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ABSTRACT

Audio-based cover song detection has received much
attention in the MIR community in the recent years. To
date, the most popular formulation of the problem has been
to compare the audio signals of two tracks and to make a
binary decision based on this information only. However,
leveraging additional signals might be key if one wants
to solve the problem at an industrial scale. In this paper,
we introduce an ensemble-based method that approaches
the problem from a many-to-many perspective. Instead of
considering pairs of tracks in isolation, we consider larger
sets of potential versions for a given composition, and create
and exploit the graph of relationships between these tracks.
We show that this can result in a significant improvement
in performance, in particular when the number of existing
versions of a given composition is large.

1. INTRODUCTION

With the rise of online streaming services, it is becoming
easier for artists to share their music with the rest of the
world. With catalogs that can reach up to tens of millions of
tracks, one of the rising challenges faced by music stream-
ing companies is to assimilate ever-better knowledge of
their content — a key requirement for enhancing user and
artist experience. From a musical perspective, one highly in-
teresting aspect is the detection of composition similarities
between tracks, often known as the cover song detection
problem. This is, however, a very challenging problem from
a content analysis point of view, as artists can make their
own version of a composition by modifying any number
of ingredients — instruments, harmonies, melody, rhythm,
structure, timbre, vocals, lyrics, among others.

Over the years, it has become customary in the Mu-
sic Information Retrieval (MIR) literature to address the
cover song detection problem in what is arguably the most
challenging setting. Indeed, most papers attempt to detect
composition relationships between pairs of tracks based on
their two audio signals only — in other words, completely
out of context and without using any metadata information.
While this well-defined task makes sense from an academic
perspective, it might not be the optimal approach for solving
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the problem at an industrial scale [4].

The second starting point of our work is the fact, often
mentioned in cognitive science, that commonly observed
patterns are represented and stored in a redundant fashion
in the human brain, which makes them more likely to be
retrieved, recognised and identified than patterns that are
observed less frequently [14]. If true, this would apply to
our assessment of composition similarities as well. The
main idea behind our work is that the corpus of existing
versions of a composition can be precisely a substitute for
these multiple representations.

Following these guiding intuitions, we turn to a new
use case, where we do not just have pairs but a pool of
candidates that are likely to be instances of some given mu-
sical work (according e.g. to some first metadata analysis).
We then compare these candidates not only to one refer-
ence version (e.g. the original track, if it exists) but also
to other candidate versions. We then build a graph of all
these versions to identify composition clusters. Sometimes,
when hundreds or thousands of versions of a given work
exist (which is quite common in the catalogue of a stream-
ing company), this ensemble-based approach can result in
substantial improvements on the cover detection task.

In Section 2 we present a review of the literature on cover
identification. In Section 3, we present the 1-vs-1 cover
identification algorithm that we use throughout the paper,
which is heavily based on [23]. The main contribution of
this paper lies in Section 4, in which we present the new
use case for cover identification described in the previous
paragraph.We then showcase our method with examples in
Section 5 and discuss some challenges in Section 6.

2. RELATED WORK

A number of possible approaches to cover song identifica-
tion [12,15] have been developed in the last decade. The au-
thors of [9] introduced a first solution to this problem which
has been used as a starting point for many subsequent stud-
ies. The main idea is to extract a list of beat-synchronous [6]
chroma features from two input tracks and quantify their
similarity by applying dynamic programming algorithms to
a cross-similarity matrix derived from these features. This
algorithm has been refined in [8] by adding a few modifica-
tions such as tempo biasing. Harmonic Pitch Class Profile
(HPCP) features (chroma features) have proven very useful
in cover identification [9, 18-20] as they capture meaning-
ful musical information for composition. Other features
have subsequently been introduced, such as self-similarity
matrices of MFCC features [23,24]. To take advantage
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of the complementary properties of different types of fea-
tures, [23] further introduced a method to combine sev-
eral audio features by fusing the associated cross-similarity
matrices, which resulted in a significant increase in per-
formance compared to single-feature approaches. Having
extracted audio features from two tracks to be compared,
most methods use dynamic programming (either Dynamic
Time Warping or the Smith-Waterman algorithm [22]) to
assign a score to the pair [9,23,24]. One drawback of these
methods is that they are computationally expensive and can-
not be run at scale. Scalable solutions have been developed
by mapping audio features to smaller latent spaces. For
instance, [1, 13] use Principal Component Analysis (PCA)
to compute a condensed representation of audio features
which they use to perform a large-scale similarity search
(e.g. anearest neighbor search). In the same vein, [10, 17]
use deep neural networks to learn low-dimensional repre-
sentations of chroma features.A smaller number of papers
take an ensemble-based approach and report increases in
performance. In particular, [3, 23] leverage the network
of songs using Similarity Network Fusion thereby fusing
scores obtained via different methods, while [21] investigate
several clustering methods and report in particular that the
original song tends to be central within their communities.

3. PAIRWISE MATCHING

As mentioned above, our ensemble-based cover identifica-
tion method consists of two steps. For a given work, we
proceed to: (i) a pairwise (1-vs-1) comparison of all the
tracks in a pool of potential candidates, (ii) a clustering of
these candidates based on the results of step (i). In this
section we present the 1-vs-1 cover song identification al-
gorithm (i) which will be used as a starting point for our
ensemble-based approach, and evaluate its performance on
two distinct cover datasets.

3.1 The algorithm

For the purposes of this work, any 1-vs-1 similarity mea-
sure could be used for step (i), as we are mainly interested
in quantifying the impact of step (ii) on the overall perfor-
mance. We have chosen to rely on an implementation of
the algorithm introduced in [23], as the algorithm achieves
the best results to date on the Covers80 [7] and MSD (Cov-
ers1000) datasets [2]. For a high-level overview of the
pipeline, please refer to Figure 2 in [23]. As with most
algorithms presented in Section 2, it can be decomposed
into two stages: first, it extracts a list of meaningful audio
features from the two tracks to be compared, then it com-
putes a similarity score based on these. The details of this
method are not directly relevant to our work, so we will
focus here on a quantitative assessment of its performance,
to give the reader a quantitative idea of our starting point.
More details on the algorithm can be found in [23].

3.2 Quantitative evaluation of the 1-vs-1 method

We evaluate our implementation of [23] on two different
datasets, and compare it with the numbers reported in the

original paper as well as with a publicly available imple-
mentation of [23] by its author.! To make the comparison
more interpretable, we evaluate two versions of our imple-
mentation with two sets of parameters: Paramsl mimics
the parameters used in [23], and should therefore produce
numbers that very similar to those described in the original
paper, while Params2 uses shorter 8-beats-long blocks.
We first compare the algorithms on the widely used Cov-
ers80 dataset [7] to enable comparison with other published
methods. The dataset is composed of 160 tracks that are
divided into two sets (A and B) of 80 tracks each, with
every track in set A matching one (and only one) track in
set B. For each of the 160 tracks, we compute its score with
all the other 159 tracks and report the rank of its true match.
Table 1 reports the Mean Rank (MR) of the true match (1
is best), the Mean Reciprocal Rank (MRR) [5], as well as
the Recall@1 (R@1) and Recall@10 (R@10). We also
compute the so-called Covers80 scores by querying each
track in set A against all the tracks in set B and reporting
the number of matches found with rank 1.2 Overall, our
results are close to the ones reported in [23] — even though
we could not quite reach the numbers given in their paper.

Internal

Covers80 Dataset
MR |MRR | R@1 |R@10 | €230 Recqnr | Recall
score (no Jazz)

[23] paper | 7.8 | 0.85 |82.4% | 89.9% | 68/80 - -
[23]code | 8.6 | 0.77 | 71.7% | 91.2% | 62/80 732% | 81.8%
Paramsl |10.5| 0.81 | 78.6% | 85.5% | 64/80 792% | 87.8%
Params2 | 13.2| 0.75 | 73.0% | 80.5% | 60/80 || 85.8% | 95.1%

Table 1: Comparison of our implementations (Paramsl
and Params2) against the implementations of [23], on the
Covers80 dataset and on our internal dataset. The recall
rates for the internal dataset correspond to a false positive
rate of 0.5%. For each column, the best performance is
printed in bold.

To complement this baseline, we have created an in-
ternal dataset of 452 pairs of covers grouped into several
categories, obtained by metadata filtering based on the key-
words Acoustic Cover, Instrumental Cover, Karaoke, Live,
Remix, Tribute as well as some Classical and Jazz covers.
Such granularity allows us to compare the performance of
our algorithm across genres and cover types, providing a
new perspective on the problem, as shown in Table 2. We
have tested the two versions of our algorithm on the 452
positive pairs and 10,000 negative pairs selected uniformly
at random. We selected the classification threshold to en-
sure a very low false positive rate below 0.5%. Results are
presented in Table 1. Our algorithm reaches 85.8% recall,
versus 73.2% for the publicly available implementation
of [23]° . Note that jazz is the most challenging genre to

! https://github.com/ctralie/GeometricCoverSongs

2 Each track from set A is now queried against the 80 tracks from set B,
instead of all other 159 tracks.

3 As the computational time is much higher for this algorithm, we only
computed the false positive rate using 500 negative pairs.
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detect, as jazz covers include a lot of improvisation that can
be structurally different from their parent track (see Table
2). If we remove jazz covers from the dataset, the recall
increases to 95.1% with the Params2 implementation.

Type | Acoustic Instr. Karaoke Live Remix Tribute Classical Jazz

# of pairs 57 63 46 57 31 53 77 68

Recall 94% 84 % 97% 100% 93% 96 % 100 % 35 %

Table 2: Recall rates for each genre in our internal dataset,
with a < 0.5% false positive rate.

In view of these results, we will use our own implemen-
tation with Params2 throughout the rest of this paper, as it
is faster and performs best on our internal dataset, which is
larger and more diverse than Cover80.

3.3 Distributions of scores

Figure 1 presents the histogram of pairwise scores for all the
positive and negative pairs in our internal dataset. The dis-
tribution of scores for the negative pairs is short-tailed and
tightly concentrated around s = 2. This means that above
s =~ b, all the pairs can be matched with high confidence.
The distribution of scores for the positive pairs is much
wider. As we can see from the histogram, a non-negligible
fraction of these pairs lies below the classification threshold
(dashed vertical line) and thus cannot be detected with this
1-vs-1 method. The purpose of the next section will be to
apply an ensemble method to a pool of candidate versions
of a given work, to bring these undetected candidates above
the threshold by exploiting the many-to-many relationships
between the candidates.

Threshold
Matches
Non matches
=
Z
A
/\7‘¥\ /\q\
<
15 20 25
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Figure 1: Histogram of the scores for positive (blue) and
negative (green) pairs on our internal dataset. The threshold
corresponds to the threshold used for Table 2.

4. ENSEMBLE ANALYSIS

While the 1-vs-1 algorithm we presented in Section 3 gives
satisfying results overall, it still struggles on covers that
are significantly different from their original track. Here
we show how analyzing a large pool of candidate covers
for one given reference track can improve the quality of
the matching. The intuition behind this idea is that a cover
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version can match the reference track poorly, but match an-
other intermediate version which is closer to the reference.
For instance, an acoustic cover can be difficult to detect on a
1-vs-1 basis, but might match a karaoke version which itself
strongly matches the reference track. We therefore turn to a
new use case, where we not only compare single pairs (e.g.
one reference track against one possible cover), but instead
start from a pool of candidates that are all likely to be in-
stances of some given composition (or work). Usually, this
pool corresponds to candidates that have been pre-filtered
according to some non-audio related signal, e.g. their title,
and might comprise up to a few thousands candidates, de-
pending on the popularity of the work and the specificity of
the pre-filtering step.

A cappella A cappella A cappella

(a) Computing [ (b) Computing all
scores versus the | pairwise scores
reference track

(c) Final graph

Figure 2: Direct (a) vs. ensemble-based approach (b)-(c).

4.1 Computing all pairwise scores

Given a set of IV candidate versions of a work, we first com-
pare all possible pairs of candidates within the set, resulting
in w distinct scores {si;}, ., j<y- As mentioned
above, if the candidates have been pre-filtered using some
metadata-matching algorithm, N typically varies from a
few dozen to a few thousand candidates.

4.2 Scores to distances

Figure 1 shows that almost all negative pairs have scores
between 0 and 4 while scores above 8 always correspond
to positives. Scores above 8 should thus indicate a high
probability of a true match regardless of the score, while a
variation in score around 4 should have a significant impact
on that probability. To account for this fact, we convert
our scores into more meaningful distances using a logistic

spimmy —1
function: d;; = (1 +e "o , where s;; is the score
associated to pair (¢,j) and d;; is the resulting distance.
We have found that the values o = 0.5 and m = 4.3 work
well with the distance-collapsing algorithm introduced in

the next section.

4.3 Collapsing the distances

Let D = {d;;} denote the pairwise distance matrix be-
tween all pairs of candidates (see Figure 3, top left). The
idea behind the ensemble-based approach is to exploit the
geometry of the data to enhance the accuracy of the clas-
sification — for example, the fact that a track can match
the reference track better through intermediate tracks than
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directly. We use a loose version of the Floyd-Warshall algo-
rithm [11] to update the distances in D, such that the new
distances satisfy the triangular inequality most of the time * .
The method is presented in Algorithm 1.

Algorithm 1 Loose Floyd-Warshall

procedure COLLAPSEDISTANCES(distance matrix D)

1:

2 while D still updates do

3: fori,jin 1..N do

4 D(i,j) « ming"), D(i, k) + D(k, §) +n
s D(i, j) « min(D(i,5), D.7))

Here min‘*) () denotes the k*" smallest value of a vec-
tor z. Using £ > 0 allows to gain robustness as several
short paths are required to merge clusters. We have found
that the algorithm is slightly more robust when imposing
a penalty n > 0 for using an intermediate node, which
we have set to n = 0.01 after performing a grid-search
optimization.

Figure 3 shows the distance matrix before (top left) and
after (top right) updating the distances using Algorithm
1, for a set of candidates versions of Get Lucky by Daft
Punk. We can see that the updated distance matrix has
a more neatly defined division between clusters of tracks.
The figure shows one large cluster in which all tracks are
extremely close to each other (the white area), a few smaller
clusters (white blocks on the first diagonal) and a number
of isolated tracks that match only themselves.

Distance matrix
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Figure 3: Top: The Floyd-Warshall algorithm applied to
the distance matrix of Get Lucky, with (left) original dis-
tance matrix and (right) the distance matrix after applying
the Floyd-Warshall algorithm. For better visual interpre-
tation, tracks are reordered along the axes according to
proximity. Darker shades correspond to larger distances.
Bottom: dendrogram representation of the hierarchical clus-
tering on the Floyd-Warshall distance matrix.

4 The distances that would be obtained by applying the original Floyd-
Washall algorithm to D would always satisfy the triangular inequality, but
the resulting configuration would be very sensitive to outliers. Our method
is more robust to outliers, as it requires to find more than one better path
to update the distance between two points.

4.4 Hierarchical clustering

We then proceed to a clustering of the tracks using the
updated distance matrix defined in 4.3, denoted D’. We use
hierarchical clustering with centroid linkage [16] as we have
no prior knowledge on the number of clusters in the graph.
Figure 3 (bottom) shows a dendrogram representation of
the hierarchical clustering applied to D’. In this example,
if we apply a relatively selective threshold, we find one
major cluster (colored in blue in Figure 3) that contains
97% of the true positives and no false positives. Most other
clusters contain a single element, which are all the negative
tracks and the remaining 3% of the positives. If we set the
clustering threshold lower, then we can get more granular
clusters within a same work.

4.5 Final score

In order to assign each track a final score that measures
its similarity to the reference track, we use the cophenetic
distance to the reference track that is produced by the hier-
archical clustering (i.e. the minimum distance threshold for
which they would find themselves in the same cluster as the
reference track). Each track is thus assigned a final score
in 0 — 100, simply taken equal to 100 x (1 - cophenetic
distance), such that exact matches have a score of 100.

5. ANALYSIS OF REAL WORLD EXAMPLES
5.1 Data

We now apply the above to real world data. Our dataset
consists of 10 sets of candidates that correspond to 10 works
that we want to find the versions of. These 10 works span
multiple genres and musical styles, including Hip Hop,
R&B, Rap, Pop and Jazz. For a given work, we create the
set of candidates by performing a metadata search of the
given work’s title on the whole Spotify catalogue, which
we then annotate manually. Across the given works that
we study, this produces sets of candidates whose sizes vary
from a few hundred to a few thousand candidate tracks.
Each set includes a reference track, which will be the anchor
point for that composition. More details on the dataset can
be found in Table 3.

Work # tracks | % positives Refer'e nee
artist
Airplane 811 19% B.o.B
Believer 2552 5% Imagine Dragons
Blurred Lines 386 71% Robin Thicke
Bodak Yellow 110 78% Cardi B
Brown Sugar 721 5.8% D’ Angelo
Embraceable You | 1319 94% Sarah Vaughan
Get Lucky 657 83% Daft Punk
Halo 2995 7.9% Beyoncé
Heartless 1747 5.3% Kayne West
Imagine 2044 50% John Lennon

Table 3: The “10 works” dataset. For each work, we have
selected a reference track that will be our anchor point for
that composition. Click on a work to play the reference
track in the browser.
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5.2 QOutline of the analysis

For each of these works, we analyze the set of candidates
following the steps outlined in the previous two sections,
providing us with two sets of outputs for each work: (a)
the direct score, defined as the output of the 1-vs-1 algo-
rithm between each candidate and the reference track, as
described in Section 3 (rescaled between 0 and 100); (b) the
ensemble-based score, produced by the method described
in Section 4 (also between 0 and 100).

In the next section we start by quantitatively evaluat-
ing our ensemble-based approach (b) against the direct
approach (a), before turning to some qualitative examples.

5.3 Quantitative results

We define two different metrics to evaluate the direct and
the ensemble-based methods:

Ranking metric: For each work, we pick the value of
the threshold that minimizes the number of classification
errors, and report the number of errors. We call this a
ranking metric as the number of errors is minimized when
positives and negatives are perfectly ranked, regardless of
their scores. We also report the corresponding recall and
false positive rates for this threshold.

Classification metric: We fix a universal classification
threshold and compute the corresponding number of classi-
fication errors.

Ranking errors - direct

Work Best thr.|False negatives|False positives| ~ Both

Abs.| Rel. [Abs.| Rel. [Abs.| Rel.
Airplane 121 |33 ] 219% | 1 02% |34 |42%
Believer 18.2 6 5.2% 0| 00% | 6 |02%

Blurred Lines 10.1 | 19| 7.0% 9 | 83% |28 |7.3%

6

1

Bodak Yellow 6.1 6 7.0 % 33.3% | 12 [10.9%
Brown Sugar 12.1 2 4.8% 0.1% 3 104%
Embraceable You 4 0 0% 74 1 98.7% | 74 |5.6 %

Get Lucky 10.1 17 | 3.1% 3 2.6% | 20 |3.0%

Halo 11.1 8 3.4% 8 03% | 16 | 0.5%
Heartless 122 | 15| 163% | 2 0.1% | 17 | 1.0%
Imagine 152 | 72| 71% | 17| 1.7% | 89 |4.4%

(a) Direct approach.

Ranking errors - ensemble-based

Work Best thr. [False negatives |False positives| Both
Abs.| Rel. [Abs.| Rel. [Abs.| Rel
Airplane 70.7 4 2.6% 3 0.5% 7 10.9%
Believer 85.9 0 0.0% 0 | 0.0% 0 [0.0%
Blurred Lines 52.5 0 0.0% 0 0.0% 0 ]0.0%
Bodak Yellow 29.3 9 | 105% | 0 | 0.0% 9 |8.2%
Brown Sugar 70.7 0 0.0% 1 0.1% 1 10.1%
Embraceable You| 404 |22 | 1.8% |19 |253% | 41 |3.1%
Get Lucky 78.8 5 0.9% 2 1.7% 7 |1.1%
Halo 98.0 4 1.7% | 20| 0.7% | 24 |0.8%
Heartless 83.8 8 8.7% 1 0.1% 9 10.5%
Imagine 96.0 1 0.1% 5 0.5% 6 |0.3%

(b) Ensemble-based approach.

Table 4: Optimal thresholds and corresponding results for
the ranking metric.

Table 4 shows the results for the ranking metric for each
work in our dataset. For the optimal thresholds, we report
the number of false negatives, false positives and the sum
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of both (i.e. the total number of classification errors). We
also compute the corresponding false negative rate, false
positive rate and total error rate.

Table 4a shows the ranking results for the direct ap-
proach. Interestingly, the number of false negatives tends to
be higher than the number of false positives.> This is in line
with the histogram in Figure 1, which shows a short-tailed
distribution for the negatives and a wider distribution for
the positives. Overall, the error rate lies between 0 — 10%,
corresponding to a recall rate between 80% and 97% and
a false positive rate below 10% (except for Bodak Yellow
and Embraceable You which have a very small number of
negatives to begin with — the latter case is in fact degenerate
as nearly all tracks are classified as matching).

Table 4b shows the ranking results for our ensemble-
based approach. The number of ranking errors is substan-
tially lower than for the direct approach, including both the
number of false positives and false negatives, as the total
error rate goes down below 1% in most cases. Again, the
main exception is Bodak Yellow, which has the smallest
number of candidates.® Embraceable You is the second
most challenging work, but remarkably its threshold is no
longer degenerate, meaning that the method has now found
a way to separate the candidates. Notably, the number of
false negatives no longer outnumbers the number of false
positives: the ensemble-based approach has successfully
caught most of the difficult tracks that poorly matched the
reference track. Among the few tracks that are still missed,
several are actually very close to the threshold, and only a
handful are still completely undetected (cf Table 7).

Table 5 shows the results for the classification metric.
The universal threshold for each approach is defined as the
median of the optimal thresholds obtained in the ranking
experiment above. Again, we report the number of false
negatives, the number of false positives and the sum of
both. We also compute the corresponding false negative
rate, false positive rate and total error rate. Here again, the
results of the ensemble-based approach are overall superior
to the direct approach, mostly due to an increase in recall.
Although Table 5a is quite similar to Table 4a, which is a
sign that the threshold on direct scores can be chosen in a
nearly universal way, Table 5b differs considerably from
Table 4b for some specific works (namely Halo, Imagine
and Believer). This happens as the optimal threshold is
significantly higher on these works (often > 95%), letting a
large number of false positives above the 78.8% threshold.

5.4 Examples

For each work, we can identify the cases where the
ensemble-based approach has allowed us to detect previ-
ously undetected tracks, and trace back the optimal path
that joined the reference track and the newly found track.
Table 6 shows a few examples of such paths for various
works. For each example, the reference track is shown at

5 Embraceable You is an exception, as its threshold is degenerate and
all tracks are classified as matching.

6 It was also a genuinely difficult example and we struggled to annotate
it.
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Classification errors - direct
Work Thr. | False negatives | False positives Both
Abs. Rel. Abs.| Rel. |Abs.| Rel.

Airplane 12.1] 33 | 21.9% 1 0.2% 34 | 42%
Believer 12.1| 4 3.5% 91 37% | 95 | 3.7%
Blurred Lines | 12.1| 28 | 10.3% 0 0% 28 | 7.3%
Bodak Yellow |12.1| 49 57 % 0 0% 49 | 44.5%
Brown Sugar | 12.1| 2 4.8% 1 0.1% 3 | 04%
Embraceable You|12.1| 753 | 60.5 % 3 4 % 756 |57.3 %
Get Lucky 12.1] 23 4.2% 1 09% | 24 | 3.7%
Halo 12.1] 12 5.1% 4 0.1% 16 | 0.5%
Heartless 12.1| 15 | 16.3% 2 0.1% 17 | 1.0%
Imagine 12.1] 49 4.8% 94 | 93% | 143 | 7%

(a) Direct approach.

Classification errors - ensemble-based
Work Thr. | False negatives | False positives Both
Abs.| Rel. [Abs.| Rel. [Abs.| Rel.
Airplane 7881 9 6.0% 1 0.2% 10 | 1.2%
Believer 788 0O 0.0% 27 1.1% | 27 | 1.1%

Blurred Lines |78.8| 2 0.7% 0 0.0% 2 | 0.5%
Bodak Yellow |78.8] 19 | 22.1% 0 0.0% 19 |17.3%
Brown Sugar |78.8| 2 4.8% 1 0.1% 3 |04%
Embraceable You|78.8| 70 5.6 % 1 13% | 71 |54 %
Get Lucky 78.8| 5 0.9% 2 1.7% 7 | 1.1%
Halo 78.8| 0 0 % 163 | 59% | 163 | 54%
Heartless 788 7 7.6% 4 0.2% 11 | 0.6%
Imagine 788 0 0% 158 | 15.6% | 158 | 7.7%

(b) Ensemble-based approach.

Table 5: Universal threshold and corresponding results for
the classification metric.

Work | Depth | Main artist (& link) | Direct| Ensemble-based

scores scores
0 John Lennon 100 100

Imagine 1 Classic Gold Hits 60.0 99.99
2 A Perfect Circle 21.6 97.9
3 Yoga Pop Ups 8.6 97.9
0 Kanye West 100 100

Heartless 1 The Fray 34.1 99.85
2 | William Fitzsimmons| 9.5 90.7
0 Daft Punk 100 100

Get Lucky 1 Samantha Sax 40.4 99.95
2 | Dallas String Quartet | 6.9 86.6
0 Beyonce 100 100

Halo 1 LP 27.6 99.96

2 Dion Lee 7.96 99.16
Halo 0 Beyonce 100 100

1 Karaoke Universe | 20.5 99.96

Halo Halo| 2 Fajters 7.45 99.35

Table 6: Some examples of tracks that are undetected by
the direct approach and captured by the ensemble-based ap-
proach, in the ranking experiment. The scores that are above
the detection thresholds for each method are displayed in
bold (the corresponding detection thresholds can be found
in Table 4). Click on an artist to play in the browser.

the top of the cell (depth 0), and the newly found track at the
bottom of the cell (depth > 1), with the intermediate tracks
that allowed to bridge the gap in between. All the examples
are true positives, except for the last example (Halo Halo by
Fajters), which has been erroneously matched to a karaoke
version of the reference track.

What about the tracks that are still undetected? Table 7
shows examples of tracks that are still undetected by our

Direct Ensemble
Work Main artist - Title -based
score
score
Get Lucky The Getup - Get Lucky 6.4 24.9
Halo Amanda Sense - Halo 12.4 94.3
Imagine Dena De Rose - Imagine 10.4 86.2
Embraceable | Earl Hines - Embraceable You | 9.6 36.3
You Samina - Embraceable You 5.8 17.0
Heartless Bright Light - Heartless 11.9 50.3
Rains - Heartless 6.4 47.7
Bodak Yellow | Josh Vietti - Bodak Yellow 5.8 14.2
J-Que Beenz - Bodak Yellow 5.6 13.0
Airplanes Em Fresh - Airplanes 5.5 66.1
Lisa Scinta - Airplanes 9.6 55.0

Table 7: Some example of tracks that are undetected by
the ensemble-based approach in the ranking experiment,
with their scores for both methods. Click on a title to play
in the browser.

ensemble-based approach for a couple of works. No clear
pattern emerges — apart from the fact that they are often in
a very different musical style from the original.

6. DISCUSSION

One main challenge associated with our ensemble-based
approach is how to correctly handle transitivity. This issue
emerges from the fact that compositions are not mutually
exclusive. For example, a medley might constitute a bridge
between two distinct composition groups, which our algo-
rithm would then merge together (which is undesirable).
There are probably at least two ways around this issue:
one is metadata-based (i.e. identify these potential outliers
from the metadata and exclude them from the graph com-
putation), while another is to detect them directly from the
graph structure (identify bridges between otherwise unre-
lated clusters).

7. CONCLUSION

In this paper, we consider the following formulation of the
cover song identification problem: among a pool of can-
didates that are likely to match one given reference track,
find the actual positives. We have introduced a two-step
approach, with a first step that computes pairwise similari-
ties between every pair of tracks in the pool of candidates
(for which any known 1-vs-1 approach can be used), and a
second ensemble-based step that exploits the relationships
between all the candidates to output final results. We have
shown that this second step can significantly improve the
performance compared to a pure 1-vs-1 approach, in partic-
ular on the ranking task, where the error rate is down from
a few percents to less than 1% in general. The classification
task is naturally more challenging as the optimal threshold
might vary from work to work, suggesting that the method
would be best exploited as a complement to human anno-
tations — where the human’s task would mainly be to find
the optimal threshold for the classification. Automating this
last step turned out to be non-trivial and is left for future
work.
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