be verified by
means of graph separation in this modified graph.

For any subset B of S the splitting of past and present of variables in XB can be
accomplished by augmenting the moral graph G〈S〉m with new vertices b∗ for all b ∈
B. These represent the variables at time t+1, i.e. b∗ corresponds toXb(t+1), whereas
the vertices in an(A) stand for the history of the process up to time t as in (3.2). We
then join each new vertex b∗ with the corresponding vertex b and its parents of b by
a directed edge pointing towards b∗. Furthermore, two vertices b∗1 and b∗2 in B∗ are
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joined by an undirected edge whenever the two corresponding vertices b1 and b2 are
connected by an undirected edge or an undirected path b1 −− c1 −− . . .−− cn −− b2

such that all intermediate vertices are in V \B. This construction leads to a chain
graph with two chain components S and B∗ (i.e. edges between the two components
are all directed and point from S to B∗ whereas edges within a component are
undirected).

Definition 3.6 (Augmentation chain graphs) Let G = (V,E) be a mixed graph
and B ⊆ V . Then the augmentation chain graph Gaug

B∗ = (V ∪ B∗, Eaug
B∗ ) is given

by a chain graph with chain components V and B∗ such that for all v1, v2 ∈ V and
b1, b2 ∈ B
(i) v1 −− v2 /∈ Eaug

B∗ ⇔ v1 −− v2 /∈ Em,

(ii) v1 −→ b∗1 /∈ E
aug
B∗ ⇔ v1 −→ b1 /∈ E,

(iii) b∗1 −− b∗2 /∈ E
aug
B∗ ⇔ b1 1 b2 |B\{b1, b2} [Gu].

After moralization of the augmentation chain graphG〈S〉aug
B∗ the global Markov prop-

erty can be applied to check whether or not the noncausality relation (3.2) holds for
X. It is important to note that we have introduced moralization only for causality
graphs, but it can be shown that the augmentation chain graphs satisfies the AMP
Markov property, to which this concept of moralization is also applicable (cf. An-
dersson et al., 2001). This heuristic argument is made rigorous in the following
proposition.

Proposition 3.7 Let G = (V,E) be the causality graph of X relative to IX . Fur-
ther let S be a subset of V with B ⊆ S and define η = (ηs)s∈S and η∗ = (η∗b )b∈B as
random vectors with components ηs = Xs(τ, t ] and η∗b = Xb(t+1), respectively. Then
the joint vector (η, η∗) satisfies the pairwise linear Markov property with respect to
(G〈S〉aug

B∗ )m, i.e. for all a1, a2 ∈ S and b1, b2 ∈ B we have

(i) a1 −− a2 /∈ (E〈S〉aug
B∗ )m ⇒ Xa1(τ, t ] ⊥ Xa2(τ, t ] | IXS\{a1,a2}

(t) +XB(t+ 1),

(ii) a1 −− b∗1 /∈ (E〈S〉aug
B∗ )m ⇒ Xb1(t+ 1) ⊥ Xa1(τ, t ] | IXS\{a1}

(t) +XB\{b1}(t+ 1),

(iii) b∗1 −− b∗2 /∈ (E〈S〉aug
B∗ )m ⇒ Xb1(t+ 1) ⊥ Xb2(t+ 1) | IXS(t) +XB\{b1,b2}(t+ 1).

Since under the assumptions on X the pairwise and global Markov property are
equivalent we can not identify the causal relationships between components XA and
XB relative to the reduced information set IXS by means of graph separation applied
to appropriately chosen augmentation chain graphs. We call this property the global
causal Markov property.

Theorem 3.8 Let G = (V,E) be the causality graph of X relative to IX . Further
let S ⊆ V be partitioned into disjoint subsets A, B, and C. Then X satisfies the
following global causal Markov property with respect to G:

(i) A 1 B∗ |S\A [(G〈S〉aug
B∗ )m] ⇒ XA 9 XB [IXS ];

(ii) A∗ 1 B∗ |S ∪ C∗ [(G〈S〉aug
S∗ )m] ⇒ XA � XB [IXS ].

11
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Figure 3.3: Augmentation chain graphs and their moral graphs for the vector autoregressive process
in Example 2.3: (a) Gaug

{4∗}, (b) (Gaug
{4∗})

m, (c) Gaug
{1∗,3∗,4∗}, (d) (Gaug

{1∗,3∗,4∗})
m.

Example 3.9 We continue with the discussion of Example 2.3. As already men-
tioned an intuitive interpretation of the causality graph in Figure 2.2 suggests that
X1 has only an indirect effect on X4 mediated by X3. That this interpretation is
indeed correct can now be shown by deriving the relation X1 9 X4 [IX{1,3,4} ] from
the corresponding augmentation chain graph G〈an(1, 3, 4)〉aug

{4∗}.

Since the ancestral set generated by {1, 3, 4} is equal to the full set V we start
from the moral graph Gm in Figure 3.2. Augmenting the graph with a new vertex 4∗

and joining this with vertex 4 and its parents 3 and 5 by arrows pointing towards 4∗

we obtain the augmentation chain graph Gaug
{4∗} in Figure 3.3 (a). As the graph does

not contain any flag or 2-biflag the removal of directions yields the corresponding
moral graph (Gaug

{4∗})
m in Figure 3.3 (b). In this graph the vertices 1 and 4∗ are

separated by the set {3, 4} and hence the desired noncausality relation follows from
Theorem 3.8.

Similarly we find that X1 and X4 are contemporaneously partially uncorrelated
relative to the same information set. The corresponding augmentation chain graph
Gaug
{1∗,3∗,4∗} and its moral graph are displayed in Figure 3.3 (c) and (d). Since in

the augmentation chain graph the subset {2, 1∗, 3∗} forms a flag, the moral graph
contains one additional edge between vertices 1∗ and 2. In this graph the vertices
1∗ and 4∗ are separated by the set {1, 3, 4, 3∗} and thus X1 � X2 [IX{1,3,4} ].

4 Identification of causal effects

For a more general discussion of causal effects in multivariate models Lütkepohl
(1993) and Dufour and Renault (1998) introduced the notion of noncausality at
different horizons h. This concept allows to description of indirect causal effects and
the distinction between short-run and long-run causality. In the following we show
that that the graphical modelling approach presented in this paper also provides a
natural framework for dealing with indirect effects and gives sufficient conditions for
noncausality at all horizons.

Definition 4.1 Xa is noncausal for Xb at all horizons relative to IY (denoted by

12
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Figure 4.1: Indirect causality Xa 9 Xb [IX{a,b,c} ]: (a) and (b) minimal consistent graphs; (c)
inconsistent graph; (d) consistent graph.

Xa
(∞)
9 Xb [IY ]) if Xb(t+ h) ⊥ Xa(τ, t ] | IY \Xa(t) for all h ∈ N.

Noncausality from Xa to Xb at all horizons intuitively corresponds to the ab-
sence of any direct or indirect effects from Xa to Xb and thus to the nonexistence
of a directed path from a to b in the causality graph of X. As in the case of ordi-
nary Granger-noncausality, this can be generalized to arbitrary information sets by
relating certain separation properties of the graph to noncausality at all horizons.

Theorem 4.2 Let G = (V,E) be the causality graph of X relative to IX . Further
let S ⊆ V be partitioned into disjoint subsets A, B, and C. Then we have

A 1 anG(B)|B ∪ C [G〈S〉m] ⇒ XA
(∞)
9XB [IXS ]. (4.1)

We note that in the case of unreduced information IX the sufficient condition in
(4.1) is fulfilled if and only if the causality graph does not contain any directed paths
from A to B, or equivalently A ⊆ V \an(B). Since further XV \an(B) 9 Xan(B) [IX ]
by the composition property, we obtain as a special case of Theorem 4.2 the separa-
tion condition for noncausality at all horizons given by Dufour and Renault (1998).

Conversely, the condition of Theorem 4.2 is violated irrespective of the informa-
tion set whenever for a pair a ∈ A and b ∈ B there exists a directed path from a to
b. This suggests that one might conclude to a causal effect of Xa on Xb. For this,
however, we have to exclude the possibility of a spurious causality. To illustrate the
problem let us consider the graph in Figure 4.1 (a) which depicts an indirect causal
effect of Xa on Xb, characterized by the noncausality relation Xa 9 Xb [IX{a,b,c} ].
This relation does not characterize the configuration uniquely since the edge a−→ c
can be replaced by a spurious causality (Fig. 4.1 (b)) without violating any causality
relation which can be derived from the first graph. Thus the noncausality relations
of X are not sufficient for the identification of a causal effect of Xa on Xb. On the
other hand, substituting a latent structure for the directed edge c −→ b leads to a
violation of Xa 9 Xb [IX{a,b,c} ] as can be seen from the graphs in Figure 4.1 (c)
and (d). Rejecting both graphs as a possible model for the causal structure of X we
conclude that Xc indeed causes Xb.

This approach for the identification of causal effects can be formally described
using the concept of minimal causality graphs consistent with X. It has been moti-
vated by the theory of inferred causation described in Pearl (2000) who addressed
the problem of inferring causal effects from multivariate distributions satisfying cer-
tain conditional independence relations. In contrast to the graphs described here
the causal structures discussed by Pearl need to be directed acyclic graphs.

In the following we consider mixed graphs G = (V̄ , Ē) with V ⊆ V̄ . Here, the
vertices in V̄ \V represent latent variables and are used for modelling noncausality
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Figure 4.2: Minimal consistent causality graphs for the process in Example 2.3 with additional
restriction X{1,3} 9 X4 [IX{1,2,3,4} ].

relations which are due to spurious causality. A necessary condition for a graph G
to serve as a model for the causal structure of a process X is that it does not imply
false noncausality relations which do not hold for X.

Definition 4.3 A graph Ḡ is consistent with X if the process X satisfies the global
causal Markov property with respect to Ḡ.

Obviously, this condition is not sufficient for the identification of causal effects
since the Markov property trivially holds for a saturated graph with all possible
edges included. We therefore need to impose further conditions. For this let S (Ḡ)
be the set of all separation statements of the form A 1 B∗ |B ∪ C [(Ḡ〈S〉aug

B∗ )m] or
A∗ 1 B∗ |S ∪ C∗ [(Ḡ〈S〉aug

S∗ )m], where S ⊆ V with partition S = A ∪ B ∪ C, which
are valid for the graph G.

Definition 4.4 A graph Ḡ is minimal in the class of all graphs consistent with X if
for any other consistent graph Ḡ′ we have S (Ḡ) = S (Ḡ′) whenever S (Ḡ) ⊆ S (Ḡ′).

In other words any graph Ḡ′ which implies further noncausality relations addi-
tional to those implied by a minimal graph G is not consistent with X. To illustrate
these conditions let us consider again the graphs in Figure 4.1. Since the first two
graphs both imply the same separation statements they are both minimal consis-
tent with X unless X satisfies further noncausality relations. On the other hand,
graph (d) is not minimal since it does not account for the noncausality from Xa to
Xb relative to IX whereas graph (c) is not even consistent with X since it falsely
imposes a marginal noncausality from Xa to Xb which does not hold for X.

The minimal graphs consistent with a process X describe all causal models which
can be used for an explanation of the observed noncausality relations ofX. Therefore
if a directed edge a−→ b is contained in all these graphs the predictability of Xb by
Xa cannot be attributed to the influence of a common explanatory variable only
and thus necessarily implies the existence of a causal influence of Xa on Xb.

Definition 4.5 (Inferred causation) Xa has an causal effect on Xb if there exists
a directed path from a to b in every minimal causality graph Ḡ consistent with X.

We conclude this section with a final discussion of Example 2.3.

Example 4.6 Suppose that a detailed analysis of the time series showed that X{1,3}
were noncausal for X4 after removing X5 from the information set. Definition 4.5
suggests that there exists a minimal graph consistent with X without a directed

14



path from 3 to 4. Replacing the edge 3 −→ 5 by a path 3←− v̄ −→ 5 with a latent
variable v̄, we obtain an additional noncausality relation X1 9 X5 [IX{1,5} ] which
does not hold for X. Similarly, the edge 3 −→ 4 cannot be replaced by a latent
structure either, which leaves us with the graphs depicted in Figure 4.2. It can be
easily shown that both graphs are minimal and consistent with X and that there
exist no further minimal and consistent graphs. Thus we can conclude e.g. that X4

has a causal effect on X5 whereas it remains unclear whether also X1 has a causal
effect on X5.

5 Extension to strong causality

Since causality graphs as defined so far capture only the linear causal relationships
between the components of a multivariate time series they are inappropriate when
describing e.g. financial time series which exhibit strong conditional heteroscedas-
ticity. For such time series the definition of causality graphs needs to be generalized
to include also nonlinear causal relations between the variables.

Florens and Mouchart (1982) have defined a stronger version of Granger-causality
in terms of conditional independence. Denoting the conditional independence of
random variables X and Y given Z by X ⊥⊥Y |Z we can modify the definition of
Granger causality by substituting ⊥⊥ for ⊥. Thus Xa is said to be strongly noncausal
for Xb relative to the information set IY if

Xb(t+ 1)⊥⊥Xa(τ, t ] | IY \Xa(t) for all t > τ.

Similarly we replace contemporaneous conditional orthogonality by contemporane-
ous conditional independence. With these definitions we obtain causality graphs
which take into account the full causal structure of a process.

The results in Section 3 have been derived from the properties of the conditional
orthogonality summarized in Proposition A.1. While (i), (iii), (iv), and the decompo-
sition property also hold when substituting conditional independence for conditional
orthogonality, additional assumptions are needed to guarantee the composition and
the intersection property. The latter holds under the assumption of measurable sep-
arability of the variables (Florens et al., 1990) which for finite-dimensional random
vectors is satisfied if the joint probability has a positive and continuous density.

The composition property is only required to establish the equivalence of the
noncausality for single component processes Xa, a ∈ A and the noncausality for the
joint vector process XA, i.e.

Xa(t+ 1)⊥⊥XB(τ, t ] | IY \XB(t)∀ a ∈ A ⇔ XA(t+ 1)⊥⊥XB(τ, t ] | IY \XB(t). (5.1)

We give three examples of classes of processes for which this equivalence still holds
in the case of strong causality.

(a) X is a Gaussian process. Then conditional independence corresponds to condi-
tional orthogonality for which the composition property holds.
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(b) The components of X are contemporaneously conditionally independent. Then
we have trivially (setting Y = X for convenience) Xa(t + 1)⊥⊥XA\{a}(t + 1) | IX(t)
for all a ∈ A ⊆ V . Together with the left hand side in (5.1) this implies

Xa(t+ 1)⊥⊥ X̄B(t+ 1) | IX(t) +XA\{a}(t+ 1) ∀a ∈ A,

from which the right hand side in (5.1) now follows by the intersection property.

(c) X is a nonlinear autoregressive process of the form

Xa(t+ 1) = fa(X(τ, t ], εa(t+ 1)) a = 1, . . . , d (5.2)

where fa are measurable functions strictly monotone in εa(t+1) for fixed X(τ, t ] and
the innovations ε(t) are independent of X(τ, t ] and have a positive density on R.
Then if Xb is noncausal for Xa the function fa(X(τ, t ], εa(t)) is constant in Xb(τ, t ]
almost surely. To show this we write fxb(y) = fa(x, y) for any X(τ, t ] = x to denote
that we leave all components of X(τ, t ] except Xb(τ, t ] fixed. Since εa(t + 1) is
independent from X(τ, , t ] we have

P
(
Xa(t+ 1) ≤ y |X(τ, t ] = x

)
= P

(
fxb(εa(t+ 1)) ≤ y

)
.

The strong noncausality of Xa for Xb then implies that the left hand side does not
depend on xb. Because of the strict monotonicity of the function fxb for each xb this
is equivalent to fxb = fx′b almost surely.

Since the vector (fa, a ∈ A) does not depend on Xb(τ, t ] if and only if this holds
for each component fa separately this implies the equivalence in (5.1).

The last class of processes is fairly general and includes in particular nonlinear
autoregressive models with additive non-Gaussian errors. As an example for a model
with nonadditive errors we consider a multivariate ARCH process.

Example 5.1 (ARCH(q) process) Let X be a stationary process with conditional
normal distribution

L (X(t) |X(t− 1), . . . , X(t− q)) ∼ N (0, H(t)1/2ΣH(t)1/2),

where Σ is a symmetric and positive definite matrix and H(t) is a diagonal matrix
with elements

ha(t) = σ2
a +

q∑
u=1

X(t− u)′B(a)(u)X(t− u), a = 1, . . . , d

for nonnegative definite matrices B(a)(u). This process is a special case of a multi-
variate ARCH(q) process (e.g. Gouriéroux, 1997). We can rewrite X(t) as a nonlin-
ear autoregressive process of the form (5.2)

Xa(t) = fa(X(t− 1), . . . , X(t− q), εa(t)) =
√
ha(t)εa(t), a = 1, . . . , d,

where ε(t) are independent and identically distributed with mean zero and covari-
ance matrix Σ. Since the conditional variances ha(t) are positive the function fa is
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monotonically increasing in εa(t) and thus satisfies the conditions of the example
above.

Noncausality between the components can now be expressed in terms of the
parameters B(a)(u). If B

(a)
bk (u) = B

(a)
kb (u) = 0 for all k = 1, . . . , d and u = 1, . . . , q

the conditional variance ha(t) does not depend on past values of Xb and consequently
Xb is noncausal for Xa. Further zeros in the inverse of the covariance matrix Σ
correspond to contemporaneous conditional independence as in the case of linear
autoregressive processes.

6 Concluding remarks

In this paper, we have introduced a graphical modelling approach for time series
based on the concept of Granger-causality graphs. Let us summarize some of the
advantages of this approach.

First, graphs can be easily visualized and thus provide a concise way to com-
municate the pairwise noncausality relations of a time series. Second, under mild
assumptions on the time series the global causal Markov property holds. This prop-
erty enables one to conclude from the pairwise noncausality relations reflected by
the causality-graph to general noncausality relations relative to information subsets.
Such general noncausality relations are central for the discussion of direct, indirect,
and spurious causality. Third, spurious causality can be modelled explicitly by in-
clusion of latent variables, which are represented by additional vertices in the graph.
Thus causality graphs can be obtained which imply the same general noncausality
relations which have been empirically found for the time series. Although the causal-
ity graph may not be uniquely determined, the identification of all such graphical
causal models leads to sufficient conditions for the identification of causal effects.
Finally, graphs are simple objects which can be easily implemented on the computer.
This can be exploited when investigating causal structures of high-dimensional time
series.

The results presented here mainly focus on theoretical aspects of the graphical
modelling approach. In particular, we have not been concerned with statistical
methods for the estimation of general noncausality relations from time series data.
Furthermore, search algorithms need to be developed which allow the identification
of all minimal graphs consistent with these relations.

Appendix

A.1 Conditional orthogonality

Let H be a Hilbert space with inner product 〈·, ·〉. The usual orthogonality with respect
to this inner product is denoted by x ⊥ y, i.e. 〈x, y〉 = 0. For a closed linear subspace L
of H let L⊥ be the orthogonal complement of L, i.e. L⊥ = {x ∈ H|〈x, L〉 = 0}, and Lx
be the orthogonal projection of the vector x ∈ H on L, i.e. the unique vector y ∈ L such
that x− y ⊥ L. Finally, the closed sum of two linear subspaces L1 and L2 is denoted by
L1 + L2.
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Let L1, L2, and L3 be closed linear subspaces of H. Then L1 and L2 are defined to be
conditional orthogonal given L3 if

x− L3x ⊥ y − L3y ∀x ∈ L1 ∀ y ∈ L2

or equivalently L⊥3 L1 ⊥ L⊥3 L2. The conditional orthogonality is denoted by L1 ⊥ L2 |L3.
The basic properties of this relation are summarized in the following proposition.

Proposition A.1 Let Li, i = 1, . . . , 4 be closed linear subspaces of H. Then the condi-
tional orthogonality in H has the following properties:

(i) Symmetry.
If L1 ⊥ L2 |L3 then L2 ⊥ L1 |L3.

(ii) Composition/decomposition:
L1 ⊥ L2 |L4 and L1 ⊥ L3 |L4 if and only if L1 ⊥ L2 + L3 |L4.

(iii) Weak union:
If L1 ⊥ L2 |L3 then L1 ⊥ L2 |L3 + U for all closed linear subspaces U ⊆ L2.

(iv) Contraction:
If L1 ⊥ L2 |L4 and L1 ⊥ L3 |L2 + L4 then L1 ⊥ L2 + L3 |L4.

If further L2 + L3 is separable and (L2 + L4) ∩ (L3 + L4) = L4 then we have additionally

(v) Intersection:
If L1 ⊥ L2 |L3 + L4 and L1 ⊥ L3 |L2 + L4 then L1 ⊥ L2 + L3 |L4.

Proof. The first four properties can be proved easily using the properties of ordinary
orthogonality in H (e.g. Florens and Mouchart, 1985). For the proof of the last statement
we first consider the case where L2 is finite-dimensional and L4 = {0}. By the definition
of conditional orthogonality we get L1 ⊥ L⊥3 L2 + L⊥2 L3. Since L2 ∩ L3 = {0} we get
L2L

⊥
3 L2 = L2 and hence L2 + L3 = L2 + L⊥2 L3 = L2L

⊥
3 L2 + L⊥2 L3. On the other hand

L⊥2 L3 = L⊥2 ∪ (L2 + L3) and consequently L⊥3 L2 + L⊥2 L3 = L2L
⊥
3 L2 + L⊥2 L3. Thus

L1 ⊥ L2 + L3.
For general separable L2 we consider orthogonal decompositions L2 = U1 ⊕ U2 where

U1 is finite-dimensional and apply the previous case to U2L1, U1, and U2L3, thus obtaining
L1 ⊥ U1 + L3 |U2. By the orthogonality of U1 and U2 and the decomposition and con-
traction property this yields L1 ⊥ U1 and for U1 ↗ L2 L1 ⊥ L2. The desired conditional
orthogonality now follows from L1 ⊥ L3 |L2 and the contraction property.

Finally, the general case of L4 6= {0} can now be derived from this by substituting
L⊥4 Li for Li.

For countable subsets X of L 2 let LX = sp(X) denote the closed linear subspace
generated by X. Then X and Y are conditional orthogonal given Z denoted by X ⊥ Y |Z
if LX ⊥ LY |LZ . Further if f(X,Z) = g(Y, Z) a.s. for linear functions f and g implies
that f(X,Z) = h(Z) a.s. for some linear function h then the linear subspaces LX , LY ,
and LZ satisfy the condition in Proposition A.1 (v), i.e. (LX +LZ)∩ (LY +LZ) = LZ . In
this case we say that X and Y are linearly separated conditionally on Z.

Lemma A.2 For I ⊆ N let XI = (Xi)i∈I be a random vector in L 2 with positive definite
covariance matrix Σ such that infx∈R|I| ‖Σx‖/‖x‖ ≥ c > 0. Then for disjoint subsets A,
B, and C of I the vectors XA and XB are linearly separated conditionally on XC .
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Proof. Let f(XA, XC) = α′XA+γ′XC and g(XB, XC) = β′XB + γ̃′XC . If f(XA, XC) =
g(XB, XC) a.s. it follows from the assumption on Σ that

0 = var(f(XA, XC)− g(XB, XC)) ≥ c(‖α‖2 + ‖β‖2 + ‖γ − γ̃‖2).

The last term vanishes only if α = 0 and β = 0. Hence f(XA, XC) = γ′XC a.s.
The lower bound on the eigenvalues of Σ is in particular satisfied by any stochastic

process under the assumptions in Section 2.

A.2 Proofs

For notational convenience we give the proofs only for IY (t) = X(τ, t ].
Proof of Theorem 3.1. We show that

Xa(s) ⊥ Xb(s′) |X(τ, t ]\{Xa(s), Xb(s′)}

for all τ < s, s′ ≤ t, which is equivalent to the asserted conditional orthogonality relation.
Let s ≤ s′, otherwise we swap the indices a and b. First, we consider the case s < s′. By
conditions (b) and (c) Xa is noncausal for Xne(b)∪{b} which yields

Xb(s′) ⊥ Xa(s) |X(τ, s′ − 1 ]\{Xa(s)}, Xne(b)(s
′).

Since further Xb and XV \(ne(b)∪{b}) are contemporaneously conditionally orthogonal by
the definition of neighbours it follows by the contraction property that

Xb(s′) ⊥ Xa(s) |X(τ, s′]\{Xa(s), Xb(s′)},

which in the case s = s′ directly follows from (a).
Now let us assume

Xb(s′) ⊥ Xa(s) |X(τ, t ]\{Xa(s), Xb(s′)}

for some t ≥ s′. Since by condition (c) Xb is noncausal for XV \(ch(b)∪{b}) this can be
extended to

Xb(s′) ⊥ Xa(s) |X(τ, t ]\{Xa(s), Xb(s′)}, XV \(ch(b)∪{b})(t+ 1). (A.1)

Similarly Xa is noncausal for XV \(ch(a)∪{a}) and further by conditions (b) and (d) ch(b)∪
{b} ⊆ V \(ch(a) ∪ {a}), which together leads to

Xa(s) ⊥ Xch(b)∪{b}(t+ 1) |X(τ, t]\{Xa(s)}, XV \(ch(a,b)∪{a,b})(t+ 1). (A.2)

Conditions (a), (c), and (e) now imply

Xch(a)∪{a}(t+ 1) ⊥ Xch(b)∪{b}(t+ 1) |X(τ, t ], XV \(ch(a,b)∪{a,b})(t+ 1)

which yields together with (A.2)

Xa(s) ⊥ Xch(b)∪{b}(t+ 1) |X(τ, t ]\{Xa(s)}, XV \(ch(b)∪{b})(t+ 1).

With (A.1) using the contraction and the weak union property we then obtain

Xa(s) ⊥ Xb(s′) |X(τ, t+ 1 ]\{Xa(s), Xb(s′)}.

Application of the intersection property for all s, s′ now proves the theorem.
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Proof of Proposition 3.5. By the definition of an ancestral set, S has no predecessors
in V \S, hence

XA(t+ 1) ⊥ XV \S(τ, t ] |XS(τ, t ] (A.3)

for all A ⊆ S. Suppose that a, b ∈ S are not connected by a directed edge a−→ b in G〈S〉.
By definition of G〈S〉 the edge a−→ b is also missing in G, which yields

Xa(τ, t ] ⊥ Xb(t+ 1) |XV \{a}(τ, t ]

and because of (A.3) and the weak union property

Xa(τ, t ] ⊥ Xb(t+ 1) |XS(τ, t ].

Next, if a and b are not connected by an undirected edge in G〈S〉 then

Xa(t+ 1) ⊥ Xb(t+ 1) |X(τ, t ], XS\{a,b}(t+ 1),

which implies again with (A.3)

Xa(t+ 1) ⊥ Xb(t+ 1) |XS(τ, t ], XS\{a,b}(t+ 1).

and thus the contemporaneous conditional orthogonality of Xa and Xb relative to XS .
Proof of Proposition 3.7. First we consider vertices a and b in S which are uncon-
nected in (G〈S〉aug

B∗ )m. Then the children of a and b are separated by B\(ch(a, b)∪ {a, b})
in Gu and hence

X(ch(a)∪{a})∩B(t+ 1) ⊥ X(ch(b)∪{b})∩B(t+ 1) |XS(τ, t ], XB\(ch(a,b)∪{a,b})(t+ 1). (A.4)

Further Xa is noncausal for XS\(ch(a)∪{a}) with respect to XS and thus

Xa(τ, t ] ⊥ X(ch(b)∪{b})∩B(t+ 1) |XS\{a}(τ, t ], XB\(ch(a,b)∪{a,b})(t+ 1). (A.5)

Together with (A.4) this yields

Xa(τ, t ], X(ch(a)∪{a})∩B(t+ 1) ⊥ X(ch(b)∪{b})∩B(t+ 1) |XS\{a}(τ, t ], XB\(ch(a,b)∪{a,b})(t+ 1).
(A.6)

Noting that Xa(τ, t ] ⊥ Xb(τ, t ] |XS\{a,b}(τ, t ] we obtain from (A.5)

Xa(τ, t ], X(ch(a)∪{a})∩B(t+ 1) ⊥ Xb(τ, t ] |XS\{a,b}(τ, t ], XB\(ch(a,b)∪{a,b})(t+ 1)

and further by the intersection and weak union property

Xa(τ, t ] ⊥ Xb(τ, t ] |XS\{a,b}(τ, t ], XB(t+ 1).

Next, let a ∈ S and b ∈ B∗ be unconnected in (G〈S〉aug
B∗ )m. Similarly as for (A.6) in

the case before we get

Xa(τ, t ], X(ch(a)∪{a})∩B(t+ 1) ⊥ Xb(t+ 1) |XS\{a}(τ, t ], XB\(ch(a)∪{a,b})(t+ 1),

which leads to the desired conditional independence

Xa(τ, t ] ⊥ Xb(t+ 1) |XS\{a}(τ, t ], XB\{b}(t+ 1).

Finally, for a, b ∈ B∗ unconnected in (G〈S〉aug
B∗ )m we immediately get

Xa(t+ 1) ⊥ Xb(t+ 1) |XS(τ, t ], XB\{a,b}(t+ 1)

by the definition of edges between vertices in B∗.
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Proof of Theorem 3.8. By Lemma 3.7 the random variables Xa(τ, t ], a ∈ an(S) and
Xb(t), b ∈ B satisfy the pairwise Markov property for the the moral graph (G〈S〉aug

B∗ )m.
Using the equivalence of pairwise and global Markov property the first part of the lemma
follows. The second part can be derived in the same way.
Proof of Theorem 4.2. Since the set an(B) is ancestral there is no directed edge from
V \an(B) to an(B) in G. Consequently XV \an(B) 9 Xan(B) [IX ] which implies for h ∈ N

Xan(B)(t+ j) ⊥ XV \an(B)(τ, t ] |Xan(B)(τ, t+ j − 1 ], j = 1, . . . , h.

Iterative contraction yields Xan(B)(t, t + h ] ⊥ XV \an(B)(τ, t ] |Xan(B)(τ, t ], which finally
can be reduced to

Xan(B)(t, t+ h ] ⊥ XA(τ, t ] |Xan(B)∪C(τ, t ].

Further noting that by (3.1) the assumption A 1 an(B) |B ∪C [G〈S〉] implies XA(τ, t ] ⊥
Xan(B)(τ, t ] |XB∪C(τ, t ] we obtain

Xan(B)(τ, t+ h ] ⊥ XA(τ, t ] |XB∪C(τ, t ],

from which the assertion of the lemma follows by application of the decomposition prop-
erty.
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